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Worldwide emissions of CO2 from human energy-related activities are currently about 30
billion metric tons per year (a metric ton is 103 kg). One outcome of the resulting rise in
anthropogenic CO2 levels has been a growing concern for the loss of ice and snow in the polar
regions. The loss of ice and snow changes the way of life for humans, plants, and animals and
amplifies the climate response in the Arctic. The global warming problem motivates many
to understand and model the physics of sea ice. There are many other worthwhile reasons
as well.

This chapter is a compilation of two lectures I presented at the IPY Sea Ice Summer School
in Svalbard, July 2008. Part one is about how sea ice is modeled in the leading global climate
models, and part two is a guide to the sea ice thermodynamic modeling exercises that I led
at the summer school.

I will begin part one with a brief history of sea ice modeling in climate models. Next, I
will lay out the highest level governing equations for a state of the art climate model and
describe their implementation in words and pictures. My intention is to explain why I think
certain physics is important and how it affects the climate model behavior. I will not do
justice to the topic of sea ice dynamics, not because it is unimportant, but because this
topic has been taken up by others in this volume. I will describe some general considerations
about numerical and computational considerations for these models. I will conclude with
suggestions about where I think efforts should be focused to further improve sea ice models.
I hope to make the case that computation expense is a poor excuse for putting off many
model improvements.

The modeling exercises in part two use a one-dimensional thermodynamic sea ice model
with explicit brine-pocket physics that has been used in several global climate models. The
exercises are designed to investigate the role of sea ice in the climate system and issues that
global climate modelers face when developing a sea ice model.

1 Modeling Sea ice in Global Climate Models

1.1 A Brief History

Although the basic influence of sea ice on polar climate has been understood for a half-
century or more (e.g., Untersteiner, 1961; Fletcher, 1965), the sea ice components of climate
models lagged behind other components of climate models in the 20th century. I believe this
is because the main importance of sea ice was thought to be its role in ice-albedo feedback
(see, e.g., Shine et al., 1984). Until the last decade or so, sea ice albedo measurements on a
local scale were scarce, and none existed on a climate model gridscale. With little basis for
designing a realistic albedo parameterization prior to the 1990s, modeling centers kept the
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whole sea ice component as simple as possible and directed their limited human resources
elsewhere.

The earliest “global climate models” were energy balance models, such as the Budyko and
Sellers type (Budyko, 1969; Sellers, 1969). These models accounted for ice-albedo feedback
by parameterizing the ocean surface albedo as a function of sea surface temperature. Thus
sea ice was essentially modeled as an ocean painted white. The albedo difference between
blue and white ocean areas determined the strength of the polar amplification. Anyone
who has run this kind of climate model quickly discovers that the polar climate and polar
amplification varies radically depending on this albedo difference.

Implementing a realistic albedo parameterization is just one step in writing a good sea ice
model. The albedo parameterization is only ever as good as the success of modeling the sea
ice basic state — the ice-thickness distribution, ice motion, snow depth, melt-pond coverage,
etc. A simple sea ice model, for example, one that assumes a fixed pond coverage and/or lead
fraction in summer has fewer degrees of freedom and perhaps less can go wrong. Furthermore,
a simple model takes fewer computational resources, is easier to tune (adjustments made to
model parameters to produce a reasonable sea ice cover), and tends to be more robust in
the face of biases in other components. It would also seem that some of the poor physics in
the sea ice component of global climate models defies reason.

Basin-scale models that treat the sea ice as a viscous-plastic (VP) material and another that
also explicitly modeled the ice-thickness distribution (ITD), both still in common use today,
were developed and demonstrated decades ago by Hibler (1979, 1980). Sea ice thermody-
namics that took into account the thermal inertia of brine-pocket physics was developed
by Untersteiner (1961) and Maykut and Untersteiner (1971). However, climate modelers
thought these methods were too complex and computationally demanding to be implemented
until decades after their invention. Instead as climate models developed in the 1980 and early
1990s, they implemented primitive equation atmosphere and ocean models, but often treated
sea ice as a uniform slab without brine pockets or melt ponds (see Table 1). Some allowed
the sea ice to move but usually only in free drift, with no internal ice force.

It wasn’t until Flato and Hibler (1992) simplified the VP model by treating sea ice as a cavi-
tating fluid (CF) that global climate modelers attempted to implement sea ice dynamics with
a constitutive law (with an internal ice force). Then Hunke and Dukowicz (1997) developed
a technique of treating sea ice as an elastic-viscous-plastic (EVP) material — a numerical
approximation to the VP model that asymptotes to the full VP solution and yet is efficient,
highly parallelizable, and offers flexible grid choices. Zhang and Hibler (1997) followed suit
by making the VP numerics more efficient and parallelizable. These new dynamical schemes
ushered in a time of rapid improvement in the sea ice dynamics in climate models, and now
EVP and VP dynamics are in wide use among climate models.

