Lognormal Conventions for Aerosol Models

Tad Anderson, University of Washington, tadand@uw.edu

Lognormal Definitions

Basic definition is in terms of the number distribution:

$$\frac{dN}{d\ln(r)} = \frac{N}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{\left[\ln(r) - \ln\left(r_{g_0}\right)\right]}{2\sigma^2}\right\}$$
(1)

This is the most common mathematical convention. However, the total number, N, and the geometric number mean radius, r_{g0} , are very poor indicators of mass and light scattering properties of a given size distribution. At the same time, the total volume, V, and the geometric volume mean radius, r_{g3} , are very good indicators of mass and light scattering. Therefore, it is generally worthwhile to report not only N and r_{g0} , but also V and r_{g3} . These can be calculated analytically as follows:

$$r_{g3} = r_{g0} \exp(3\sigma^2)$$
 (2)

$$V = N \frac{4\pi}{3} r_{g0}^3 \exp\left(\frac{9\sigma^2}{2}\right)$$
 (3)

For reference, the cross-sectional area $(A=\pi r^2)$, can be found analytically from:

$$A = N\pi r_{g0}^{2} \exp\left(\frac{4\sigma^{2}}{2}\right) \tag{4}$$

To convert from volume to number, (2) and (3) can be rearranged.

$$r_{g0} = r_{g3} \exp\left(-3\sigma^2\right) \tag{5}$$

$$N = V \frac{3}{4\pi} r_{g0}^{-3} \exp\left(-\frac{9\sigma^2}{2}\right)$$
 (6)

Integration of lognormal distributions:

The integration scheme begins by calculating the increment of particle number in the ith size bin,

$$dN_i = \frac{N}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{\left[\ln(r_i) - \ln(r_{g0})\right]}{2\sigma^2}\right\} d\ln(r)_i$$
 (7)

where r_i means the ith radius. For equal increments of r, calculate $dln(r)_i$ (that is, the ith increment of the log of radius) from,

$$d\ln(r)_i = \ln\left[\frac{(r_i + dr/2)}{(r_i - dr/2)}\right] \tag{8}$$

To calculate the integral of any quantity, two additional parameters are needed: the lower and upper limits of integration, r_{lo} and r_{up} , respectively. If these are not 0 and ∞ , we actually calculate integrals over a truncated size distribution. An overhat " \sim " will be used to indicate integrals or averages over truncated size distributions. The numerical integrals of cross-sectional area and volume are given by,

$$\widetilde{A} = \sum_{r_{lo}}^{r_{up}} \pi r_i^2 dN_i \tag{9}$$

$$\widetilde{V} = \sum_{r_{lo}}^{r_{up}} \frac{4\pi}{3} r_i^3 dN_i \tag{10}$$

Tables 1 shows the physical properties of four, unimodal lognormal size distributions, using the above conventions. The specified parameters are shown with single digit precision and the calculated parameters are shown with 5-digit precision.

Table 1. Physical properties

Aerosol Type	V	r_{g3}	σ	r_{g0}	N	r_{lo}	r _{up}	$\widetilde{ ext{V}}$
	$(\mu m^3/cm^3)$	(µm)		(µm)	$(\#/\text{cm}^3)$	(µm)	(µm)	$(\mu m^3/cm^3)$
1. seasalt	1	1.0	ln(2)	0.23661	2.0743	0.01	5.0	0.9899
2. "dust"	1	1.5	ln(2)	0.35491	0.61461	0.01	5.0	0.9588
3. clean pollution	1	0.2	ln(2)	0.047321	259.29	0.01	5.0	1.0000
4. dirty pollution	1	0.2	ln(2)	0.047321	259.29	0.01	5.0	1.0000

Further reading:

The logic of representing measured aerosol size distributions as combinations of lognormally distributed "modes" (nuclei, accumulation, and coarse) was laid out in a seminal paper by Whitby (1978). The calculation of optical properties for lognormal distributions was discussed by Willeke and Brockmann (1977), who show the logic of working with the *volume* (not the number) distribution and of reporting the volume normalized extinction. Both these papers (and many others written within the aerosol measurement community) express the width of the distribution with $\exp(\sigma)$, rather than σ , and denote this quantity, σ_g . If Eq. 1 were rewritten by substituting $\ln(\sigma_g)$ for σ , it would follow this alternate convention. Obviously, this is the convention I am used to, since I specified σ in Table 1 as $\ln(2)$, where 2 would be σ_g according to the alternate convention.

[Note: The σ_g convention provides better intuitive insight. Take the example herein, where σ =0.69 and σ_g =2.0. If you integrate the number distribution from $r_{g0}/2$ to $r_{g0}*2$, you will include 67% of the total number. Similarly, if you integrate the volume distribution from $r_{g3}/2$ to $r_{g3}*2$, you will include 67% of the volume. Thus, the number 2.0 is a very useful guide to the properties of the size distribution. The same cannot be said of the number 0.69.]

The properties of lognormal size distributions (using the convention in Eq. 1) are discussed in Remer et al. (1998) and Boucher, Schwartz, et al. (1998). The former does a good job of presenting both number and volume properties (as recommended herein); the latter provides an good prototype for the rigor and care required when intercomparing Mie calculations and radiative transfer calculations based on aerosol size distributions.

Cited references:

Boucher, O., Schwartz, S. E., et al., 1998: Intercomparison of models representing shortwave radiative forcing by sulfate aerosols, *J. Geophys. Res.*, **103**, 16979-16998.

Remer, L. A. and Kaufman, Y. J., 1998: Dynamic aerosol model: Urban/industrial aerosol, *J. Geophys. Res.*, 103, 13859-13871.

Whitby, K. T., 1978: The physical characteristics of sulfur aerosols, Atmos. Envir., 12, 135-159.

Willeke, K. and Brockmann, J. E., 1977: Extinction coefficients for multimodal atmospheric particle size distributions, *Atmos. Envir.*, **11**, 995-999.

Problem:

Whitby, 1978, proposes the following parameters for a tri-modal, lognormal size distribution for an average clean continental background aerosol:

MODE	$r_{g0}(\mu m)$	$\sigma_{ m g}$	$N (\#/cm^3)$
Nuclei	0.008	ln(1.6)	1000
Accumulation	0.034	ln(2.1)	800
Coarse	0.46	ln(2.2)	0.72

- i. Calculate r_{g3} for each mode.
- ii. Calculate the volume (µm³/cm³) for each mode and for the total aerosol population.
- iii. Plot the volume distribution. What radius is associated with the minimum between the two modes?

Answers:

MODE	$r_{g3}(\mu m)$	$V (\mu m^3/cm^3)$
Nuclei	0.016	0.006
Accumulation	0.18	1.6
Coarse	3.0	4.8
TOTAL		6.4

minimum is at about 0.5 microns particle radius