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24.1 Motivation

We often need to interpolate and smooth data, which may be taken at irregular
locations and times. We also may need to synthesize data of different types
(e. g. measured surface winds and sea-level pressure). Lastly, we may need
to assimilate data into a diagnostic or predictive model, either to help make
forecasts or to enforce physical consistency constraints between multiple data
types. These are the origins of the term ’objective analysis’.

This is a huge, complex and sophisticated area of research and knowledge and
in the remaining lectures we will only scratch at a few parts of its surface, namely
smoothing, optimal interpolation and Kalman filtering for data assimilation.

24.2 Smoothing

We often have data with measurement errors or small-scale fluctuations from
which we wish to generate a smooth field, often on a regular grid of points.

Software packages such as Matlab have various functions for interpolat-
ing irregularly-spaced data to a regular grid without smoothing, depending on
whether the data is given on some kind of mesh of points (e. g. interp1,
interp2) or at an unstructured set of points (griddata).

Low-pass filters can be useful for smoothing regularly-spaced time series.
For smoothing irregularly spaced data, kernel smoothing can be a good
option (http://en.wikipedia.org/wiki/Kernel smoother). Given noisy measure-
ments x(ti) of some process at irregularly spaced times ti, the smoother is a
weighted average

x̃(t) =

∑N
i=1K(t− ti)x(ti)∑N

i=1K(t− ti)
(24.2.1)

where K is the smoothing kernel. A common choice is the Gaussian kernel

K(T ) = exp
(
−T 2/2τ2

)
(24.2.2)
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Figure 1: Gaussian kernel smoother (http://en.wikipedia.org/wiki/Kernel smoother)

where the smoothing width τ is a user-chosen adjustable parameter chosen based
on the typical spacing between sample times and the desired degree of small-
scale noise filtering.

24.3 Optimal interpolation

Optimal interpolation is an approach to synthesizing multiple types of data with
different known uncertainties. For instance, we might have two measurements
of wind speed at the same location using different instruments with different
error characteristics, or we might have a prior estimate (with some uncertainty)
of what the wind speed should be (e. g. from a large-scale forecast model). How
can we combine these measurements into a best guess at the wind speed with
minimum uncertainty? To be consistent with the following discussion of Kalman
filtering, we frame the problem as finding the optimal estimate of of some set
of variables y by combining a prior estimate yp with known uncertainties with
new observations yo, also with known (but different) uncertainties.

24.4 Observations of a single quantity

We start with the simplest 1-variable case. We assume the prior estimate yp

is has a normal distribution with standard deviation σp and mean equal to the
true value y. We assume the observation yo is has a normal distribution with
standard deviation σo and mean equal to the true value y, and that the errors
in the prior and the observation are uncorrelated.

We regard the new observation as giving a correction that updates the prior
estimate:

ŷ = yp + k(yo − yp) = (1− k)yp + kyo, (0 < k < 1) (24.4.1)

Taking the nudging factor k ≈ 0 would weight the prior much more than the
new observation; taking k ≈ 1 would weight the new observations much more
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than the prior. In fact, k is chosen to minimize a penalty function

R(ŷ) =

(
yo − ŷ
σo

)2

+

(
yp − ŷ
σp

)2

.

Given normally distributed variables, R measures the likelihood of obtaining
both our prior and our new observation given an actual value ŷ, given that the
observation and prior are mutually uncorrelated. A larger value of R corre-
sponds to a smaller likelihood, so we choose x̂ to minimize R:

0 =
∂R

∂ŷ
= −2

yo − ŷ
σ2
o

− 2
yp − ŷ
σ2
p

⇒ ŷ = σ̂2

(
yo

σ2
o

+
yp

σ2
p

)
(24.4.2)

where
1

σ̂2
=

1

σ2
o

+
1

σ2
p

(24.4.3)

is the variance of the updated estimate ŷ (Reader: prove this for yourself).
Equations (24.4.1), (24.4.2) and (24.4.3) imply

k =
σ̂2

σ2
o

=
σ2
p

σ2
p + σ2

o

. (24.4.4)

As we’d expect, k is near to 1 if the prior has large variance (uncertainty)
compared to the observation, and k is near to zero if the opposite is true. The
updated variance can also be written in terms of k, nicely showing how it is
reduced by the new observation:

σ̂2 =
σ2
pσ

2
o

σ2
p + σ2

o

= (1− k)σ2
p (24.4.5)

24.5 Observations of multiple correlated quan-
tities

This process can be carried through similarly (with a bit more pain) for an
m-vector of data y with m×m error covariance matrix Cp for the prior and Co

for the observations.

ŷ = yp + Cp(Cp
y + Co)−1︸ ︷︷ ︸
K

(yo − yp) (24.5.1)

Note that this involves inversion of a full m × m matrix, which may be
impractical for large m. It also requires specification of the error covariance
matrices, which may not be known or easy to find. Nevertheless, this is the
basis for the 3DVAR algorithm that was long used for assimilating data into
numerical weather prediction models (and still is, in some cases.)