Methods to treat sea ice thermodynamics were also evolving. The thermodynamic model of
Maykut and Untersteiner (1971) was adapted for climate modeling and taken a step further
to account for brine pockets in the sea ice enthalpy by Bitz and Lipscomb (1999). Their
thermodynamic scheme was demonstrated in a global climate model with a Lagrangian ice-
thickness distribution (Bitz et al., 2001). The thermodynamics of Bitz and Lipscomb (1999)
was subsequently simplified to only allow brine pocket physics in the upper layer by Winton
(2000). A refinement to the numerics of the Lagrangian ice-thickness distribution improved
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its accuracy (Lipscomb, 2001).

Table 1: Sea ice physics in models participating in phase two of the Coupled Model Inter-
comparison Project (CMIP2, Meehl et al., 2000), which had a target deadline for submitting
data by April 1997. Based on table 1 from Holland and Bitz (2003) with original informa-
tion from references cited there. Some references did not completely describe the sea ice
component, which lead to missing information in the table below. All models include basic
thermodynamics, but no information about the number of temperature layers was available.

Modeling Center Abbrev. Sea Ice Physics1

Bureau of Meteorology Research Center (Australia) BMRC no dynamics, no leads
Canadian Centre for Climate Modelling and Analysis CCC no dynamics, leads
Center for Climate System Research (Japan) CCSR no dynamics, no leads
Centre Europeen de Recherche et de Formation
Avancee en Calcul Scientifique (France)

CERF no dynamics, statisti-
cal ITD

Commonwealth Scientific and Industrial Research
Organization (Australia)

CSIRO CF, leads

National Center for Atmospheric Research (USA) CSM CF, leads
Max-Planck-Institut fuer Meteorologie
(ECHAM3+LSG Model) (Germany)

ECH3 no dynamics, no leads

Geophysical Fluid Dynamics Laboratory (USA) GFDL FD, no leads
Goddard Institute for Space Studies (USA) GISS CF, leads
United Kingdom Meteorological Office HadCM3 FD, leads
Meteorological Research Institute (Japan) MRI FD
Department of Energy (USA) PCM EVP, leads

1CF = Cavitating Fluid dynamics, ITD = Ice-Thickness Distribution, EVP = Elastic-
Viscous Plastic dynamics, and FD = Free Drift dynamics (neglects the internal ice force).

During this golden-age of global climate model development, field projects such as SHEBA
and ASPeCt offered improved and more complete measurements of the sea ice albedo (Per-
ovich and Coauthers, 1999; Brandt et al., 2005) and many other properties that are impor-
tant for modeling sea ice. With the help of these data, there have been concerted efforts to
improve many sea ice parameterizations in global climate models.

The evolution of sea ice physics in global climate models can be seen in two intercomparison
projects summarized in Tables 1 and 2. With only 7 years between intercomparison projects,
the sea ice physics made marked advances. Less than 1/4 of the earlier models had sea ice
dynamics, and most that did used CF dynamics. In contrast, nearly all of the later models
have EVP or VP dynamics and about 1/4 also have an ITD. About half of the later models
resolved a vertical temperature profile and some even parameterize brine-pockets.

To my knowledge none of the models listed in tables 1 and 2 include explicit melt ponds or
two-stream radiative transfer in the ice. Some attept to approximate the behavior of melt
ponds with a temperature dependent surface albedo for bare ice conditions. The models that
have two or more ice layers usually have some internal solar absorption, sometimes via a heat
reservoir, as in Semtner (1976). Others, at best, use Beer’s law to let the solar radiation
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Table 2: List of models participating in CMIP3 (Meehl et al., 2007), which had a target
deadline for submitting data by September 2004. Based on information given by the modeling
centers at http://www-pcmdi.llnl.gov/ipcc/model documentation/ipcc model documenta-
tion.php, which was sometimes incomplete and may lead to missing information in the table
below. All models have basic thermodynamics and leads.

Modeling Center Abbrev. Sea Ice Physics1

Bjerknes Centre for Climate Research (Norway) BCCR VP, 0 layers
Canadian Centre for Climate Modelling and
Analysis

CGCM3.1 CF, 0 layers

Météo-France/Centre National de Recherches
Météorologiques

CNRM-CM3 ITD, EVP 4 layers

National Center for Atmospheric Research (USA) CCSM3 ITD, EVP, 4 layers,
brine pockets

Commonwealth Scientific and Industrial Re-
search Organization (Australia)

CSIRO-Mk3.5 CF, 3 layer, heat
reservoir

Max Planck Institute for Meteorology (Germany) ECHAM5-MPI VP, 0 layers
Meteorological Institute of the University of
Bonn, Meteorological Research Institute of KMA,
and Model and Data group (Germany/Korea)

ECHO-G VP, 0 layers

LASG / Institute of Atmospheric Physics (China) FGOALS-g1.0 ITD, EVP, 16 layers
Geophysical Fluid Dynamics Laboratory (USA) GFDL-CM2.1 ITD, EVP, 3 layers,

brine pockets
Goddard Institute for Space Studies (USA) GISS-AOM CF, 4 layers
Goddard Institute for Space Studies (USA) GISS-ER VP, 4 layers
United Kingdom Meteorological Office HadCM3 FD, leads 0 layers
United Kingdom Meteorological Office HadGEM1 ITD, EVP, 0 layers
Institute for Numerical Mathematics (Russia) INM-CM3.0 No dynamics, 0 lay-

ers
Institut Pierre Simon Laplace (France) IPSL-CM4 VP, 3 layers, heat

reservoir
Center for Climate System Research, National In-
stitute for Environmental Studies, and Frontier
Research Center for Global Change (Japan)

