

Homework Set 4

Consider a uniformly stratified lower troposphere with a vertically uniform geostrophic wind of 10 m s^{-1} , a Coriolis parameter $f = 10^{-4} \text{ s}^{-1}$, a potential temperature $\theta^+(z) = 290 + 0.01z$, where z is height in m, a surface pressure of 1000 mb, and zero humidity. Take the air density = 1.2 kg m^{-3} and $c_p = 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$. At time $t = 0$ the wind is geostrophic at all heights. Starting at time $t = 0$, radiative cooling induces a downward surface heat flux $H_0 = -10 \text{ W m}^{-2}$ and a surface drag producing a friction velocity $u^* = 0.2 \text{ m s}^{-1}$. This induces a stable boundary layer to form near the surface.

1. What are the surface buoyancy flux and the Obukhov length?
2. Implement the local first-order closure discussed in the Lecture 8 notes, with Monin-Obukhov stability factors and a Blackadar lengthscale with an asymptotic lengthscale of $\lambda = 10 \text{ m}$. Discretize using a vertical grid spacing of $\Delta z = 10 \text{ m}$ and as many vertical layers as you need to encompass the development of the boundary layer. It is natural to compute the turbulent fluxes at layer interfaces $k\Delta z$, $k = 0, 1, 2, \dots$, and the u, v, θ at layer centers $(k+0.5)\Delta z$. You can set this up as a system of coupled ODEs which you can solve using a Python or Matlab ODE solver. An example of how to do this for a different case (a dry convective boundary layer heated from below) is given in the homework section of the class web page.

Calculate and plot the time-height evolution of the BL θ , and wind profiles up until $t = 3$ hours. Plot hourly profiles of Ri , turbulent heat flux, and eddy heat diffusivity. Comment on whether the choice of λ was appropriate (i. e. is λ comparable to 10% of the PBL height?)

3. If you set $\lambda = 5 \text{ m}$ how does the solution change?
4. If you also set $H_0 = -25 \text{ W m}^{-2}$ (stronger surface cooling) what happens?