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25.1 Motivation

Commonly, we need to use data to help control, forecast, or estimate governing
equations for a complex system, e. g. tracking a moving object, using an au-
topilot to control a plane, or making numerical weather forecasts. The Kalman
filter enables the modeling system to constantly adjust to updated observations
to make more skillful predictions - a form of model-data fusion.

25.2 Combining a model with sequential data; a
simple example

Let’s start with a very simple model system whose exact behavior at a discrete
sequence of times is

xn = axn−1, n = 2, 3, . . . (25.2.1)

Assume we know this governing equation, but we never know the exact value
of the model statexn. At each time we make an unbiased observation xon of xn
with variance σ2

o about the true value. After n times, what is our best guess x̂n
at xn and what is its uncertainty, measured as an estimated variance σ̂2

n?
For n = 1 we have no prior information, so

x̂1 = xo1 σ̂2
1 = σ2

o .

For time n > 1 we have an unbiased estimate x̂n−1 from the previous time
n−1, with some estimated variance σ̂2

n−1 about the true value xn−1, and a new
observation xon with variance σ2

o about the true value xn.

25.3 Update previous estimate

The estimate from time n − 1 together with the governing equation (25.2.1)
implies a ’prior’ estimate

xpn = ax̂n−1 with σ2
p = a2σ̂2

n−1. (25.3.1)
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Now we can use the theory of optimal interpolation from the previous lecture
to update the prior given the new observation. The important new wrinkle is
that the model is being used not only to update the prior state but also the
prior error covariance (or variance in this 1D case).

x̂n = xpn + k(xon − xpn). (25.3.2)
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, (25.3.3)

σ̂2 =
σ2
pσ
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o

= (1− k)σ2
p (25.3.4)

Equations (25.3.1), (25.3.2), (25.3.3), and (25.3.4) together allow us to se-
quentially update our best estimate of the state x̂n and the variance σ̂2

n of
this estimate about the true value. An example is shown in the Matlab script
sequential estimation simple1D.

If a > 1, after a few time steps, the estimated variance settles to an equilib-
rium value such that

1

σ̂2
=

1

σ2
o

+
1

a2σ̂2

⇒ σ̂2
n → σ̂2 = σ2

o(1− a−2).

The influence of prior observations in reducing uncertainty in the state estimates
reaches a plateau, because the exponential growth of x magnifies the effects of
their errors. If a < 1 the estimated variance will decrease monotonically with
time, because the earlier observations become ever-stronger constraints due to
the exponential decay of x.