MIROC3.2 EVP, 0 layers

Meteorological Research Institute (Japan) MRI-CGCM FD, 0 layers
Department of Energy (USA) PCM EVP

1same abbreviations as in Table 1. Number of layers refers to temperature layers in ice (and
sometimes snow too). A 0-layer model assumes a linear temperature profile in the ice and
snow as in Semtner (1976). A heat reservoir is for solar radiation as in Semtner (1976) and
brine pockets as in Bitz and Lipscomb (1999) or Winton (2000).

warm the interior and expand brine pockets.

A sophisticated treatment of melt ponds was implemented in a single-column sea ice model
quite some time ago (Ebert and Curry, 1993), and recently a melt pond model was extended
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to also include a more consistent two-stream radiative transfer model through ice and ponds
(Taylor and Feltham, 2004). Another new radiative transfer method for sea ice and ponds
incorporates a Delta-Eddington, multiple-scattering radiative transfer approach to account
for multiple scattering from snow grains, bubbles, and brine pockets (Briegleb and Light,
2007). Without a doubt climate modelers are taking note of these advances and some of
these features will be incorporated in the next generation sea ice models, many of which are
being developed for the next IPCC.

Of course the behavior of sea ice is closely tied to the atmospheric and oceanic boundary
layers. Thus modeling sea ice depends fundamentally on the other components in a climate
model and on the way the components are coupled. Table 3 summarizes what I consider to
be major problems with sea ice modeling in global climate models in the 1990s and early
20th century, from the sea ice component alone or across components.

Table 3: Summary of issues with sea ice in CMIP2 global climate models in the late 1990s
and an indication of whether they are fixed in the best 21st century CMIP3 models yet.

Older Model Issues fixed yet?

Lack of reasonable sea ice dynamics yes
Lack of ice thickness distribution yes
Lack of brine pockets yes
Biases in surface wind stress partly
Biases in atmospheric fluxes no
Biases in ocean heat transport no
Lack of melt ponds soon
Beer’s law radiation1 soon
Ice-ocean exchange overly crude2 soon

1Beer’s law should only be used for absorption in a semi-infinite medium, which is a poor
approximation for sea ice where the surface albedo varies with thickess.
2For example, sea ice floes and ridges should be treated as actually embedded in the ocean
and sea ice desalination should occur over many months.

1.2 Sea Ice Physics in Leading Climate Models

State of the art climate models today treat the jumble of sea ice floes as a continuum. Thus
sea ice is generally described in terms of a distribution of sea ice thicknesses at the subgrid-
scale. The ice motion is also considered for a continuum, rather than for individual floes.
With this brief overview, a global-scale sea ice model can be conveniently developed from
four governing equations.

Four Governing Equations

The best sea ice components in global climate models today explicitly compute the ice-
thickness distribution (see Table 2). Among these models, the formulation of the sea ice
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model begins with the ITD equation. The ITD is a probability density function (pdf),
usually written g(h), that describes the probability that the ice cover in particular region
has thickness h. A cruder alternative is to model the mean thickness of the pdf and the total
ice concentration.

In a sea ice model, the ITD describes the pdf of a grid cell and thus it is sometimes called
a subgrid-scale parameterization. A parameterization typically represents processes that
are too small-scale or complex to be represented explicitly. For example, deformation is
parameterized with a set of rules1 that select the portion of the ITD that will deform and
then redistribute it within the ITD. In contrast, ice growth and melt alter the ITD in a way
that is computed from first principles. Hence the ITD actually includes both parameterized
and explicit physics.

The ITD equation is
Dg

Dt
= −g∇ · u + Ψ −

∂

∂h
(fg) + L

1 2 3 4 5.
(1)

Term 1 is the Lagrangian derivative of g following an ice “parcel”, term 2 is the rate of
change of g from parcel convergence, term 3 is the mechanical redistribution (see Fig. 1),
term 4 is the advection of g in ice-thickness space from growth/melt (see Fig. 2), and term 5
is the reduction rate of g from lateral melt. Here, u is the ice velocity and f is the net growth
rate. The ITD equation was introduced by Thorndike et al. (1975). Models that specify the
ITD (e.g. Walsh et al., 1985) or only permit a single ice thickness in the ice covered fraction
of a model grid cell (e.g. Hibler, 1979), would have an equation for the gridcell mean ice
thickness instead.

There are two parts to deformation: a rate of opening (creating open water) and closing
(closing open water and/or deforming and redistributing the ice), which depend on u, and a
redistribution process (or ridging mode), which depends on g(h). The opening and closing
rates depend on the convergence and/or shear in the ice motion field. It may not be obvious
that shear would cause deformation. Imagine that the ice pack is composed of pieces with
jagged edges. When shearing, the jagged edges can catch on one another and cause defor-
mation, which converts kinetic energy into potential energy from piling up ice, or shearing
can cause frictional loss of energy and no deformation. Thus the closing rates also depend
on assumptions made about frictional losses, see e.g., (Flato and Hibler, 1992; Bitz et al.,
2001).

