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ABSTRACT

It is argued from SST observations for the period 1950-90 that the tropical Indo-Pacific ocean-atmosphere
system may be described as a stable linear dynamical system driven by spatially coherent Gaussian white noise.
Evidence is presented that the predictable component of SST anomaly growth is associated with the constructive
interference of several damped normal modes after an optimal initial structure is set up by the white noise
forcing. In particular, El Nifio-Southern Oscillation (ENSO) growth is associated with an interplay of at least
three damped normal modes, with periods longer than two years and decay times of 4 to 8 months, rather than
the manifestation of a single unstable mode whose growth is arrested by nonlinearities. Interestingly, the relevant
modes are not the three least damped modes of the system. Rather, mode selection, and the establishment of
the optimal initial structure from which growth occurs, are controlled by the stochastic forcing. Experiments
conducted with an empirical stochastic-dynamical model show that stochastic forcing not only adds energy to
the system, but also plays a role in setting up the optimal structure.

It is shown that growth from modal interference can occur for as long as 18 months, which within the confines
of this model defines a predictability limit for growth events. Growth associated with the stochastic forcing is
also possible, but is unpredictable, The timescale on which the predictable and unpredictable components of
SST growth become comparable to each other gives a more conservative predictability limit of 15 months.

The above scenario is based on empirical evidence obtained from SST anomalies alone. From the results of
several tests based on statistical properties of linear and nonlinear dynamical systems, one may conclude that
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much of the ENSO cycle in nature is dominated by stable, forced dynamics.

1. Introduction

Interannual variations in tropical Pacific sea surface
temperatures (SSTs) play a key role in the interannual
variability of the global climate system. Observing, un-
derstanding, and predicting such SST changes and their
worldwide implications are the subject of intense cur-
rent research. Considerable progress has already been
made on all three fronts (Philander 1990; Glantz et al.
1991). This paper is a contribution in the area of in-
verse modeling, broadly defined as the extraction of
dynamical properties of a system from its observed sta-
tistics. Inverse modeling is to be contrasted with direct
or forward modeling in which one derives the dynam-
ical properties from first principles. Although dealing
exclusively with observations, inverse modeling is also
to be distinguished from phenomenological observa-
tional studies. The latter are useful in documenting
characteristics of a system that one would ideally wish
to reproduce in models; however, these may or may
not reveal anything about the underlying dynamics
themselves.
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The inverse modeling of the tropical atmosphere-
ocean system suggests that on interannual timescales
it may be viewed to a surprisingly good approximation
as a linear system driven by white noise. We construct
several tests for this premise and find that the system
generally passes them, except during the warmest phase
of El Nifio-Southern Oscillation (ENSO) events. Other
supporting evidence is contained in two previous pa-
pers (Penland and Magorian 1993; Penland and Ma-
trosova 1994) and will be summoned here where ap-
propriate. Briefly, Penland and Magorian show that
the linear normal modes (perturbation eigenfunctions)
of the system are determined reliably enough from the
observed simultaneous and time-lag covariance statis-
tics that SST forecasts, based on their free evolution,
are useful for up to nine months in the eastern Pacific.
A notable result from their study is that the forecast
skill is much higher when considering the totality of
modes than any one particular mode alone. Given these
modes, Penland and Matrosova consider the problem
of what the forcing must be in order to generate the
observed variance and covariance statistics. They first
show that a forcing that is white in both time and space
is inconsistent with a fluctuation—-dissipation relation-
ship, and then, assuming that the forcing is white in
time, determine its properties in space from that same
relationship.
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The statement that a system is linear and driven by
Gaussian white noise has several implications, which
will be discussed at various stages in this article. One
implication is that its normal modes must all have ex-
ponentially decaying amplitudes. This means that
without forcing every initial perturbation must even-
tually decay. Indeed, the fluctuation-dissipation rela-
tionship mentioned above arises from the need to bal-
ance this general decaying tendency with forcing in a
statistical sense; the system cannot have stationary sta-
tistics otherwise. The question immediately arises as
to whether growth always occurs due to forcing in such
a system. If it does, the prospects for predictability must
be bleak, since a white noise forcing has a zero decor-
relation timescale. If on the other hand it turns out
that the system is predictable, with predictable growth
events, then there must be an alternative mechanism
for growth. That mechanism s the constructive inter-
ference of the modes, which can give not only local
but also global growth over a finite time interval if the
modes are nonorthogonal. Because more than one
mode is involved, such growth is fundamentally non-
modal.

