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26.1 Tracking a ball

We’re playing center field in a baseball game. The batter hits the ball toward
us. We need to quickly judge where it is going to land, so we can run and catch
it.

We can frame this as a sequential estimation problem. Let (rn, zn) be the
true position of the ball with respect to us at successive times t = (n − 1)∆t .
At each time, we observe the angle of the ball

yn = tan−1(zn/rn)

with some error. Our mathematical model for the ball motion is Newton’s laws
for an object moving in a gravitational field. These require that at each time
we also estimate the ball’s horizontal and vertical velocity components un and
wn.

For this system, there are four variables to estimate, with one observation
at each time of a quantity that is a nonlinear function of the unknowns. This
motivates us to extend Kalman filtering to more complex systems.

26.2 Multivariate, nonlinear systems

The analysis of this system is more complex than the simple case, because

1. We are estimating multiple variables at each time n.

2. We are not directly observing the full state at each time.

3. Errors in the state variable estimates will be correlated with each other.

4. The measured quantity is a nonlinear function of the state.

The Kalman filtering strategy is to use the new observations to update the esti-
mated multivariate state x and its covariance matrix at each time n. We derive
general mathematical machinery for handling multivariate, nonlinear problems
given sequential observations of quantities that depends on the state.
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26.3 Sequential estimation roadmap for multi-
variate problems

Consider a possibly nonlinear system of the form

xn = f(xn−1). (26.3.1)

where the state x has m components. We will not include noise in the model
itself, though this is easy to add and is traditionally included in the theory of
Kalman filtering.

At each time n, we get a new set of q observations y of quantities h(x) that
depend (possibly nonlinearly) on the state, with observation errors y′ that have
a q × q covariance matrix Co. If these errors are independent, this covariance
matrix will be diagonal, with the variances of the observations as the diagonal
elements. Note that q needn’t be equal to m. If q < m the new measurements by
themselves would underdetermine the state ; if q > m they would overdetermine
the state.

As in the 1D case, we break the sequential estimation problem into steps:

Initialize Make an initial estimate of the model state x and of the matrix of
error covariances C between the estimated state variables. There is no
one right way to do this, but after a few time steps the algorithm will
have blended in enough observations to make it fairly insensitive to the
the initialization details.

Predict Using the model equations, and the estimated state x̂n−1 and covari-
ance matrix Ĉn−1 from time step n − 1, make predictions xp

n and Cp
n of

these quantities at time n.

Update Combine these predictions with the new observations at time n to
update the estimated state x̂n and covariance matrix Ĉn. Then cycle
back to step 2.

We will state (but not derive) the prediction and update steps for a general
nonlinear multivariable system, which can be written in a form parallel to our
1D case. It involves two additional matrices.

The update matrix Fn−1 [m × m] is derived by linearizing the model
function f used to predict time n from the estimated state at time n− 1:

x′p = Fn−1x̂
′
n−1 (26.3.2)

where a prime denotes an arbitrary small uncertainty in the state. This is
sometimes called the linear tangent model. Fn−1 is calculated as the Jacobian
matrix of the nonlinear function f , whose ij’th component is ∂fi/∂xj(x̂n−1),
where fi is the i’th component of the vector-valued function f . The Jacobian
can be calculated analytically if f is simple or approximated numerically if it is
not.
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The measurement matrix Hn [q×m] relates the prediction uncertainty y′p

in the measurements to the prediction uncertainty x′p in the state. It is derived
by linearizing (if needed) the measurement function h about the predicted state
at time n:

y′ = Hnx̂′ (26.3.3)

It can again be computed as a Jacobian matrix.
The Kalman filtering algorithm is a sequence of linear algebra steps:

Simple 1D General Kalman filter

Predict Predict
xpn = ax̂n−1 xp

n = f(x̂n−1)

σ2
p = a2σ̂2

n−1 Cp = Fn−1Ĉn−1F
T
n−1

Update Update
x̂n = xpn + k(xon − xpn) x̂ = xp + K(yo − h(xp))
k = σ2

p/(σ
2
p + σ2

o) K = CpHT
n (HnCpHT

n + Co)−1

σ̂2
n = (1 − k)σ2

p Ĉn = (I − KHn)Cp

Here Cp [m×m] is the covariance matrix of the prediction at time n, Ĉ [m×m]
is the covariance matrix of the update, Co [q × q] is the covariance matrix of
the observations, and K [m× q] is the Kalman gain matrix.