For the redistribution process, some portion of the ITD is identified as potentially able to
“participate” in redistribution (see Fig. 1). A typical rule assumes only the thinnest 15% of
the ITD participates. If the open water fraction exceeds 15%, then no redistribution takes
place, and instead the open water closes under convergence and nothing happens under shear.
This participation function is weighted according to its thickness, so that the thinnest ice is
most likely to deform. Another rule is needed to redistribute the ice that ridges. Originally,
Thorndike et al. (1975) proposed that ice that ridges would end-up five times thicker than

1Deformation can be treated from first-principles in finite element models (e.g., Hopkins and Hibler,
1991; Hopkins, 1996), but there is no differential equation that describes deformation in a model composed
of gridcells, as in climate models. At the moment, finite element models of sea ice have not been implemented
in climate models.
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Figure 1: Illustration of deformation. The portion of the distribution labeled “lost to de-
formation” is also known as the ice that participates in redistribution. It subsequently is
redistributed to thicker parts of g(h), where it is labeled “gain by deformation”.

its starting thickness. Other more complex redistribution schemes have been used since then
(e.g., Hibler, 1980; Lipscomb et al., 2007).

Ice growth or melt causes g(h) to shift along its x-axis, or thickness space. This process is
illustrated in Fig. 2. The growth/melt rate depends on thickness, so g(h) becomes distorted
in the process.

The second governing equation is conservation of momentum:

m
Du

Dt
= −mfk × u + τ a + τw − mgr∇Y + ∇ · σ

1 2 3 4 5.
(2)

Term 1 is the Lagrangian derivative of u following an ice parcel, term 2 is the Coriolis force,
terms 3 are the air and water stresses, term 4 is the force due to ocean surface tilt, and term
5 is the ice internal force, where m is mass per unit area, f is the Coriolis parameter, gr is
gravity, Y is the sea surface height, and σ is the ice stress.

A constitutive law characterizes the relationship between the ice stress and strain rate and
defines the nature of the ice dynamics (e.g., VP, CF, or EVP). A simplistic picture of a
converging ice pack with uniform thickness under an imposed compressive wind force is given
in Fig. 3. Sea ice generally repels a compressive force somewhat, even if it is deforming.
The resulting internal force is associated with a nonzero stress state. In Fig. 3 the ice pack
is converging such that its length L on one side decreases by δL in some time δt, so the
ice experiences a strain ǫ = δL/L and a strain rate ǫ̇ = δL/Lδt. A modeler chooses the
constitutive law to relate σ and ǫ̇, which are actually two-dimensional tensors, not scalars as
I have shown here for illustrative purposes only. Other chapters in the volume describe sea
ice dynamics in far greater detail.

Conservation of enthalpy E (the energy required to melt sea ice) is the third governing
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Figure 2: Illustration of advection in thickness space.

equation:
DE

Dt
= E∇ · u + Π + E

1 2 3 4.
(3)

Term 1 is the Lagrangian derivative of E following an ice parcel, term 2 is the rate of change
to E from parcel convergence, term 3 is the mechanical redistribution of E, and term 4 is
the rate of change to E from thermodynamics.

The fourth and final governing equation is the heat equation in ice and snow:

ρc
∂T

∂t
=

∂

∂z
k
∂T

∂z
+ QSW(z)

1 2 3.
(4)

Term 1 is the thermal energy change in a layer at some location, term 2 is the gradient of
the conductive flux, and term 3 is the absorption of solar radiation. Here, ρ is the density,
c is the heat capacity, and k is the conductivity. A heat equation for sea ice that takes
into account brine pockets by making c and k functions of temperature and salinity was
introduced by Maykut and Untersteiner (1971) and will be described below.

The heat equation is partly responsible for the E in Eq. 3. Growth and melt also influence
E . I do not include equations for growth and melt in my set of governing equations. I discuss
them when I discuss brine-pocket physics in the next section.

I have not yet described an explicit conservation equation for ice volume (or mass) because
conservation of volume is contained in the equation for g(h) (or at least it depends on the
way g(h) is discretized). I also have no equation for the salinity of sea ice, because it is
time-independent in all but one or two climate models at this time. In a few years I hope
models will include desalination in the set of governing equations in a physically correct
manner.
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Figure 3: Illustration of ice slab that deforms under compressive force.

Sea ice thermodynamics with explicit brine-pockets

In this section I describe the thermodynamics of a sea ice model with explicit brine-pockets.
Various simplifications to the method I described have been used. However, the full physics
are elegant, straightforward, and fairly easy to implement. Section 2 describes a sea ice
thermodynamic modeling exercise that was given at the Svalbard sea ice summer school in
July, 2006. The model used in section 2 is based on the equations that follow.

