Lecture 2: Probability and Statistics (continued)

(©Christopher S. Bretherton
Winter 2015

2.1 Expectation and moments

Expectation of a function g(X) of a RV X is

Elg(X)] = Z g(z)p(x)dx discrete RV X
z:p(x)>0
Elg(X)] = /_ g(x) f(z)dx continuous RV X

The expectation of X is also called its mean py, sometimes denoted X.

Variance var[X| = E[(X — ux)? = E[X?] — (F[X])?, whose square root is the
standard deviation oy, a measure of the spread of X about its mean.

n’th moment E[X"]. The third moment is a measure of skewness or asym-
metry of the PDF of X about its mean.

2.2 Examples of random variables

Bernoulli P(X =1)=p; P(X =0)=q=1—-p. ux =p and ox = (pg)"/>.
The sum of N > 1 independent identically-distributed Bernoulli random
variables is a binomial distribution with parameters N and p.

Uniform distribution on («, 3):
f(x) = ——, a<z<p.
et

ux = (a+f)/2 and ox = (8 — «)/+v/12; note how they scale with «, 3.

Gaussian (or normal) distribution n(u, o), with mean p and standard devia-
tion o:
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Lognormal distribution on 0 < x < oo with log-mean p and log standard
deviation o

2

g
log(X) =n(p,0),  px =exp <u + 2) , ox = pxy/exp(o?) — 1.

2.2.1 Generating random variables in Matlab

rand(m,n) returns an m X n matrix of random numbers from a uniform dis-
tribution on (0, 1).

randn(m,n) returns an m X n matrix of normally-distributed random numbers
with mean 0 and standard deviation 1. Fig. 1 shows a histogram of the
results of randn(1,1000).
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Figure 1: Histogram of 1000 samples of a normal distribution

random(name,params,[m,n,... )] (Statistics toolbox) returns an m x n X ...
array of random numbers with a pdf described by name and params, (e.
g. 'Binomial’. N p or "Lognormal’,;mu,sigma)

2.3 Joint distributions

Joint cumulative distribution of two RVs X and Y can be phrased in terms

of their joint CDF
F(a,b) = P(X <a,Y <))
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Joint PDF f(z,y) of two continuous RVs: f(z,y)dzdy is the probability that
r—dr/2 < X <z+dz/2,y—dy/2 <Y <y+dy/2.

Two RVs are independent iff
F(a,b) = Fx(a)Fy(b)Va,b  or  f(z,y) = fx(@)fy(y) Vaz,y

Covariance of X and Y:

cov[X,Y] = E[(X — X)(Y - 7). (2.3.1)

If X and Y are independent, cov[X,Y] = 0 (but not necessarily vice-
versa). Note cov[X,X]| = var[X] and cov[X,Y + Z] = cov[X,Y] +
covlX, Z].

Correlation coefficient Xy
Rxy = cov[X, Y] (2.3.2)
oOxXoy
R lies between -1 and 1; R=11if Y = X (perfect correlation), R = —1 if
Y = —X (perfect anticorrelation), and R = 0 if X and Y are independent.

Unlike covariance, R is not additive.

The correlation coefficient is useful for describing how strongly X
and Y are linearly related, but will not perfectly capture non-
linear relationships between X and Y. In particular, unless X
and Y are Gaussian, they can be uncorrelated (R = 0) yet still
be dependent. For instance, let © be a uniformly distributed RV over
[0,27) and let X = cos(0©),Y = sin(©) (Fig. 2). Then X and Y each
have mean zero and they are easily shown to be uncorrelated. However,
for any given value z of X, Y can take only the two values +(1 — 22)/2
(with equal probability), so Y is not independent of the value of X.

The mean is always additive, and the variance is additive for inde-
pendent (or uncorrelated) RVs:

E[X+Y] = EX]+E)Y] X+Y=X+Y) (2.3.3)
var(lX +Y] = E[(X+Y -X +Y)?
— E[(X ~ X)2] 4+ 2B[(X - X)(Y V)] + B[(Y ~ V)
= var[X] + var[Y] + 2cov[X, Y] (2.3.4)
= var[X] + var[Y] if cov[X,Y] =0. (2.3.5)

2.4 Sample mean and standard deviation

Given N independent samples x1,xs,...,xn of a random variable X, we can
estimate basic statistics of X:
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Figure 2: 100 samples of two RVs X and Y which are uncorrelated but depen-
dent

Sample mean
T= Nzxj (2.4.1)

The sample mean is an estimator of the true mean X of X. We will
quantify the accuracy of this estimator vs. N later. For now, we note
that the sample mean is an unbiased estimator of X, i. e., E[T] = X.

Sample standard deviation o(z) We calculate the variance of the x; about
the sample mean T. Computing the mean from the sample reduces the
effective sample size (often called the degrees of freedom or DOF) by one

to N —1:
N

1
20\ _ _ 2
o?(x) = var(z) = ;(% ) (2.4.2)
If the samples are not independent, the effective sample size must be
adjusted (Lecture 4). Otherwise o2(x) is an unbiased estimator of the

true variance 0% of X.

Sample covariance and correlation coefficient between independent sam-
ples z; of RV.X and corresponding samples y; of RV Y

| X
cov(z,y) = N_1 Z(xj —7)(y; —9) (2.4.3)
j=1

(which is an unbiased estimator of the true covariance between X and Y);

cov(,y)

B v) = oty

(2.4.4)
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(not usually an unbiased estimator of the true correlation coefficient Rxy .)

2.4.1 Matlab for sample statistics

If we arrange the x; into a column vector x:
mean(x) Sample mean.
std(x), var(x) Unbiased standard deviation and variance estimators.

For an array X these are calculated along the first dimension (the column di-
mension of a matrix) unless specified otherwise with an optional argument. To
get the mean of an array use mean(X(:)), i. e. reshape the array into a single
vector.

cov(x,y), corrcoef(x,y) Given two column data vectors x and y, these re-
turn 2x2 matrices whose off-diagonal (2,1) and (1,2) elements are the sam-
ple covariance (or correlation coefficient).

cov(X), corrcoef(X) Let X be a K x N data array whose K columns xj
correspond to different variables, so that X, is the n’th sample of variable
k. Then these functions return K x K matrices whose (k,l) entry is the
sample covariance cov([xg,x;] (or correlation coefficient).



