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7.1 Fourier analysis and filtering

Many data analysis problems involve characterizing data sampled on a regular
grid of points, e. g. a time series sampled at some rate, a 2D image made of
regularly spaced pixels, or a 3D velocity field from a numerical simulation of
fluid turbulence on a regular grid.

Often, such problems involve characterizing, detecting, separating or ma-
nipulating variability on different scales, e. g. finding a weak systematic signal
amidst noise in a time series, edge sharpening in an image, or quantifying the
energy of motion across the different sizes of turbulent eddies.

Fourier analysis using the Discrete Fourier Transform (DFT) is a fun-
damental tool for such problems. It transforms the gridded data into a linear
combination of oscillations of different wavelengths. This partitions it into scales
which can be separately analyzed and manipulated.

The computational utility of Fourier methods rests on the Fast Fourier
Transform (FFT) algorithm, developed in the 1960s by Cooley and Tukey,
which allows efficient calculation of discrete Fourier coefficients of a periodic
function sampled on a regular grid of 2p points (or 2p3q5r with slightly reduced
efficiency).

7.2 Example of the FFT

Using Matlab, take the FFT of the HW1 wave height time series (length 24 ×
60 = 25325) and plot the result (Fig. 1):

load hw1 dat; zhat = fft(z); plot(abs(zhat),’x’)

A few elements (the second and last, and to a lesser extent the third and the
second from last) have magnitudes that stand above the noise. Something is
there...but what? The next few lectures will be devoted to interpreting and
using the DFT.
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Figure 1: Absolute value of DFT of wave height time series of HW1

7.3 Complex Fourier series

A piecewise-continuous L-periodic function u(t) has a convergent Fourier series

u(t) = a0/2 +

∞∑
M=1

[aM cos(2πMt/L) + bM sin(2πMt/L)] ,

where

(aM , bM ) =
2

L

∫ L

0

u(t) (cos(2πMt/L), sin(2πMt/)L) dt, M = 0, 1, 2, 3, ....

Define complex Fourier components

c±M = (aM ∓ ibM )/2 =
1

L

∫ L

0

u(t)e∓2πiMt/L dt

and the angular frequency of each mode

ωM = 2πM/L

Then

aM cos(2πMt/L) + bM sin(2πMt/L)

=
aM
2

(
eiωM t + e−iωM t

)
+
bM
2i

(
eiωM t − e−iωM t

)
= cMe

iωM t + c−Me
−iωM t,

u(t) = L−1
∞∑

M=∞
cMe

iωM t, (7.3.1)
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which is the complex Fourier series for u(t).
Exactly the same methodology applies to a periodic function of a spatial

coordinate x. In that case, the terminology is to say wavenumber kM =
2πM/L in place of angular frequency ωM .

7.4 Discrete Fourier Transform (DFT) and FFT

Let uj , j = 1, . . . , N be a sequence of N possibly complex values. The Discrete
Fourier Transform (DFT) of this sequence is the sequence ûm,m = 1, . . . , N ,
where

ûm =

N∑
j=1

uje
−2πi(m−1)(j−1)/N (7.4.1)

The inverse discrete Fourier transform (IDFT) is

uj =
1

N

N∑
m=1

ûme
2πi(m−1)(j−1)/N (7.4.2)

The FFT is a fast algorithm for computing the discrete Fourier transform for
data lengths N = 2p, taking O(N log2N) flops as compared with O(N2) flops
for doing the computation directly using the above formulas. Versions of the
FFT that are nearly as efficient also apply for N = 2p3q5r.

To show that the IDFT really is the inverse of the DFT, we substitute eqn.
(7.4.1) into (7.4.2), after changing the summation index in the former to J :

uj
?
=

1

N

N∑
m=1

e2πi(m−1)(j−1)/N
N∑
J=1

uJe
−2πi(m−1)(J−1)/N

=
1

N

N∑
m=1

N∑
J=1

uJe
2πi(m−1)(j−J)/N

=
1

N

N∑
J=1

uJ

N∑
m=1

e2πi(m−1)(j−J)/N (7.4.3)

The inner sum over m is a geometric series with ratio exp[2πi(m−1)(j−J)/N ].
If J = j, each term is 1 so the series sums to N . If J 6= j, the sum is:

N∑
m=1

e2πi(m−1)(j−J)/N =
exp

[
2πi
N N(j − J)

]
− 1

exp
[
2πi
N (j − J)

]
− 1

= 0 (J 6= j)

Thus, the only term in the outer sum over J that contributes is from J = j, for
which the inner sum is N , and we indeed find that the RHS of (7.4.3) is equal
to uj as claimed.
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7.5 Relation of DFT to complex Fourier series

Define a regular grid with N points across the period L:

tj = (j − 1)∆t, j = 1, ..., N, ∆t = L/N.

We now show that the elements of the DFT are Riemann sum discretization of
the complex Fourier transform integrals on this grid. We associate indices m in
the DFT with the N lowest positive and negative harmonics:

m = 1, 2, . . . , N ↔ Mm = 0, 1, 2, . . . , N/2− 1,−N/2, . . . ,−1, (7.5.1)

Then the Riemann sum for the complex Fourier coefficient cM is

cM ≈ 1

L

N∑
j=1

∆tu(tj) exp [−iωM tj ]

=
1

L

N∑
j=1

L

N
u(tj) exp

[
−i2πM

L
(j − 1)

L

N

]
(7.5.2)

This Riemann approximation will be accurate as long as the integrand u(t) exp(−iωM t)
only varies slightly in a grid spacing. This requires that u(t) be a smooth func-
tion of t on the grid and that the exponential exp(iωM t) also not vary too much
between grid points, i. e. that |ωM∆t| (= 2π|M |/N)� 1. The complex Fourier
coefficients of a smooth L-periodic u(t) will decrease rapidly with increasing |M |.
If N has been chosen so that all the Fourier modes with significant amplitude
have |M | � N/2, these Fourier coefficients will be well approximated with the
DFT using the correspondence (7.5.1.)

If 0 ≤M < N/2, we can set M = m− 1 in (7.5.2) and use the definition for
the corresponding DFT coefficient:

cM ≈ 1

N

N∑
j=1

u(tj) exp

[
−2πi

N
(m− 1)(j − 1)

]
= ûm/N. (7.5.3)

For the negative harmonics −N/2 ≤ M < 0, following (7.5.1) we associate
M = m− 1−N and

cM ≈ 1

N

N∑
j=1

u(tj) exp

[
−2πi

N
(m− 1−N)(j − 1)

]

=
1

N

N∑
j=1

u(tj) exp

[
−2πi

N
(m− 1)(j − 1)

]
exp

[
2πi

N
N(j − 1)

]
︸ ︷︷ ︸

1

= ûm/N again.