It is mathematically involved to derive all the steps in the Kalman filtering
algorithm, so we just admire the close analogy to the single-variable case, and go
on to the ball-tracking example. In practice, as with optimal interpolation, the
practical issue in applying this to models with lots of predictive variables (such
as weather forecast models) is that it involves inversion of full high-dimensional
matrices.

The ensemble Kalman filter (EnKF) uses an ensemble of model simula-
tions, each initialized differently but forced with identical observations, to esti-
mate the error covariance matrix of the model state, rather than trying to com-
pute it from the model equations. A group led by Jeff Anderson at NCAR has
developed flexible software called DART based on EnKF to assimilate data into a
broad class of predictive models (https://www.image.ucar.edu/DAReS/DART)

26.4 Ball-tracking example: Model equations

Imagine we are tracking a batted ball moving under gravity. Let (rn, zn) be the
horizontal and vertical components of the true position of the ball at successive
times t = (n−1)∆t, and let (un, wn) be the corresponding velocity components.

The model equations are

rn = rn−1 + un−1∆t

zn = zn−1 + wn−1∆t− g∆t2/2

un = un−1

wn = wn−1 − g∆t,
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where g = 9.8 m s−2 is the downward acceleration of gravity. Defining the state

x = [r z u v]T ,

this defines the model function xn = f(xn−1). Because f is a linear function
of the m = 4 unknowns, it is easy to deduce the 4 × 4 update matrix

F =


∂f1/∂r ∂f1/∂z ∂f1/∂u ∂f1/∂v
∂f2/∂r ∂f2/∂z ∂f2/∂u ∂f2/∂v
∂f3/∂r ∂f3/∂z ∂f3/∂u ∂f3/∂v
∂f4/∂r ∂f4/∂z ∂f4/∂u ∂f4/∂v

 =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 .

26.5 Observations

At each time, we observe the angle of the ball

yn = tan−1(zn/rn)

with variance σ2
o . Hence, the measurement function is

y = h(x) = tan−1(z/r).

From the Jacobian of this function we get the 1 × 4 measurement matrix,

H =
[
∂h/∂r ∂h/∂z ∂h/∂u ∂h/∂v

]
=
[ −z

r2+z2
r

r2+z2 0 0
]
.

Since there is q = 1 measurement per time step, the 1 × 1 measurement
covariance matrix is

Co = [σ2
o ].

26.6 Initialization

We know the location r0, z0 = 0 at which the bat hit the ball with small un-
certainty but we have to arbitrarily guess the ball’s initial velocity u0, v0, and
hence assign a large uncertainty to them. We use these principles to calculate
the initial state vector x̂1 and covariance matrix Ĉ1. The hope is that the ob-
servations will quickly constrain the velocities and the covariance matrix. This
is not assured, because we only have one measurement and four variables.

26.7 Results

The Matlab code kalman2 implements a Kalman filter based on the above, with
plausible numerical values chosen for all the parameters and initial conditions.
Within 12 observations (1.2 second) the approach converges fairly accurately
to the true solution. Interestingly, the predicted variance of the ball position
(especially height) increases over most of the ball trajectory, but seems to over-
estimate the actual error. The ball landing location is well predicted based on
the estimated state at all times more than 1.2 seconds after it is batted.
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26.8 Limitations of the Kalman filtering approach

Kalman filtering is a powerful method for keeping a model of some process
optimally matched in real time to a sequence of noisy observations. However,
it does have some important pitfalls and limitations:

Computational complexity If the model has many predictive variables, and
especially if there are also observations of many quantities at each time
(e. g. a global weather forecast), the prediction and update of the covari-
ance matrix can become computationally unaffordable, since it involves
extremely large matrices. Shortcuts to simplify this process have their
own problems.

Overconfidence The method works best if the variances of the observations
and of the predicted values of the measurements stay comparable. With
long time steps between updates or with incomplete or very noisy obser-
vations, the predicted model uncertainty can become much less than the
observational uncertainty in some variables, which will cause the updated
state to nearly ignore those observations and drift away from reality. To
combat this, it is often necessary to inflate the variance of the model
uncertainty in some way, e. g. by adding artificial noise into the model.


