Lecture 2: Probability and Statistics (continued)

©Christopher S. Bretherton

Winter 2015

2.1 Expectation and moments

Expectation of a function g(X) of a RV X is

$$E[g(X)] = \sum_{x:p(x)>0} g(x)p(x)dx \quad \text{discrete RV } X$$

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx \quad \text{continuous RV } X$$

The expectation of X is also called its **mean** μ_X , sometimes denoted \overline{X} .

Variance $\operatorname{var}[X] = E[(X - \mu_X)^2 = E[X^2] - (E[X])^2$, whose square root is the standard deviation σ_X , a measure of the spread of X about its mean.

n'th moment $E[X^n]$. The third moment is a measure of skewness or asymmetry of the PDF of X about its mean.

2.2 Examples of random variables

Bernoulli P(X = 1) = p; P(X = 0) = q = 1 - p. $\mu_X = p$ and $\sigma_X = (pq)^{1/2}$. The sum of $N \ge 1$ independent identically-distributed Bernoulli random variables is a **binomial** distribution with parameters N and p.

Uniform distribution on (α, β) :

$$f(x) = \frac{1}{\beta - \alpha}, \quad \alpha < x < \beta.$$

 $\mu_X = (\alpha + \beta)/2$ and $\sigma_X = (\beta - \alpha)/\sqrt{12}$; note how they scale with α, β .

Gaussian (or **normal**) distribution $n(\mu, \sigma)$, with mean μ and standard deviation σ :

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}, \quad \infty < x < \infty$$

$$F(a) = \int_{-\infty}^{a} f(x)dx = 0.5 \left(1 + \operatorname{erf}\left[\frac{a-\mu}{2^{1/2}\sigma}\right]\right)$$

Lognormal distribution on $0 < x < \infty$ with log-mean μ and log standard deviation σ :

$$\log(X) = n(\mu, \sigma), \qquad \mu_X = \exp\left(\mu + \frac{\sigma^2}{2}\right), \ \sigma_X = \mu_X \sqrt{\exp(\sigma^2) - 1}.$$

2.2.1 Generating random variables in Matlab

rand(m,n) returns an $m \times n$ matrix of random numbers from a uniform distribution on (0, 1).

randn(m,n) returns an $m \times n$ matrix of normally-distributed random numbers with mean 0 and standard deviation 1. Fig. 1 shows a histogram of the results of randn(1,1000).

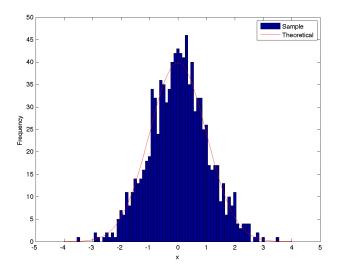


Figure 1: Histogram of 1000 samples of a normal distribution

random(name,params,[m,n,...)] (Statistics toolbox) returns an $m \times n \times ...$ array of random numbers with a pdf described by **name** and **params**, (e. g. 'Binomial',N,p or 'Lognormal',mu,sigma)

2.3 Joint distributions

Joint cumulative distribution of two RVs X and Y can be phrased in terms of their joint CDF

$$F(a,b) = P(X \le a, Y \le b)$$

Joint PDF f(x,y) of two continuous RVs: f(x,y)dxdy is the probability that x - dx/2 < X < x + dx/2, y - dy/2 < Y < y + dy/2.

Two RVs are independent iff

$$F(a,b) = F_X(a)F_Y(b) \ \forall \ a,b$$
 or $f(x,y) = f_X(x)f_Y(y) \ \forall \ x,y$

Covariance of X and Y:

$$cov[X,Y] = E[(X - \overline{X})(Y - \overline{Y})]. \tag{2.3.1}$$

If X and Y are independent, cov[X,Y]=0 (but not necessarily viceversa). Note cov[X,X]=var[X] and cov[X,Y+Z]=cov[X,Y]+cov[X,Z].

Correlation coefficient

$$R_{XY} = \frac{\text{cov}[X, Y]}{\sigma_X \sigma_Y} \tag{2.3.2}$$

R lies between -1 and 1; R=1 if Y=X (perfect correlation), R=-1 if Y=-X (perfect anticorrelation), and R=0 if X and Y are independent. Unlike covariance, R is not additive.