Untersteiner (1961) proposed an equation for the heat capacity of sea ice to take into account
the thermal inertia of brine pockets as

c(T, S) = co +
γS

T 2
, (5)

where co is the heat capacity of fresh ice, S is the salinity in parts per thousand (�), and
T is the temperature in Celsius. Untersteiner fit γ to the values of heat capacity tabulated
by Malmgren (1927) and also suggested a formula for the sea ice conductivity k(S, T ).

Later, Ono (1967) pointed out that Eq. (5) can be derived from first principles such that

γ = Loµ (6)

where Lo is the latent heat of fusion of fresh ice, at 0◦ C and µ is an empirical constant
from the linearized relationship between the melting temperature and salinity of sea ice,
Tm = −µS.

Equation (5) can be multiplied by the sea ice density and integrated to give the amount of
energy Q required to raise the temperature of a unit volume of sea ice from T to T ′:

Q(S, T, T ′) = ρco(T
′
− T ) − ρLoµS

(

1

T ′
−

1

T

)

. (7)
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When T ′ = Tm a unit volume of sea ice should consist entirely of brine; that is, the melting
is complete. Thus Q(S, T, Tm) is the amount of energy needed to melt a unit volume of sea
ice of salinity S at temperature T , or

q(S, T ) = ρco(Tm − T ) + ρLo

(

1 +
µS

T

)

, (8)

which is the enthalpy per unit volume of sea ice (E is q times the volume).

For S = 0, q is what we would expect for pure ice: a heat capacity term equal to the energy
required to raise the temperature to 0◦ C and a latent heat term equal to the energy required
to melt the ice. Although q is undefined at 0◦ C, it is well behaved up to Tm, at which point
q = 0 and the ice is completely melted. Hence, over the range of relevant temperatures,
there is no singularity in (5) or (8). Fig. 4 illustrates the ratio of q to ρLo as a function of
T and S. These equations assume the density is constant, but an easily computed quantity
ρ(1 + µS/T ) indicates the mass of brine per unit volume of sea ice.

Bitz and Lipscomb (1999) pointed out the importance of taking into account brine pockets
when computing ablation and accretion:

F (T ) = −q(S, T )
dh

dt
, (9)

where F is the net flux toward the top or bottom surface, h is the ice thickness, and t is time.
They also explained an energy-conserving solution to the heat equation was easily achieved
by integrating the heat equation:

Q(T, T ′) =

∫ t+∆t

t

(

∂

∂z
k
∂T

∂z
+ QSW(z)

)

dt (10)
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Figure 4: Energy of melting relative to the latent heat of fusion of pure ice as a function of
temperature for S = 3.2� and S = 1�.

Nearly all models that treat brine pockets explicitly prescribe a time invariant vertical salinity
profile S(z) that resembles measurements of perennial sea ice after it has been well-flushed
with snow melt. This is not well justified, but it is practical at this time.

The evolution of the ice plus brine system that makes up sea ice has been related to mushy
layer theory from material science (e.g., Feltham and Worster, 1999). In the limit that the
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salinity profile is fixed in time, Feltham et al. (2006) show that the mushy layer theory is
equivalent to the heat-capacity Eq. 5 introduced by Untersteiner (1961). It is also equivalent
to the sea ice enthalpy as described here. Notz and Worster (2006) incorporate salinity
flushing in a sea ice model of the mushy layer equations but did not yet account for gravity
drainage, the major souce of desalination during winter (Notz and Worster, 2009). Notz and
Worster note that that their model is also unfortunately still too computationally expensive
for large-scale climate modeling.

Discretization of the Ice Thickness Distribution

The ice-thickness distribution can be discretized in a number of ways. The ITD models that
were first designed for basin-scale (or larger) studies assume g(h) is distributed uniformly
between each category boundary (Hibler, 1980; Flato and Hibler, 1995, e.g.,), as illustrated
in Fig 5a. Consequently sea ice growth/melt requires a procedure known as advection in
thickness-space, and the method of resolving the thickness distribution can be termed Eule-
rian. Advection in thickness-space causes diffusion among categories, which can be reduced
by resolving many thickness categories. An advantage of the method is its simplicity, as only
the concentration is needed to describe a thickness category, because the mean thickness of
a category is always at the midpoint between category boundaries.
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Figure 5: Various discretizations proposed for g(h) (a) constant between category boundaries
(Hibler, 1980), (b) a series of δ-functions that move in thickness space (Thorndike et al.,
1975; Bitz et al., 2001), and (c) piecewise continuous with linear functions between category
boundaries (Lipscomb, 2001).

Thorndike et al. (1975) originally formulated a model where the ice in each category is
variable in thickness (see 5b). This discretization is Lagrangian in thickness-space and it is
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free of the diffusion associated with thickness advection in Eulerian models. The trade-offs
are (1) categories are defined by concentration and thickness and (2) something must be done
to limit the number of ice thickness categories when processes such as growth over open water
and ridging create new thicknesses of ice. Thorndike et al. (1975) suggested interpolating
the ITD to a grid fixed in thickness space at each time step, which turns out to be a very
diffusive process. Bitz et al. (2001) implemented a Lagrangian ITD in a global climate model
but instead constrained each category to lie between thickness boundaries. When a category
outgrows its limits, the ice was transfered from one category to another. Bitz et al. (2001)
showed that about five categories of sea ice was sufficient to capture most of the behavior
that is needed in a climate model, and further showed that with just five categories it is
reasonable to include sophisticated thermodynamics with brine-pocket physics.

