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Suppose we have N measurements of one predictor variable xj (e. g. car
weight) and corresponding measurements of a predictand variable yj (e. g. miles
per gallon). We might ask how much of the variability in yj can be explained
by variability in xj , using a linear fit of the form

ŷj = a0 + a1xj . (5.0.1)

5.1 Mathematics of least-squares regression

Least-squares regression chooses a0 and a1 to minimize the mean square residual

Q(a0, a1) = N−1
N∑
j=1

[yj − ŷj ]
2 =

N∑
j=1

[yj − (a0 + a1xj)]
2.

Minimizing with respect to a0 and a1, we obtain

0 =
∂Q

∂a0
= −N−1

N∑
j=1

2[yj − (a0 + a1xj)]

0 =
∂Q

∂a1
= −N−1

N∑
j=1

2xj [yj − (a0 + a1xj)]

Defining

z = N−1
N∑
j=1

zj ,

we obtain a pair of simultaneous equations for the coefficients:

a0 + a1x = y

a0 + a1x2 = xy

1
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Further defining x′ = x− x and y′ = y − y (removing means), the solution is:

a0 = y − a1x

a1 =
xy − x y

x2 − x2
=
x′y′

x′2
(5.1.1)

a1 is often called the regression slope. If we start with demeaned x and y
data whose sample mean has already been removed (x = y = 0), then a0 = 0.

Let σ2
x = x′2 be the sample variance of x and similarly for y. Let

r = x′y′/σxσy (5.1.2)

be the sample correlation coefficient between x and y. Then one-variable linear
regression is all about r:

1. The regression slope
a1 = rσy/σx (5.1.3)

is proportional to r.

2. The regression explains a fraction r2 of the variance of y:

ŷ2 = a21x
′2 = (r2σ2

y/σ
2
x)σ2

x = r2σ2
y. (5.1.4)

When the regression line is subtracted off of y, the residuals εj = yj − a1xj
have a sample mean of zero. An unbiased estimate of their variance is

σ2
ε = (1 − r2)σ2

y

N − 1

N − 2
(5.1.5)

The N − 1 is the DOF for estimating variance, while N − 2 is the residual DOF
after estimating the two regression parameters.

5.2 Matlab regression example

The first part of the Matlab script regression example.m on the class web
page uses a dataset on compact cars from the 1970s and 1980s built into the
Statistics toolbox to calculate the linear regression between car weight and car
efficiency (in miles per gallon), both using the above mathematics and using
toolbox functions.

5.3 Uncertainty in regression coefficients

We discussed the sampling uncertainty in the correlation coefficient in Lecture
3.6. As long as the observations (and hence the residuals εj) are linearly in-
dependent and identically distributed, one can use the CLT to show that for
sufficiently large N (> 10 − 30 in practice, depending whether the PDF of the
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observations is strongly non-normal), the regression coefficients derived from N
samples will be normally distributed about their true values with variances:

σ2(a0) = σ2
ε /N

σ2(a1) = σ2
ε /(Nσ

2
x)

This allows us to derive approximate confidence intervals (e. g. ±2σ for 95%)
for the coefficients.

It is worth plotting the residuals εj vs. xj to see if they look uncorrelated
and of similar variance across the range of x. If successive residuals appear
serially correlated, we should use an effective sample sizes N∗ in place of N . For
instance, If the residuals are given at uniformly spaced xj and are AR1 with
a substantial lag-1 autocorrelation r1, use N∗ = N(1 − r1)/(1 + r1) (following
Eqs. 3.5.1 and 3.6.4).

5.4 Regressing many variables on one predictor

The above approach trivially extends to regressing a whole array of data on one
predictor, since each variable can just be separately regressed on the predictor.

5.5 Regression caveats

As shown in Figure 1, the same r can encompass a variety of relationships
between two variables, not all of which embody the linear relationship with
random scatter that was assumed in deriving linear regression. In particular,
linear regression

1. does not accurately describe nonlinear relationships

2. can be affected by data clustering and especially outlier data points

3. does not demonstrate causality

4. can reflect codependence of X and Y on some third ‘hidden’ variable.

5. requires modification if X is uncertain as well as Y (in particular, if the
uncertainty in X is a significant fraction of its standard deviation σx across
the observations), otherwise the regression slope will be underestimated
by our formulas.
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Figure 1: Four datasets with the same correlation coefficient of 0.7. From
Hartmann, Ch. 3


