Chemistry Problems for ATMS 501

I. OH Production in the Stratosphere and Troposphere

The oxidizing capacity of the troposphere depends critically on the production of hydroxyl radicals (OH) by O₃ photolysis. Initially it was thought that OH production was only significant in the stratosphere, we evaluate that assumption here.

1.
$$O_3 + hv \rightarrow O^* + O_2 \quad k_1$$

2.
$$O^* + M \rightarrow O + M^* \qquad k_2$$

3. $O^* + H_2O \rightarrow 2OH \qquad k_3$

Rate Constant	Stratosphere	Troposphere
$k_1 s^{-1}$	$2x10^{-4}$	$2x10^{-5}$
k ₂ cm ³ molec ⁻¹ s ⁻¹	3.8x10 ⁻¹¹	3.4×10^{-11}
k ₃ cm ³ molec ⁻¹ s ⁻¹	2.2×10^{-10}	2.2×10^{-10}

- a. Show that O^* is in steady state in either the stratosphere or troposphere. Assume that $[M]_{strat} = 3x10^{18}$ molec cm⁻³, $[M]_{trop} = 2x10^{19}$ molec cm⁻³, $[H_2O]_{strat} = 2$ ppm, $[H_2O]_{trop} = 1\%$.
- b. Assuming that O* is in steady state, derive an equation for the rate of OH production in terms of [O₃], [M], [H₂O], and the rate constants.
- c. Calculate the OH production rate for both the stratosphere and the troposphere. Assume $[O_3]_{strat} = 3000$ ppb and $[O_3]_{trop} = 50$ ppb. Explain any similarities or differences between the two locations and comment on the oxidizing nature of the stratosphere relative to the troposphere.

II. NO_x Cycling

Photochemical cycling of nitrogen oxides is responsible for the net production of tropospheric ozone. Early in atmospheric chemistry, it was assumed that $NO - NO_2 - O_3$ were in a photochemical equilibrium via the reactions:

1. NO + O₃
$$\rightarrow$$
 NO₂ + O₂ $k_1 = 1.6 \times 10^{-14} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1} \text{ at } 288 \text{ K}$
2. NO₂ + hv \rightarrow NO + O $k_2 \sim 0.01 \text{ s}^{-1} \text{ cloud-free noon-time conditions}$
3. O + O₂ + M \rightarrow O₃

Since the abundance of O_2 is so large, we can assume that reaction 3 is instantaneous so that NO_2 photolysis is the rate at which both NO and O_3 are regenerated.

- a) Under this assumption, and assuming that either NO or NO₂ are in steady state derive an equation for the ratio of NO/NO₂. Evaluate this ratio for typical daytime values of the rate coefficients given, and an ozone mixing ratio of 50 ppb in the boundary layer.
- b) Nitric oxide (NO) reacts with other radical species, such as peroxy radicals, quite rapidly.

4. NO + HO₂
$$\rightarrow$$
 OH + NO₂ $k_4 = 8 \times 10^{-12} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$
5. NO + RO₂ \rightarrow RO + NO₂ $k_5 = k_4$

Suppose the mixing ratio of the sum of peroxy radicals $(HO_2 + RO_2)$ is about 50 ppt. What fraction of the time does NO react with peroxy radicals instead of with O_3 ?

c) Assuming that these peroxy radicals are in steady state, calculate the instantaneous rate of ozone formation for the above conditions in units of ppb/hr. If losses are negligible during the day, how long would it take for the given conditions for O_3 to double (reach 100 ppb)?