Lipscomb (2001) introduced a discretization for g(h) that is piecewise continuous with linear
functions between category boundaries (see Fig. 5c) and can be considered intermediate to
those in Fig. 5 a and b. The linear functions vary with growth and melt and the evolution
of g(h) owing to growh or melt is more accurate than for a g(h) that is a series of δ-function
and less diffusive than the g(h) that is constant between boundaries. However, all three
method treat g(h) as a series of δ-functions with regard to deformation and redistribution.

A possible set of state variables

A possible set of state variables for each category i of a sea ice model in a global climate
model is Ai, Vi, V s

i , Ei(z), and Es
i (z) where:

Ai is the category area per unit gridcell area (or fractional coverage)

Vi = hiAi is the category volume per unit gridcell area

Ei = Viqi is the category enthalpy per unit gridcell area

The superscripted s indicates snow, and no superscript indicates sea ice. The set must also
include any other variables that describe the evolution of the surface state, such a melt pond
depth and area. Finally the velocity u is also a state variable, and it alone has no category
index because it is the same for the whole grid cell.

I prefer to use conserved quantities as state variables, which is why my set doesn’t include
hi or Ti(z). This way each state variables except u can be solved from a continuity equation
(e.g., Eq. 3).

Computation Time

Computation time given to the sea ice component of a typical climate models is roughly
10-20%, although it could easily be more or less depending on the relative resolution, sophis-
tication, and optimization among components. Arguably, the sea ice component is a modest
computation expense for most climate models and claims that sea ice physics are kept crude
to reduce computation costs should be met with skepticism. A more likely explanation is
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that the human resources needed to construct and manage a high-quality sea ice model have
been directed elsewhere.

The computation time for sea ice in the CCSM3 is about 15% when the model is run with
2.8◦ resolution in the atmosphere and land and nominally 1◦ resolution in the ocean and
sea ice. Of the time devoted to the sea ice, about 2/3 is given to solving the equations
describing the sea ice and 1/3 is given to coupling and input/output. Of the 2/3 given to
sea ice equations:� 55% is for the EVP dynamics,� 19% is for thermodynamics with four vertical layers and brine-pocket physics� 15% is for advection with the incrementing remapping algorithm, and� 11% is for mechanical redistribution

This model was run with five ice-thickness categories.

A key consideration for climate modelers is to design a model that can run the scenarios of
interest in a time to meet publication deadlines. Choices must be made to balance model
resolution, physics, parameterizations, and numerics. High performance computers today
have tens of thousands of cores and many have been constructed for the purpose of running
climate models. Codes must parallelize well to take advantage of these machines, and sea ice
codes generally do because there are relatively many schemes that operate at the grid-scale
(e.g., vertical heat equation) and subgrid-scale (e.g., deformation). The Los Alamos Sea
Ice CICE has already been successfully scaled beyond 10,000 cores on Cray XT equipment
(Dennis and Tufo, 2008).

1.3 Conclusions

Climate model resolution is nearing the large floe-scale, where sea ice can no longer be
considered a continuum. I expect some climate models will adopt non-continuum sea ice
dynamics in the 5-10 yr timeframe to break the floe-scale resolution limit. In the next 5 years,
I expect the major new physics to be added to sea ice models will be explicit melt ponds;
better radiative transfer and snow morphology; and primitive salinity, fluid transport, and
biogeochemistry. The greatest computational increase could be to advect many new variables
if it weren’t for schemes such as incremental remapping which can efficiently transport large
numbers of sea ice state variables (Lipscomb and Hunke, 2004). Computational resources will
not be the limiting factor to implementing these new features. Instead, expertise in sea ice
and polar climate at the modeling centers and errors in the other climate model components
will limit advances. Learning how sea ice models in today’s global climate models work is
the first step to meet this certain need.
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2 Exercises Using a Thermodynamic Sea Ice Model

In this section you will be guided through exercises given at the summer school that allow
you to explore the sensitivity of sea ice thickness to climate forcing perturbations and to
model parameters. The exercises use the single-column, thermodynamic sea ice model that
is described in section 1.2. A more complete description can be found in Bitz and Lipscomb
(1999). Following the exercises is a discussion of the expected results. The exercises are
designed to give you a thought provoking research experience, rather than a crank-turning,
answer-driven experience.

Sea ice is modeled as a motionless single slab, with no open water fraction. The ice tem-
perature is resolved in 10 layers, and brine pockets are parameterized explicitly with a
temperature and salinity dependent heat capacity and conductivity, following Maykut and
Untersteiner (1971). This model also takes into account the internal melt in brine pockets
when computing ablation at the top and bottom surfaces. The atmospheric model forcing
is from the standard case in Maykut and Untersteiner (1971), which is based on the work of
Fletcher (1965). The surface albedo is 0.63 for bare ice, 0.75 for wet snow, and 0.80 for dry
snow.

