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15.1 Character of music and speech

Speech and music involve producing a certain sound (set of frequencies in a
given proportion) for some time interval, then producing another sound, etc.
We hear the sound by air pressure oscillations vibrating our ear drum. While
each sound is being produced, the pressure signal may be expected to have a
well-defined power spectrum corresponding to the frequencies contained in it.
That signal can be isolated by windowed Fourier analysis. The cochlea in our
ear (Fig. 1) does a fascinating natural version of this. It is a coiled tapered fluid-
filled tube. Pressure waves of different frequencies are damped at different rates
as they move along the tube, with the lowest frequencies getting the furthest
before being damped. Nerve cells along the length of the cochlea thus allows the
ear to naturally separate the frequency content of the sound, essentially doing
a continuous version of a windowed power spectral analysis.

15.2 A musical example

We apply windowed Fourier analysis to a short segment of Handel’s Messiah,
sampled for about 9 secs at 8192 Hz (samples per sec). Script music.m loads
and plays the music, then goes through all the steps needed to use the windowed
analysis to identify the different sound frequencies (musical notes) present at
different times. The time-frequency plot of spectral power that is generated
is called a spectrogram. In the first second, we can identify the notes D (in
two octaves), A, and F, all tuned slightly flat (a common custom for Baroque
music), which also can be seen at the start of the fourth measure of the score.

An important consideration in this type of joint time-frequency analysis is
the tradeoff between window length Nw, the number of half-overlapping power
spectra to average na, and the time resolution δta of the analysis. If the sampling
frequency in Hz is f , the time between samples is ∆t = f−1. Hence, each window
spans a time

δtw = Nw∆t (= 256/8192 = 1/32 s for our example)
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Figure 1: The cochlea (http://medical-dictionary.thefreedictionary.com/cochlea)

Figure 2: Excerpt from score of the Messiah. Our segment starts a little before
the start of the fourth measure and after 5 seconds continues off the page.
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On the other hand, the frequency resolution (the difference between adjacent
DFT frequencies, given in units of Hz, so no 2π factor) is is

δfw = 1/(Nw∆t) = δt−1 (= 32 Hz for our example)

or
δtwδfw = 1

This is an example of the ’Heisenberg uncertainty principle’ for any waves; there
is a trade-off between the sampling time δtw and the frequency resolution δfw.
To resolve notes in the 500 Hz range spaced 1/12 octave apart, we need roughly
30 Hz frequency resolution, which is what motivated the choice Nw = 256. On
the other hand, this requires a minimum window length of 1/32 s. Furthermore,
to get statistically reliable spectral estimates we need to average spectra from
adjacent overlapping windows. Using na = 4 brings the noise in these estimates
down enough to be useful, but this now doubles the time between spectral
estimates to used for spectral averaging

δta = naδtw/2 (= 1/16 s for our example)

Given that music has a typical cadence of 2 beats per second, some notes may
be sustained for periods of as little as 1/8 of a second, so we need to spectrally
analyze them in a time interval shorter than this. This is why we did not use a
much longer window or more windows per spectral average for our analysis.


