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12.1 Stationary time series

A time series or random process is called stationary if its statistical properties
do not change with time, e. g.. white and red noise. Fourier spectral analysis
is particularly useful for stationary random processes because they do not have
systematic trends that violate the periodicity assumptions inherent in a DFT.

Many time series are not stationary when viewed as a whole, but segments
of them may be approximated as stationary. For instance, speech or music are
made of sounds. Each sound is composed of a set of frequencies sustained for a
period of time, but the next sound will have a different frequency content.

12.2 Statistical properties of the periodogram of
a stationary Gaussian random process

Consider a stationary zero-mean Gaussian random process Uj ,−∞ < j < ∞
sampled at regularly-spaced time intervals ∆t. Here we use a capital U to denote
a random variable, i. e. that we will talk about statistics describing an infinite
ensemble of realizations of a random process, rather than just one particular set
of observations. Denote the true lagged autocovariance sequence (acvs) of this
process by aUp = E[UjUj+p],−∞ < p < ∞. The true power spectral density of
this random process is defined as

PU (f) = ∆t

∞∑
p=−∞

aUp exp[−2πipf∆t], − 1

2∆t
< f <

1

2∆t
= fN . (12.2.1)
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Here fN is the Nyquist frequency. The interpretation is that the true acvs gives
the complex Fourier series representation of PU (f), which is a periodic function
of f with period 1/∆t, just like the sample acvs is the IDFT of the periodogram.
We wish to estimate the true power spectral density PU (f) robustly from finite
samples from the random process; this is a statistical estimation problem.

From the stationarity assumption and the definition of the DFT as a linear
unitary matrix transformation, we can show (Percival and Walden Ch. 6):

1. The real and imaginary part of the DFT components Ûm are each normally
distributed with zero mean and equal variance. If N is large, this is
approximately true even if the random process does not have a Gaussian
PDF.

2. Define the frequency-normalized periodogram as

P (N)(fm) = Sm/∆f, Sm = |Ûm|2/N2, fm = M/(N∆t) (12.2.2)

where ∆f = 1/(N∆t). Then the RV P (fm) is the sum of the squares of
two identical normally-distributed RVs, which has a χ2(2) or exponential
PDF, whose relative standard deviation (ratio of its standard deviation
to its mean) is 1, with a pronounced tail of large positive values. This
explains the large random scatter in the periodogram (e. g. upper right
panel of Fig. 1 of previous lecture).

3. More favorably, P (N)(fm) is uncorrelated with P (N)(f ′m) for any other
frequency m′ 6= m (except for indices corresponding to harmonic pairs M
and −M , which always have equal spectral power). Roughly, this allows
estimates Sm from nearby harmonics to be averaged to get an estimate of
the true power spectral density with less random scatter. In practice, this
effect is better achieved using windowing and tapering of the time series.

12.3 Windowed Fourier analysis

In windowed Fourier analysis, we divide or window our time series of length N
into shorter segments of length Nw, each covering a time interval T = Nw∆t.
For a stationary time series, the periodogram of each window of data gives an
independent unbiased estimate of the power spectrum (if the time series were
not stationary, the power spectrum from each window would not be expected
to have the same statistical character so this averaging would be invalid). If
there are n = N/Nw windows, we can average these estimates. The resulting
estimator (which is proportional to a χ2

2n distribution), has a relative standard
deviation of n−1/2 instead of 1 for the unwindowed periodogram, giving a more
robust estimate of the true power spectrum. It takes 100 windows to bring down
the relative standard deviation of each spectral estimate down to 10%!

The tradeoff is that since each window is a factor n shorter, the frequency
separation between power spectral estimates ∆f is n times as coarse. In this
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sense, there is a close analogy between windowed Fourier analysis and averaging
the periodogram across blocks of n adjacent frequencies.

If the data has substantial low-frequency variability, a problem with window-
ing is that there may be substantial endpoint discontinuities that contaminate
the spectral estimates. The usual strategy to remove possible endpoint discon-
tinuities is to multiply each window of the time series by a weight function or
taper that smoothly goes to zero at the end points. This can be shown to
affect the estimated power spectrum at the lowest frequencies (where it is fairly
unreliable anyway) but not at frequencies corresponding to periods much less
than the window period T .

A common choice of window and taper is the Hann window

w(t) =

{
1− cos(2πt/T ), 0 ≤ t < T
0 other t

(12.3.1)

The smoothness of the cosine taper minimizes its distortion of the power spec-
trum, aka spectral leakage. The power of w(t) averaged across the window
0 ≤ t < T is

σ2
w = 3/8.

We divide our power spectral estimate from the windowed DFT of the tapered
time series by σ2

w to compensate for the reduction in time series power due to
multiplying by the taper.

In addition, since the taper downweights data near the ends of each window,
we use overlapping windows of length Nw, each starting Nw/2 samples apart.
This ensures that all data is near the center of some window. The power spec-
tral estimates from overlapping windows are not independent; their correlation
coefficient depends on the taper being used, and this needs to be factored into
uncertainty estimates for the power spectrum; the information to do this is given
by Matlab spectral estimation functions from its signal processing toolbox.

The next lecture will give an example of overlapped windowing and tapering
for spectral estimation applied to the Nino3.4 SSTA time series.