The model is composed of 10 MATLAB scripts and one data file. You will need access to a
computer with MATLAB. The model may be downloaded as a tarfile from
http://www.atmos.washington.edu/∼bitz/column.tar (untar by typing tar xvf column.tar),
or as individual files from http://www.atmos.washington.edu/∼bitz/column/.

First familiarize yourself with the model, by running it once with the default parameters
and forcings by typing column in the MATLAB command window. When it is finished, type
help column in the same window to learn how to vary the model options.

2.1 Exercises

Part 1 Investigate the model sensitivity to varying the downward longwave radiative flux
FLW. Perturb the downward longwave flux (i.e., F ′

LW) all year through the function call
list (e.g., type column(-2)) and make a table of the corresponding annual mean thickness h̄
and mean February-March surface temperature TFM in the final year of the run (the model
displays these statistics in the command window). If necessary, increase the number of run
years so the model reaches an approximate equilibrium by the time it finishes. Vary FLW

between +/-10 W m−2 in increments of about 2W m−2, but do not reduce FLW so much that
the snow does not melt in summer. Plot TFM as a function of h̄.

Options to considers

1) Why does the time to reach equilibrium vary?

2) Why is the plot of TFM(h̄) nonlinear?

3) Using a hierarchy of models can be useful for understanding model results. Even this the-
modynamic sea ice model is quite complex. You are encouraged to try to relate your results
to an analytical model of sea ice. One such model is Thorndike’s toy model (Thorndike,
1992) with the following basic relations:
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Figure 6: Heat fluxes in a sea ice slab.

The flux balance at the top surface from Fig. 6 is

FLW − (A + BTs) =
kTs

h
, (11)

where surface outgoing longwave ǫσT 4
s is approximated as A + BTs, turbulent heat fluxes

are neglected, and the temperature profile in the ice is assumed to be linear.

The equation may be simplified to

W − BTs =
kTs

h
, (12)

Solve Eq. 12 for h(Ts) and assume this equation can be related to h̄(TFM), and plot it on
the curve you created with output from the MATLAB model. Use the following parameters:
W = −160W m−2, B = 4.6W m−2 (deg C)−1, and k = 2 W m−1 (degC)

−1
, to give you h in

meters (not centimeters as in the MATLAB model).

Annual Energy Balance

Figure 6 also applies in summer, except the net shortwave is not zero and the surface tem-
perature is assumed to be zero Celsius. When the ice reaches an equilibrium thickness, the
annual heat input into the ice must be zero. In the spirit of Thorndike (1992), let

τW(W − BTs) + τSS + (τW + τS)Fw = 0 (13)

where Ts is from the winter season, S is the net downward radiative flux in summer, τW,S

is the length of the winter or summer (and no other seasons exist). After substituting from
the winter energy balance, we arrive at

τW(kTs/h) + τSS + (τW + τS)FW = 0, (14)
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F ′

LW h̄ TFM δh/δFLW

W m−2 m deg C cm W−1 m2

-4 620 -33.7
120

-2 380 -32.5
58

0 264 -31.4
35

2 195 -30.3
25

4 145 -29.3
18

6 109 -28.3
15

8 80 -27.6

Table 4: Results from varying downward longwave flux with the model.

Solve for Ts(h) and plot it on your figure. Use S = 22W m−2, FW = 2W m−2 and for
simplicity τW = τS. The intersection of the two analytical expression from the toy model
gives an approximate solution to the Thorndike toy model.

Part 2 A climate modeler faced with biases in their model will often tune the surface
albedo. This question invites you to explore some of the consequences. Find two different
combinations for FLW and surface albedo α that give roughly the same TFM, h̄ state. Vary
α (0.05 is sufficient) by editing the script “calc albedo.m” and vary FLW from the function
call list. Be sure to apply the same perturbations year round.

Now perturb the downward longwave further by δFLW = 2W m−2 for each FLW, α pair and
find the thickness sensitivity δh/δFLW. Do they differ substantially? Why or why not?

Compute δh/δFLW for your MATLAB runs from part 1 and note that it varies considerably.
Why?

Part 3 How do FLW perturbations in winter or summer only affect the ice thickness? Design
your own experiments to investigate this question. Type help column in the matlab command
window to find a quick way to perturb FLW in winter or summer only. The time of year when
downward longwave has the most spread among models is winter, because climate models
have large spread in their simulation of wintertime cloud fraction.

2.2 Exercise results and discussion

Part 1

Your work from part 1 should result in numbers like those in table 4 (ignore the last column
for now). Yours may differ slightly, depending on how well equilibrated the model was when
it finished.

h̄ vs TFM is plotted in Fig. 7 with the curves for h(T ) and T (h) from Eqs. 12 and 14. The
solid line is deceptively close to the circles, but it should not lie on top of them. Instead the
intersection of the pair of lines should roughly intersect at one of the circles. In principle,
we could vary the longwave flux and estimated a series of intersecting lines that should each
approximately intersect at a circle, but that would make for a messy plot. The analytic
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Figure 7: TFM versus h̄ from table 4 (circles) with curves for h(T ) (solid line) and T (h)
(dashed line) from Eqs. 12 and 14, respectively.

model is meant to show you how fluxes must be in balance to yield an equilibrium thickness
and temperature yearround. When the ice thickness is not at equilibrium, the thickness
and temperature state in late winter will still lie on the solid curve, but that state will not
intersect the dashed curve. In this case the annual net flux balance will not be met and the
ice will either grow or melt owing to the imbalance. The system adjusts by moving along
the solid line until it intersects the dashed line, where the annual net flux into the ice is zero.

