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18.1 Introduction

Wavelets are an efficient tool for analyzing data that varies on a wide range
of scales, especially when the data is statistically non-stationary, e. g. speech,
pictures, etc. In such situations they are computationally more efficient and
easy to use than windowed Fourier methods. Wavelets are also an attractive
and widely-used way to compress such data.

Idea: A form of multi-resolution analysis. Decompose data into a sum
of time series which characterize the variability on different time scales, each
twice as long as the previous one, using an algorithm called a discrete wavelet
transform (DWT). The idea is to filter the time series by multiplying it by
a localized function called a wavelet whose width in time can be rescaled to
pick out variability on the different time scales. Haar (1909) coined the word
‘wavelet’, but the approach was popularized by Morlet and Daubechies in the
1980s, furthered by development of a fast DWT/inverse DWT algorithm (Mallat
1988) and the arrival of big data whose computational analysis benefitted from
this approach. Multigrid methods for numerically solving elliptic PDEs have a
similar philosophical foundation.

An analysis technique called the Continuous Wavelet Transform (CWT;
Matlab Wavelet Toolbox function cwt) is popular for visualizing (rather than
quantifying) time-frequency behavior. Generally, I prefer the DWT as a more
parsimonious description of this behavior.

18.2 The Haar transform

We consider a time series u = u1, . . . , uN , where N is even. The single-level
Haar transform decomposes u into two signals of length N/2. They are the
average coefficient vector a1 , with components

am = 2−1/2(u2m−1 + u2m), m = 1, . . . , N/2, (18.2.1)

and the detail coefficient vector d1, with components

dm = 2−1/2(u2m−1 − u2m), m = 1, . . . , N/2. (18.2.2)
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Each term in the detail vector represents variations between successive elements
of the time series, i. e. on a time scale ∆t. Each term in the average vector
is an average across a time scale 2∆t. These can be concatenated into another
N -vector, which can be regarded as a linear matrix transformation of u:

h1 = [a1|d1] (18.2.3)

This transform can be inverted to get u from h, as follows:

u2j−1 = 2−1/2(aj + dj), u2j = 2−1/2(aj − dj), j = 1, . . . , N/2. (18.2.4)

Like the Fourier transform, the Haar transform is power-conserving (2-norm
conserving):

|h1|2 =

N/2∑
m=1

[
a2
m + d2

m

]
=

N/2∑
m=1

1

2

[
{u2m−1 + u2m}2 + {u2m−1 − u2m}2

]

=

N/2∑
m=1

[
u2

2m−1 + u2
2m

]
= |u|2 (18.2.5)

This means that the Haar transform can be regarded as partitioning the power
between different time scales and time ranges.

18.3 Haar wavelets and reconstruction of the
signal from wavelet and scaling coefficients

It is useful to develop some more formalism for discussing the Haar transform.
The detail components can be written as an inner product of the time series
with the m’th level-1 Haar wavelet W1

m,

dm = W1
m · u, (18.3.1)

where:

W1
1 = 2−1/2[1,−1, 0, 0, 0, . . . , 0, 0]

W1
2 = 2−1/2[0, 0, 1,−1, 0, . . . , 0, 0]

...

W1
N/2 = 2−1/2[0, 0, 0, 0, 0, . . . , 1,−1] (18.3.2)

Each level-1 Haar wavelet is:
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1. A translation of W1
1 by an even number of units.

2. Orthogonal to all other Haar wavelets

Similarly, the average components can be written

am = V1
m · u, (18.3.3)

where t

V1
1 = 2−1/2[1, 1, 0, 0, 0, . . . , 0, 0]

V1
2 = 2−1/2[0, 0, 1, 1, 0, . . . , 0, 0]

...

V1
N/2 = 2−1/2[0, 0, 0, 0, 0, . . . , 1, 1] (18.3.4)

are the level-1 Haar scaling signals, which are also translations of each other
that are mutually orthogonal and orthogonal to all the level-1 wavelets.

Using this notation, we can write the signal in terms of components propor-
tional to the wavelets and scaling signals:

u = A1 + D1 (18.3.5)

where

A1 = 2−1/2(a1, a1, a2, a2, . . . , aN/2, aN/2) =

N/2∑
m=1

amV1
m (18.3.6)

and

D1 = 2−1/2(d1,−d1, d2,−d2, . . . , dN/2,−dN/2) =

N/2∑
m=1

dmW1
m (18.3.7)

This vectorially describes how to invert the Haar transform to get the original
time series.

18.4 Single-level DWT in Matlab

The Matlab wavelet toolbox has an extensive set of functions for wavelet anal-
ysis. The Matlab script wavelet turbulence (class web page) uses these on a
nonstationary time series of aircraft-measured vertical velocity. The first part
of this script does a single-level Haar wavelet analysis of this time series.

18.5 Multiresolution analysis with Haar trans-
form

By applying the Haar transform to the average coefficient vector, we could
decompose that into a level-2 average vector (aggregation to 22∆t) and a level-2
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detail vector (variation on scale 22−1∆t), each of length N/4. If N = 2P one can
continue this process up to level P , at which there is one average (representing
aggregation to scale 2P∆t) and one detail coefficient (representing variation on
the scale 2P−1∆t). This is called multiresolution analysis.

