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3.1 Central limit theorem (CLT)

Let X1, ..., XN be a sequence of N independent identically-distributed (IID)
random variables each with mean µ and standard deviation σ. Then

ZN =
X1 +X2...+XN −Nµ

σ
√
N

→ n(0, 1) as N →∞

To be precise, the arrow means that the CDF of the left hand side converges
pointwise to the CDF of the ‘standard normal’ distribution on the right hand
side. An alternative statement of the CLT is that

X1 +X2...+XN

N
∼ n(µ, σ/

√
N) as N →∞ (3.1.1)

where ∼ denotes asymptotic convergence; that is the ratio of the CDF of tMN

to the normal distribution on the right hand side tends to 1 for large N . That
is, regardless of the distribution of the Xk, given enough samples, their sample
mean is approximately normally distributed with mean µ and standard devia-
tion σm = σ/

√
N . For instance, for large N , the mean of N Bernoulli random

variables has an approximately normally-distributed CDF with mean p and
standard deviation

√
p(1− p)/N . More generally, other quantities such as vari-

ances, trends, etc., also tend to have normal distributions even if the underlying
data are not normally-distributed. This explains why Gaussian statistics work
surprisingly well for many purposes.

Corollary: The product of N IID RVs will asymptote to a lognormal dis-
tribution as N →∞.

The Central Limit Theorem Matlab example on the class web page shows
the results of 100 trials of averaging N = 20 Bernoulli RVs with p = 0.3 (note
that a Bernoulli RV is highly non-Gaussian!). The CLT tells us that for large N ,
this average x for each trial is approximately normally distributed with mean
X = p = 0.3 and stdev σm =

√
p(1− p)/N ≈ 0.1; the Matlab plot (Fig. 1)

shows N = 20 is large enough to make this a good approximation, though the
histogram of x suggests a slight residual skew toward the right.
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Figure 1: Histogram and empirical CDF of x, compared to CLT prediction

3.2 Insights from the proof of the CLT

The proof of the CLT (see probability textbooks) hinges on use of the moment
generating function E[etX ] = Σ∞n=0t

nE[Xn]/n!, which can be regarded as a
Fourier-like transform of the PDF of X. One shows that the moment generat-
ing function for ZN approaches the moment generating function exp(t2/2) of a
standard normal distribution. This argument can easily be loosely generalized
to weighted averages of arbitrary (not identically-distributed) random variables,
as long as no individual weight dominates the average; however, in this case,
an effective sample size may need to be used in place of N in the N−1/2 fac-
tor (e. g. Bretherton et al. 1999 it J. Climate). Thus, it is generally true
that weighted averages of large numbers of independent random vari-
ables (e. g. sample means and variances) have approximately normal
distributions.

3.3 Statistical uncertainty

The CLT gives us a basis for assigning an uncertainty when using an N -
independent-sample mean x of a random variable X as an estimator for its
true mean X. It is important that all the samples can be reasonably
assumed to be independent and have the same probability distribu-
tion! In the above Matlab example. each trial of 20 samples of X gives an
estimate x of the true mean of the distribution (0.3). Fig. 1 shows that x
ranges from 0.1 to 0.65 over the 100 trials (i. e. the X estimated from each trial
is rather uncertain). More precisely, the CLT suggests that given a single trial
of N � 1 samples of a RV with true mean X and true standard deviation σX ,
which yields a sample mean x and a sample standard deviation σ[x] ≈ σX :

x−X ≈ n
(

0,
σX
N1/2

)
(3.3.1)

We can turn this around into an equation for X given x. One wrinkle is that
we don’t know σX so it is estimated using the sample standard deviation (this
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is only a minor additional uncertainty for large N). Noting also that the unit
normal distribution is an even function of x:

X ≈ x+ n(0, σm), σm = σ(x)/N1/2 (3.3.2)

That is, we can estimate a ±1 standard deviation uncertainty of the true
mean of X from the finite sample as:

X = x± σm (3.3.3)

For the Bernoulli example, the sample standard deviation will scatter around
the true standard deviation of 0.1, so we’d have to average across more than
N = 100 independent samples to reduce the ±1σ uncertainty in the estimated
X = p to less than 0.01.

3.4 Normally distributed estimators and confi-
dence intervals

We have argued that the PDF of the X given the observed sample mean x is
approximately n(x, σm), then the normal distribution tells us the probability X
lies within any given range (Fig. 2).

Figure 2: Probability within selected ranges of a unit normal distribution.

About (2/3, 95%, 99.7%) of the time, X will lie within (1, 2, 3)σm of x.
This allows us to estimate a confidence interval for the true mean of X; for
instance, we say that

x+ 2σm < X < x+ 2σm with 95% confidence (3.4.1)
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Such confidence intervals should be used with caution since they are sensitive
to (a) deviations of the estimator from normality, especially in the tails of its
PDF, and (b) sampling uncertainties if N is small.

The 95% confidence interval is a common choice; other common choices
are 90% or 99%, called very likely and virtually certain in Intergovernmental
Panel on Climate Change reports. These correspond to ±1.6σ or ±2.6σ for a
normally-distributed estimator.

