Lecture 6: Multiple linear regression
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A natural extension is to regress a predictand y on multiple predictor vari-
ables x,,. Assuming all variables have been de-meaned, we fit the linear
model:

Y =a1%1 + 2T ...+ apTy. (601)

6.1 Mathematical derivation

Least squares minimization of the mean square residual
N N
Qa)=N"Y [y, - 41> =N"D [y — (@1 ...+ ayan);]?
j=1 j=1

with respect to each coefficient a; gives the normal equations:

17171 + A2T1T2 ... +apyT1Tpy = T1Y
a9T2x1 + A2XT2T2 ...+ ApToTpy = T2y
apMTMTL + 2T T2 ...+ AMTMTNM = TMY

The coefficients Z; T, are just the elements C;,, of the M x M covariance matrix
C.: between the predictor variables, and the right-hand side is a column vector
or M x 1 matrix of covariances between the predictors and the predictand, so
the normal equation takes the matrix form:

Ciza=Cyy (6.1.1)
The covariance matrices can be written directly in terms of the M x N predictor

matrix X (whose rows are the time series of the predictors) and the 1 x N
predictand matrix Y (a row vector):

Cpo = —XXT

C,y = ——XY7T (6.1.2)
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As with simple linear regression, it is straightforward to apply multiple re-
gression to a whole array of predictands. since the regression is computed sep-
arately for each predictand variable.

6.2 Matlab example

The Matlab script regression_example.m was introduced in the previous lec-
ture. It continues with an example of multiple regression of MPG on M = 2
predictor variables, car weight and horsepower. Scatterplots show that MPG
is highly correlated with horsepower as well as weight, but also that they are
even more highly correlated with each other (r = -0.87). Thus, the incremental
benefit of adding horsepower as a predictor is not a priori clear.

Using the statistics toolbox function regress, the two-predictor linear model
is found to have a marginally larger correlation coefficient (0.87 vs. -0.86) with
the MPG than does the linear fit with weight alone.

6.3 Overfitting and stepwise linear regression

A concern with multiple regression is overfitting; with a lot of predictors and a
limited number of samples, random sampling fluctuations will allow some linear
combination of the predictors to match the predictand perfectly over the limited
samples we have, but the correlations will fall apart for a different set of samples.
In particular, if the number m of predictors exceeds the number n of samples,
the matrix C,, will have rank no more than n, so will have at least m — n
zero eigenvalues. Then the normal equations will not even be mathematically
solvable. Overfitting is often a serious problem for much smaller m than this.
Given independent data samples, a common approach that controls overfit-
ting by keeping the number of predictands to a minimum is stepwise multiple
regression. Start with the one predictor that explains the most predictand
variance (i. e. has the highest correlation coefficient with the predictand). If
this correlation coefficient passes an appropriate statistical significance test (i.e.
compared to the null hypothesis of regressing a predictor on an equal number of
predictors that are all uncorrelated with it), both the predictand and the other
predictors are regressed on predictor 1. The linear regression fits are removed
to create a modified predictand § and modified predictors Z2 3. ., all of which
are uncorrelated with predictor 1 (this is analogous to creating an orthogonal
basis out of an arbitrary set of linearly independent vectors). The modified
predictand is then regressed on the modified predictor with which it has the
highest correlation coefficient. If this is statistically significant, this predictor is
added and a new modified predictor and predict ands are created. The process
is repeated until no remaining modified predictor has a statistically significant
correlation coefficients with the modified predictand. This process is manually
implemented for the second predictor (zo = horsepower) in the Matlab script
regression_example.m. The correlation coefficient of § and %5 is 0.23, which
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is just barely significant at the 95% level due to the large sample size (N = 93,
so 2N~1/2 = 0.22). Thus we keep the second predictor despite it only adding
marginally to the fitting skill.

The last line of the Matlab script calls the statistics toolbox function step-
wisefit, which implements this same process. As we did above, it concludes
that the second predictor is just barely worth retaining, and calculates the
same multiple regression coefficients as did regress.

6.4 Cross-validation as a test of overfitting

If the data is serially correlated, one must estimate an effective sample size for
use in the stepwise regression. If the data has complicated correlation structure,
there may not be a justifiable way to do this. In that case, it is sensible to test the
obtained linear fit for overfitting using cross-validation; that is, calculating the
linear fit based on a subset of the sample and testing whether it also predicting
a similar fraction of the variance in the withheld subset of the sample. One way
to do this ("leave-one-out’) is to successively leave each sample out, compute the
regression using the remaining samples, and use the left-out sample for cross-
validation. Another approach (’split the data’) is to divide the data in halves,
and use each half to cross-validate the regression derived from the other half of
the data.