18.6 Higher-level wavelets and scaling vectors

For a level-2 analysis, we apply the Haar transform to the level-1 average vector
a1 of length N/2:

d2
m = 2−1/2(a2m−1 − a2m) = 2−1(u4m−3 + u4m−2 − u4m−1 − u4m)

a2
m = 2−1/2(a2m−1 + a2m) = 2−1(u4m−3 + u4m−2 + u4m−1 + u4m)(18.6.1)

We can rewrite this:

d2
m = W 2

m · u
a2
m = V 2

m · u (18.6.2)

where the level-2 wavelets are:

W2
1 = 2−1[1, 1,−1,−1, 0, 0, 0, 0, 0, . . . , 0, 0]

W2
2 = 2−1[0, 0, 0, 0, 1, 1,−1,−1, 0, . . . , 0, 0]

...

W2
N/4 = 2−1[0, 0, 0, 0, 0, . . . , 1, 1,−1,−1] (18.6.3)

and the level-2 scaling signals are :

V2
1 = 2−1[1, 1, 1, 1, 0, 0, 0, 0, 0, . . . , 0, 0]

V2
2 = 2−1[0, 0, 0, 0, 1, 1, 1, 1, 0, . . . , 0, 0]

...

V2
N/4 = 2−1[0, 0, 0, 0, 0, . . . , 1, 1, 1, 1] (18.6.4)

Again, these vectors are all mutually orthogonal and also orthogonal to the
level-l wavelets.

The inverse of this 2-level Haar transform can be expressed

u = A2 + D2︸ ︷︷ ︸
A1

+D1. (18.6.5)

where

A2 = 2−1(a2
1, a

2
1, a

2
1, a

2
1, . . . , a

2
N/4, a

2
N/4, a

2
N/4, a

2
N/4) =

N/2∑
m=1

a2
mV2

m (18.6.6)
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Figure 1: The wavelets and the scaling vector for a level-3 analysis of a time
series of length 8.

and similarly

D2 =

N/2∑
m=1

d2
mW2

m (18.6.7)

The extension to P levels should be clear. The P -level Haar transform of
the data vector is

hP = [ aP︸︷︷︸
N/2P

| dP︸︷︷︸
N/2P

| dP−1︸ ︷︷ ︸
N/2P−1

| · · · | d1︸︷︷︸
N/2

] (18.6.8)

and Fig. 1 shows the Haar wavelet and scaling vectors for a P = 3 multiresolu-
tion analysis.
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Figure 2: (a) Spectral power of equivalent filters for the details and averages
in a 1-level Haar transform; (b) Same, but for a 3-level Haar transform. Black
dashed lines denote periods 4∆t, 8∆t, 16∆t.

18.7 Interpretation of Haar wavelets in terms of
filters

We can interpret the level-1 Haar detail and average vectors as filtering with
the weight vectors

w1 = [w0, w1, . . . , w−1] = 2−1/2[1,−1, 0, 0, . . . , 0]

v1 = [v0, v1, . . . , v−1] = 2−1/2[1, 1, 0, 0, . . . , 0] (18.7.1)

and then binary subsampling by keeping only every second component of the
filtered fields. The spectral responses or these filters are simply obtained from
the Z-transform

Rw(f) = 2−1/2(1− Z)|Z=exp(−2πif∆t) = 21/2ie−iπf∆t sin(πf∆t)

Rv(f) = 2−1/2(1 + Z) = 21/2e−iπf∆t cos(πf∆t) (18.7.2)

The spectral power of each of these filters is seen in Figure 1a. The level-1
wavelet filter is a coarse high-pass filter retaining frequencies 1/4 < f∆t < 1/2
; the level-1 scaling filter is a coarse low-pass filter retaining frequencies f∆t <
1/4.

The levels p = 1, , P of the multilevel Haar transform can be also regarded
as filtering followed by binary subsampling. Level-p wavelets behave as band-
pass filters retaining frequencies 2−(p+1) < f∆t < 2−p, while the scaling vectors
behave as low-pass filters retaining frequencies f∆t < 2−(p+1). Fig. 1b shows
the spectral power of the equivalent filters for each level for the case P =
3. The filter responses are consistent with the level-p wavelets extracting the
fluctuations with periods between 2p∆t and 2p+1∆t in the time series.
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18.8 Multiresolution wavelet analysis in Matlab

The second part of wavelet turbulence shows a level-3 Haar wavelet analysis.

18.9 Continuous Wavelet Transform (CWT)

Given a continuous signal u(t) and an analyzing wavelet ψ(x), the CWT has
the form

W (λ, t) = λ−1/2

∫ ∞
−∞

ψ(
s− t
λ

)u(s)ds (18.9.1)

Here λ, the scale, is a continuous variable. We insist that ψ have mean zero and
that its square integrates to 1. The continuous Haar wavelet is defined:

ψ(t) =

 1 0 < t < 1/2
−1 1/2 < t < 1
0 otherwise

(18.9.2)

W (λ, t) is proportional to the difference of running means of u over successive
intervals of length λ/2.

In practice, for a discrete time series, the integral is evaluated as a Rie-
mann sum using the Matlab wavelet toolbox function cwt. The last section of
wavelet turbulence gives an example.