You should have found that larger h̄ runs take longer to equilibrate. For a slab of ice,
neglecting the effect of open water, the equilibration time depends on how much a small
change in thickness results in a change in ice growth (Untersteiner, 1961) (or conduction
through the ice). You can see this if you look closely at Fig. 8a, which is a run with F ′

LW = 4
W m−2. Which varies more over time during the run, the amount of growth in winter or
amount of melt in summer? At the beginning of the run, the ice grows about 50 cm yr−1

and melts about 65 cm yr−1. To reach equilibrium the growth must catch up with the melt,
and by the end of the run, growth and melt are about 78 cm yr−1. The imbalance causes
the ice to thin. The growth rate adjusted fairly quickly because a fairly small change in
thickness resulted in a big change in growth and a smaller change in melt. In turn, this
quick adjustment reduces the imbalance quickly.

Now look at at Fig. 8b, which is a run with F ′

LW = −4 W m−2. At the beginning of the
run, the ice grows about 47 cm per year but only melts about 33 cm yr−1. (Notice that the
ice growth is much more sensitive to thickness than to F ′

LW.) This time the ice growth must
decrease to balance melt, and the imbalance causes the ice to thicken. However, the growth
doesn’t change very fast with time, and the ice takes a very long time to reach equilibrium.
After 20 years the ice growth is still about 29 cm yr−1 and melt is about 23 cm yr−1.

We can estimate the equilibration timescale from the following relation

timescale =

(

∂G

∂h
−

∂M

∂h

)

−1

where G is the amount of growth that occurs in winter and M is the amount of melt that
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Figure 8: Ice thickness adjustment for first 20 years of runs with (a) F ′

LW = 4 W m−2 and
(b) F ′

LW = −4 W m−2

occurs in summer. For simplicity neglect ∂M/∂h, which is smaller than the ∂G/∂h, and it is
easier to see that the the inverse of the rate of change of the growth with thickness roughly
sets the equilibrium timescale. The growth rate of sea ice depends on the conductive flux
through the ice, which is inversely proportionate to its thickness. Hence small ice thickness
changes result in much greater growth changes for thin ice, say 1-2 m ice, compared to thicker
ice, say 4-5 m ice.

As the thicker ice takes longer to equilibrate, it also changes much more for a given forcing
perturbation (see the final column in table 4. You can read more about the relationship
between sensitivity, timescale, and thickness in Bitz and Roe (2004).

Part 2

You can recycle runs from part 1 with the default albedo and longwave flux. Then produce
another run with about the same h̄ but with 0.04 from the albedo of every surface type and
the the downward longwave flux reduced by 8 W m−2, see table 5.

You could then rerun both of these cases but with the longwave flux increased by 2 W m−2.
The resulting thickness sensitivity δh/δFLW is about the same for both, especially when
compared with the large range that the runs in part 1 exhibit (see last column of table 4).

The main point of this exercise is that in the absence of open water and without a thickness-
dependent albedo parameterization, tuning the albedo doesn’t change the thickness sensitiv-
ity. In contrast, the mean ice thickness has an enormous effect on the thickness sensitivity.
Tuning is a necessary part of climate modeling because of this extreme sensitivity to the
mean ice thickness.

This model has ice-albedo feedback limited to the transition of dry to wet snow and then
to bare ice. There is no explicit feedback as the ice thins or disappears, so this model is
only appropriate to test the sensitivity of high concentration ice with thickness greater than
about a meter. The thickness sensitivity to albedo changes would certainly be different for
an ice cover with thin ice and open water. If you want to explore the thickness sensitivity
with more varied ice cover, you must use a different model or alter this one.
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α F ′

LW h̄ δh/δFLW

W m−2 m cm W−1 m2

default 0 264
35

default 2 195
default - 0.04 -8 264

33
default - 0.04 -6 198

Table 5: Results from varying albedo and downward longwave flux with the model.

Part 3

Your work from part 3 should result in numbers like those in table 6. It is quite clear that
FLW perturbations in summer have a greater influence on the ice thickness. This is some
consolation to the fact that the biases in FLW in climate models are worst in winter, not
summer.

F ′

LW season h̄ δh
W m−2 m cm

0 264
2 all year 195 69
2 winter 244 20
2 summer 212 42

Table 6: Results from varying downward longwave flux all year or for only winter or summer
with the model.

For more practice. Think about the extent to which these exercises are applicable to
global climate modeling. Try varying the sea ice salinity profile in the script salinity prof.m
or vary the albedo in summer only and repeat part 2.
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