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8.1 Aliasing

Because the DFT is based on sampling a continuous function at a finite set
of equally-spaced points j∆t, many different L-periodic functions can have the
same DFT. In fact, different sinusoids can have the same DFT, an ambiguity
called aliasing. In general, consider harmonic M sampled on the grid tj =
(j − 1)∆t where j = 1, ..., N and ∆t = L/N :

exp(iωM tj) = exp
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Harmonics M + qN, q = ±1,±2, ... also have exactly the same values at the
grid points, since

exp(iωM+qN tj) = exp

[

2πi
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]

= exp
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2πi
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]

· exp [2πiq(j − 1)]

= exp(iωM tj) (8.1.1)

Thus there is always ambiguity in whether one is looking at a smooth, ad-
equately sampled signal, or a highly oscillatory, poorly sampled signal. Our
choice of how to assign harmonics M to the different components m of the DFT
was based on assuming the signal is smooth. A signal composed of highly oscilla-
tory harmonics that alias to a low harmonic M on the given grid will just add to
the true signal from that harmonic. For instance DFT element m = 1 includes
the signal not only from harmonic M = 0 but also from M = ±N,±2N, ..., as
shown in the left panel of Fig. 1.

The Nyquist frequency ωN/2 = π/∆t is the maximum frequency that is unam-
biguously detectable on the grid. It corresponds to a (1, -1, 1, -1...) oscillation
on the grid of period 2∆t (right panel of Fig. 1).
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Figure 1: Left: Harmonic N , which is a sinusoid with period ∆t, aliases to
(has the same grid point values as) harmonic 0, which is a constant. Right: A
sinusoid with the Nyquist frequency.

8.2 Matrix form of DFT/IDFT; Parseval’s Thm

The DFT and IDFT can be expressed in matrix form. If u is the vectors of
gridpoint values uj, then:

û = DFT (u) = N1/2Fu, (8.2.1)

u = IDFT (û) = N−1/2F †û, (8.2.2)

where û is the DFT of u, the elements of the DFT matrix F are

Fmj = N−1/2 exp(−2πi(m− 1)(j − 1)/N), (8.2.3)

and F † is the conjugate transpose of F .
We showed above that the IDFT is the inverse of the DFT, so

u = N−1/2F−1û ⇒ F−1 = F †. (8.2.4)

That is, F is a unitary matrix. This gives an easy derivation of Parseval’s

theorem

N
∑

m=1

|(ûm/N)2| = û†û/N2

= u†F †Fu/N

= u†u/N

= N−1

N
∑

j=1

|u2
j |. (8.2.5)

That is, the sum of the squares of the approximate Fourier coefficients ûm/N
is equal to the average power or squared amplitude of the time series uj. We
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interpret Parseval’s theorem as a partitioning of the power into con-
tributions from each harmonic or wavenumber; this is very useful for
interpretation of data.

8.3 Key things to remember about the DFT

Matlab DFT: uhat = fft(u); inverse DFT: u = ifft(uhat).
Will calculate the DFT or inverse DFT using the ‘fast’ algorithm if the
data length is N = 2p3q5r. For other N , it will take O(N2) flops and go
much slower if N is large.

Assumes periodic input : uN+1 = u1 (discontinuities between the endpoints
can create unintended artifacts)

Relation to Fourier series If u is sampled from a continuous periodic func-
tion u(t), uhat/N gives an estimate of its complex Fourier series coeffi-
cients cM :

ûm/N ≈ cM ,M = m−1 (1 ≤ m ≤ N/2) or m−1−N (N/2+1 ≤ m ≤ N).

For smooth functions u(t) and low-order harmonics, this approximation is
extremely accurate. Parseval’s theorem partitions the power in u into the
Fourier modes or harmonics in its DFT.

Account for the shift between the indices m and the corresponding Fourier
harmonics Mm. In Matlab, define the index vector of harmonics M =
[0:(N/2-1) -N/2:-1] and the frequencies om = 2*pi*M/L (or wave
numbers k = 2*pi*M/L in a problem in which position x is the inde-
pendent variable).

m=1 coefficient of uhat is N times the mean of u (easily proved from DFT
definition).

DFT is complex-valued If u is real, the DFT coefficients for Fourier modes
M and −M are complex conjugates (easily proved from DFT definition).

x derivative of spatially periodic function Matlab: dudx = real(ifft(1i*k*fft(u)));