3.5 Serial correlation and effective sample size

Often, successive data samples are not independent. For instance, the daily-
maximum temperature measured at Red Square in UW will be positively cor-
related between successive days, but has little correlation between successive
weeks. Thus, each new sample has less new information about the true distri-
bution of the underlying random variable (daily max temperature in this exam-
ple) than if successive samples were statistically independent. After removing
obvious trends or periodicities, many forms of data can be approximated as
‘red noise’ or first-order Markov random processes (to be discussed in later lec-
tures) which can be characterized by the lag-1 autocorrelation r, defined as
the correlation coefficient between successive data samples. Given r, an effec-
tive sample size N∗ can be defined for use in uncertainty estimates (e. g.
Bretherton et al. 1999 J. Climate).

Effective sample size for estimating uncertainty of a mean

Sample mean: N∗ = N
1− r
1 + r

; σm = σ(x)/N∗1/2 (3.5.1)

If r = 0.5 (fairly strong serial correlation), N∗ = N/3. That is, it takes three
times as many samples to achieve the same level of uncertainty about the mean
of the underlying random process as if the samples were statistically indepen-
dent. On the other hand, if |r| < 0.2 the effect of serial correlation is modest
(N∗ ≈ N).

Fig. 3 shows examples of N = 30 serially correlated samples of a ‘standard’
normal distribution with mean zero and standard deviation 1, with different
lag-1 autocorrelations r. In each case, the sample mean is shown as the red
dashed line and the magenta lines x±σ(x)/N∗1/2 give a ±1 standard deviation
uncertainty range for the true mean of the distribution, which is really 0 (the
horizontal black line).

In the case with strong positive autocorrelation r = 0.7, successive samples
are clearly similar, reducing N∗ ≈ N/6 and widening the uncertainty range by a
factor of nearly 2.5 compared to the case r = 0. In the case r = −0.5, successive
samples are anticorrelated and their fluctuations about the true mean tend to
cancel out. Thus N∗ ≈ 3N is larger than N , and the uncertainty of the mean is
only 60% as large as if the samples were uncorrelated. In each case shown, the
true mean is bracketed by the ±1σm uncertainty range; given the statistics of a
Gaussian distribution this would be expected to happen about 2/3 of the time.
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Figure 3: Random sets of N = 30 samples from a standard normal distribution
with different lag-1 autocorrelations r, and the ±1σ uncertainty range (magenta
dashed lines) in estimating the true mean of 0 (black line) from the sample mean
(red dashed line), based on the effective sample size N∗.

3.6 Confidence intervals for correlations

Another important application of confidence intervals is to the correlation coef-
ficient between two variables. Given N independent samples Xi and Yi of RVs
with true correlation coefficient RXY , what will be the PDF of their sample
correlation coefficient RN? For reasonably large values N > 10 this can be
estimated using the Fisher Transformation:

z = F (r) = tanh−1(r); r = tanh(z) (3.6.1)

(http://en.wikipedia.org/wiki/Fisher transformation). For small |r|, z ≈ r, but
as r → ±1, z →∞. Letting ZN = F (RN ) and ZXY = F (RXY ), one can show

ZN ∼ n(ZXY , σN ), σN = (N − 3)−1/2, N � 1. (3.6.2)

This formula is typically derived assuming Gaussian RVs, but application of the
CLT to the sample covariance and variance between X and Y implies that it
will work for arbitrary PDFs if N is sufficiently large.



Atm S 552 Lecture 3 Bretherton - Winter 2015 6

Thus, suppose the observed correlation coefficient between N samples of X
and Y is r, with Fisher transform z = F (r). Then

Zxy ∼ n(z, σN ), σN = (N − 3)−1/2 (3.6.3)

with a 95% confidence interval

z − 2σN < Zxy < z + 2σN (3.6.4)

Taking the inverse Fisher transform gives the corresponding confidence interval
for RXY .

For instance, if N = 30 independent samples of two variables give a sample
correlation coefficient r = 0.7, then z = F (r) = 0.87, σN = 27−1/2 = 0.19, and
the 95% confidence interval is 0.48 < ZXY < 1.25, or 0.45 < RXY < 0.85; note
this is slightly asymmetric about the sample r.

Note that if RXY = 0, Fisher’s transformation implies that RN ∼ n(0, σN )
for large N ≥ 10, which gives confidence intervals on how large we expect
the sample correlation coefficient to be if the variables are actually uncorre-
lated. For arbitrary N but uncorrelated and Gaussian-distributed variables,
(N−2)1/2RN/(1−R2

N )1/2 can be shown to have at-distribution with N−2 DOF
(http://en.wikipedia.org/wiki/Student’s t-distribution); this provides more ex-
act confidence intervals for this case for small N < 10, but gives essentially the
same results as the easier-to-use Fisher transformation for larger N .

Effective sample size for the correlation coefficient of serially-correlated
data A dataset is statistically stationary if its statistical characteristics (mean,
variance) do not systematically change across the samples, The ESS can be cal-
culated for two stationary AR1 random variables X1 and X2 with respective
estimated lag-1 autocorrelations r1 and r2 (Bretherton et al. 1999 J. Climate):

Correlation coefficient: N∗ = N
1− r1r2
1 + r1r2

(3.6.5)

If either |r1| or |r2| is less than 0.2, the effect of serial correlation is small
(N∗ ≈ N), e. g. if r1 = 0.9 but r2 = 0, N∗ = N . At the heart of the
correlation coefficient is the covariance X ′1X

′
2, whose serial correlation requires

serial correlation of both X1 and X2.
If either or both variables have clear trends vs,. sample index, these must

be removed before this analysis, e. g. via linear regression (Lecture 5). If one of
the variables, say X2, is a space or time index with a fixed increment between
successive samples, then we detrend X1 and set r2 = 1 in (3.6.5).


