
Lecture 2: Probability and Statistics (continued)

c©Christopher S. Bretherton

Winter 2015

2.1 Expectation and moments

Expectation of a function g(X) of a RV X is

E[g(X)] =
∑

x:p(x)>0

g(x)p(x)dx discrete RV X

E[g(X)] =

∫ ∞
−∞

g(x)f(x)dx continuous RV X

The expectation of X is also called its mean µX , sometimes denoted X.

Variance var[X] = E[(X −µX)2 = E[X2]− (E[X])2, whose square root is the
standard deviation σX , a measure of the spread of X about its mean.

n’th moment E[Xn]. The third moment is a measure of skewness or asym-
metry of the PDF of X about its mean.

2.2 Examples of random variables

Bernoulli P (X = 1) = p; P (X = 0) = q = 1 − p. µX = p and σX = (pq)1/2.
The sum of N ≥ 1 independent identically-distributed Bernoulli random
variables is a binomial distribution with parameters N and p.

Uniform distribution on (α, β):

f(x) =
1

β − α
, α < x < β.

µX = (α+ β)/2 and σX = (β − α)/
√

12; note how they scale with α, β.

Gaussian (or normal) distribution n(µ, σ), with mean µ and standard devia-
tion σ:

f(x) =
1

σ
√

2π
e−(x−µ)

2/2σ2

, ∞ < x <∞

F (a) =

∫ a

−∞
f(x)dx = 0.5

(
1 + erf

[
a− µ
21/2σ

])

1
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Lognormal distribution on 0 < x < ∞ with log-mean µ and log standard
deviation σ:

log(X) = n(µ, σ), µX = exp

(
µ+

σ2

2

)
, σX = µX

√
exp(σ2)− 1.

2.2.1 Generating random variables in Matlab

rand(m,n) returns an m × n matrix of random numbers from a uniform dis-
tribution on (0, 1).

randn(m,n) returns an m×n matrix of normally-distributed random numbers
with mean 0 and standard deviation 1. Fig. 1 shows a histogram of the
results of randn(1,1000).

Figure 1: Histogram of 1000 samples of a normal distribution

random(name,params,[m,n,... )] (Statistics toolbox) returns an m× n× ...
array of random numbers with a pdf described by name and params, (e.
g. ’Binomial’,N,p or ’Lognormal’,mu,sigma)

2.3 Joint distributions

Joint cumulative distribution of two RVs X and Y can be phrased in terms
of their joint CDF

F (a, b) = P (X ≤ a, Y ≤ b)
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Joint PDF f(x, y) of two continuous RVs: f(x, y)dxdy is the probability that
x− dx/2 < X < x+ dx/2, y − dy/2 < Y < y + dy/2.

Two RVs are independent iff

F (a, b) = FX(a)FY (b) ∀ a, b or f(x, y) = fX(x)fY (y) ∀ x, y

Covariance of X and Y :

cov[X,Y ] = E[(X −X)(Y − Y )]. (2.3.1)

If X and Y are independent, cov[X,Y ] = 0 (but not necessarily vice-
versa). Note cov[X,X] = var[X] and cov[X,Y + Z] = cov[X,Y ] +
cov[X,Z].

Correlation coefficient

RXY =
cov[X,Y ]

σXσY
(2.3.2)

R lies between -1 and 1; R = 1 if Y = X (perfect correlation), R = −1 if
Y = −X (perfect anticorrelation), and R = 0 if X and Y are independent.
Unlike covariance, R is not additive.

The correlation coefficient is useful for describing how strongly X
and Y are linearly related, but will not perfectly capture non-
linear relationships between X and Y . In particular, unless X
and Y are Gaussian, they can be uncorrelated (R = 0) yet still
be dependent. For instance, let Θ be a uniformly distributed RV over
[0, 2π) and let X = cos(Θ), Y = sin(Θ) (Fig. 2). Then X and Y each
have mean zero and they are easily shown to be uncorrelated. However,
for any given value x of X, Y can take only the two values ±(1 − x2)1/2

(with equal probability), so Y is not independent of the value of X.

The mean is always additive, and the variance is additive for inde-
pendent (or uncorrelated) RVs:

E[X + Y ] = E[X] + E[Y ] (X + Y = X + Y ) (2.3.3)

var[X + Y ] = E[(X + Y −X + Y )2]

= E[(X −X)2] + 2E[(X −X)(Y − Y )] + E[(Y − Y )2]

= var[X] + var[Y ] + 2cov[X,Y ] (2.3.4)

= var[X] + var[Y ] if cov[X,Y ] = 0. (2.3.5)

2.4 Sample mean and standard deviation

Given N independent samples x1, x2, ..., xN of a random variable X, we can
estimate basic statistics of X:
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Figure 2: 100 samples of two RVs X and Y which are uncorrelated but depen-
dent

Sample mean

x =
1

N

N∑
j=1

xj (2.4.1)

The sample mean is an estimator of the true mean X of X. We will
quantify the accuracy of this estimator vs. N later. For now, we note
that the sample mean is an unbiased estimator of X, i. e., E[x] = X.

Sample standard deviation σ(x) We calculate the variance of the xj about
the sample mean x. Computing the mean from the sample reduces the
effective sample size (often called the degrees of freedom or DOF) by one
to N − 1:

σ2(x) = var(x) =
1

N − 1

N∑
j=1

(xj − x)2 (2.4.2)

If the samples are not independent, the effective sample size must be
adjusted (Lecture 4). Otherwise σ2(x) is an unbiased estimator of the
true variance σ2

X of X.

Sample covariance and correlation coefficient between independent sam-
ples xj of RVX and corresponding samples yj of RV Y :

cov(x, y) =
1

N − 1

N∑
j=1

(xj − x)(yj − y) (2.4.3)

(which is an unbiased estimator of the true covariance between X and Y );

R(x, y) =
cov(x, y)

σ(x)σ(y)
(2.4.4)
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(not usually an unbiased estimator of the true correlation coefficient RXY .)

2.4.1 Matlab for sample statistics

If we arrange the xj into a column vector x:

mean(x) Sample mean.

std(x), var(x) Unbiased standard deviation and variance estimators.

For an array X these are calculated along the first dimension (the column di-
mension of a matrix) unless specified otherwise with an optional argument. To
get the mean of an array use mean(X(:)), i. e. reshape the array into a single
vector.

cov(x,y), corrcoef(x,y) Given two column data vectors x and y, these re-
turn 2x2 matrices whose off-diagonal (2,1) and (1,2) elements are the sam-
ple covariance (or correlation coefficient).

cov(X), corrcoef(X) Let X be a K × N data array whose K columns xk
correspond to different variables, so that Xnk is the n’th sample of variable
k. Then these functions return K ×K matrices whose (k, l) entry is the
sample covariance cov[xk,xl] (or correlation coefficient).