The correlation coefficient is useful for describing how strongly X and Y are linearly related, but will not perfectly capture non-linear relationships between X and Y. In particular, unless X and Y are Gaussian, they can be uncorrelated (R=0) yet still be dependent. For instance, let Θ be a uniformly distributed RV over $[0,2\pi)$ and let $X=\cos(\Theta),Y=\sin(\Theta)$ (Fig. 2). Then X and Y each have mean zero and they are easily shown to be uncorrelated. However, for any given value x of X, Y can take only the two values $\pm (1-x^2)^{1/2}$ (with equal probability), so Y is not independent of the value of X.

The mean is always additive, and the variance is additive for independent (or uncorrelated) RVs:

$$E[X + Y] = E[X] + E[Y] \quad (\overline{X + Y} = \overline{X} + \overline{Y})$$

$$var[X + Y] = E[(X + Y - \overline{X + Y})^{2}]$$

$$= E[(X - \overline{X})^{2}] + 2E[(X - \overline{X})(Y - \overline{Y})] + E[(Y - \overline{Y})^{2}]$$

$$= var[X] + var[Y] + 2cov[X, Y]$$

$$= var[X] + var[Y] \quad \text{if } cov[X, Y] = 0.$$
(2.3.4)

2.4 Sample mean and standard deviation

Given N independent samples $x_1, x_2, ..., x_N$ of a random variable X, we can estimate basic statistics of X:

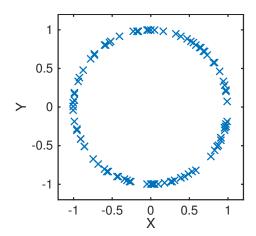


Figure 2: 100 samples of two RVs X and Y which are uncorrelated but dependent

Sample mean

$$\overline{x} = \frac{1}{N} \sum_{j=1}^{N} x_j \tag{2.4.1}$$

The sample mean is an *estimator* of the true mean \overline{X} of X. We will quantify the accuracy of this estimator vs. N later. For now, we note that the sample mean is an *unbiased* estimator of \overline{X} , i. e., $E[\overline{x}] = \overline{X}$.

Sample standard deviation $\sigma(x)$ We calculate the variance of the x_j about the sample mean \overline{x} . Computing the mean from the sample reduces the effective sample size (often called the degrees of freedom or DOF) by one to N-1:

$$\sigma^{2}(x) = \operatorname{var}(x) = \frac{1}{N-1} \sum_{j=1}^{N} (x_{j} - \overline{x})^{2}$$
 (2.4.2)

If the samples are not independent, the effective sample size must be adjusted (Lecture 4). Otherwise $\sigma^2(x)$ is an unbiased estimator of the true variance σ_X^2 of X.

Sample covariance and correlation coefficient between independent samples x_j of RV X and corresponding samples y_j of RV Y:

$$cov(x,y) = \frac{1}{N-1} \sum_{j=1}^{N} (x_j - \overline{x})(y_j - \overline{y})$$
 (2.4.3)

(which is an unbiased estimator of the true covariance between X and Y);

$$R(x,y) = \frac{\operatorname{cov}(x,y)}{\sigma(x)\sigma(y)}$$
 (2.4.4)

(not usually an unbiased estimator of the true correlation coefficient R_{XY} .)

2.4.1 Matlab for sample statistics

If we arrange the x_j into a column vector **x**:

mean(x) Sample mean.

std(x), var(x) Unbiased standard deviation and variance estimators.

For an array X these are calculated along the first dimension (the column dimension of a matrix) unless specified otherwise with an optional argument. To get the mean of an array use $\mathbf{mean}(X(:))$, i. e. reshape the array into a single vector.

- cov(x,y), corrcoef(x,y) Given two column data vectors x and y, these return 2x2 matrices whose off-diagonal (2,1) and (1,2) elements are the sample covariance (or correlation coefficient).
- $\mathbf{cov}(\mathbf{X})$, $\mathbf{corrcoef}(\mathbf{X})$ Let \mathbf{X} be a $K \times N$ data array whose K columns \mathbf{x}_k correspond to different variables, so that X_{nk} is the n'th sample of variable k. Then these functions return $K \times K$ matrices whose (k, l) entry is the sample covariance $\mathbf{cov}[\mathbf{x}_k, \mathbf{x}_l]$ (or correlation coefficient).