
Atm Sci 547  Bretherton  

Homework 2 solutions 

1. (a) We start with the Boussinesq ensemble-averaged equations for q, q with reference 
density rR. The mean advection terms are zero since u = 0. Since we also neglect sources 
of q, q (Sq, Sq = 0): 

   

   

 In this problem, since the BL is horizontally homogeneous, ensemble-averaging is 
equivalent to horizontal averaging. In a mixed layer,  and do not depend on z, so 

 and  are also z-independent. Hence the flux convergences must be z-
independent, i. e.,  and  are linear functions of z. Hence the buoyancy flux, 
which is a linear combination of the heat and moisture fluxes, will also be a linear 
function of z. 

(b) rRcp |0 = 300 W m-2 => |0 = (300 W m-2)/[(1.2 kg m-3)(103 J kg-1 K-1)]  
                                                       = 0.25 K m s-1 

 rRL |0 = 300 W m-2 => |0 = (300 W m-2)/[(1.2 kg m-3)(2.5x106 J kg-1)] 

                                                       = 10-4 (m s-1)(kg kg-1) 

 so B0 = g( |0/qvR + 0.61 |0) 

              = (9.8 m s-2)[ (0.25 K m s-1)/(300 K) + 0.61(10-4 m s-1)] 
              = 8.8x10-3 m2s-3 
(c) Ensemble-averaged TKE equation: 

 .  
 Since there is no mean wind, the vertical shear of is zero, so advection of TKE by the 

mean wind is zero.  Combining this with assumption (iv) that TKE tendency is zero, the 
left hand side is negligible. In addition, so 

 S = - . 

 Integrating the TKE equation over the BL depth:  

  

  Now, using assumptions (i) and (ii), and noting w´ = 0 at the surface, 

 . 

 From assumption (iii), 
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 Thus 

 ,  i. e. . 

 (d)  From (a), the buoyancy flux B(z) is a linear function of z.  Since B(h) = -0.2B0,  

 B(z) = B0(1 - 1.2z/h), 

 .  

 Hence 

 V = {0.4B0h}1/3 = {(0.4)(8.8x10-3 m2s-3)(1000 m)}1/3 = 1.5 m s-1 
 and D = -V3/h = 0.4B0 = -3.5x10-3 m2s-3.  Note that this is proportional to the standard 

convective velocity scale w*, but differs from it by a factor of 0.41/3.  
(e) Substituting the given forms of w´ and b´ into the definition of buoyancy flux, and recog-

nizing that a horizontal average is just an average over one horizontal wavelength 2h,  

  

 Thus,  

  = 0.8B0/V = (0.8)(8.8x10-3 m2s-3)/(1.5 m s-1)  

                                                       = 4.7x10-3 m s-2. 
 By assumption,  (h/2) = |0 = 10-4 (m s-1)(kg kg-1), so via the above reasoning, 

 dq = 2 (h/2)/V = 1.3x10-4 kg kg-1 = 0.13 g kg-1 

 We can back out the midheight q-flux from the buoyancy and moisture fluxes at h/2: 

                        𝑤'θ'$$$$$=θ&'(𝑤'b'$$$$$/𝑔 − 	0.61𝑤'q'$$$$$3 

 = (300 K){ (3.5x10-2 m2s-3)/(9.8 m s-2) - 0.61(10-4 m s-1)} 

                                 = 8.9x10-2 K m s-1, 
 so dq = 2  (h/2)/V = 0.12 K. This variability is quite small. It is fairly realistic, 

though in reality w´ is not perfectly correlated with q´ and q´, so to support the required 
fluxes, the thermodynamic perturbations must be a little larger than the above argument 
suggests. 

(f)  The temporal sampling rate f = 25 Hz corresponds to a distances l = uplane/f = 4 m 
between samples.  Heuristically, we expect the intersample differences to be due mainly 
to eddies of scale l between updrafts and downdrafts. If vl is the typical velocity scale of 
such eddies, and if they are in the inertial range of scales, the Kolmogorov cascade 
implies that the rate of energy flow to smaller scales is e = -D regardless of scale, so 
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