Evidence is presented here that not only is such a
global growth, defined as an increase of a domain-in-
tegrated quadratic measure of SST anomalies, possible
in the tropical Pacific and Indian Oceans, but that it
does in fact often occur. Indeed, it is only a slight ex-
aggeration to suggest that this is the rule rather than
the exception. Most warm and cold ENSO episodes
are associated with such a global growth. The effect is
mostly associated with the interférence of several
damped modes, which, interestingly, are not the least
damped modes of the system.

A case can be made that not only is the SST anomaly
growth nonmodal, but that it is close to being “opti-
mal.” This is done in two steps. First, an optimal per-
turbation eigenanalysis is performed to determine the
initial SST anomaly pattern associated with the max-
imum possible nonmodal growth over a given time
interval, say seven months. It is then shown that when-
ever an SST anomaly pattern projects substantially
onto this theoretical optimal structure, growth almost
invariably occurs over the next seven months.

Optimal structures have been emphasized recently
in studies of error variance growth in both atmospheric
models (e.g., Lacarra and Talagrand 1988; Molteni and
Palmer  1993) and ENSO models (e.g., Blumenthal
1991; Xue et al. 1994). Farrell (1988, 1989, 1990),
Farrell and Ioannou (1993), and Borges and Hartmann
(1992) have also considered actual variance growth in
the atmosphere. The present study represents perhaps
the first attempt at establishing the relevance of such
structures in actual ENSO growth.

This mechanism of growth is very different from
that sought by many authors in models of ENSO of
varying complexity (e.g., Philander et al. 1984; Cane
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and Zebiak 1985; Schopf and Suarez 1988, 1990; Hirst
1988; Battisti and Hirst 1989; Cane et al. 1990; Miin-
nich et al. 1991; Wakata and Sarachik 1991; Neelin
1991; Jin and Neelin 1993a,b; Neelin and Jin 1993).
The reigning paradigm in these model studies is that
SST anomaly growth is associated with growing modes
in a nonlinear dynamical system whose linearized dy-
namics are unstable. Much attention has been given
in these studies to model parameters, such as the
strength of the air-sea coupling, which lead to insta-
bility. The view propounded in this paper is that the
linearized system need not be unstable at all for basin-
wide warming or cooling to occur.

If a dynamical system is nonlinear, then its linearized
form, such as studied in the papers cited above, may
certainly admit unstable modes whose growth is limited
by nonlinearities. However, even when one finds a most
unstable mode resembling observed structures by this
means, there remain the questions of how nonlinear
saturation is attained, whether this leaves intact the
mode selection based upon linear growth rates, why
the observed frequency spectrum is broadly red and
not strongly peaked at the modal frequency, what are
the relative roles of nonlinearity and forcing, and what
causes decay. On the other hand, if the equations gov-
erning SST anomalies are dominated by linear dynam-
ics, that is, if the nonlinear terms are always small or
parameterizable as linear terms, then they can only
support decaying modes. The problem now is not ex-
plaining decay, but growth. As discussed above, this
can occur through either modal interference or forcing.
The forcing plays an important role in mode selection
and in determining the frequency spectrum. This rep-
resents a complication, but no more so than in the
nonlinear regime of the unstable scenario described
above and without the added complexities of nonlinear
dynamics. The simplest model of SST anomalies for
much of the ENSO cycle is therefore a damped linear
model that makes the simplest assumptions about the
forcing. The original motivation for this paper was in
fact provided by a desire to determine the extent to
which this alternate paradigm could be sustained.

It need hardly be emphasized that the approximation
of the undoubtedly complex coupled tropical ocean—
atmosphere system as a linear stochastically driven
system 1s only an approximation, but in our view it is
a good and a useful one for benchmarking and diag-
nostic purposes. It should be noted that our statements
are based upon empirical normal modes (ENMs) de-
rived from the SST observations alone. It is assumed
that on the long timescales of ENSO evolution the SST
equation is the only equation with explicit time de-
pendence in the coupled system. This amounts to as-
suming that on these timescales the forcing of anom-
alous SST by anomalous surface winds, ocean currents,
thermocline depths, and surface radiative, sensible, and
latent heat fluxes can collectively be represented as lin-
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ear terms in SST, plus a remainder which can be ap-
proximated as white noise. The normal modes obtained
in this paper are thus closest in character to the so-
called SST modes in the fast ocean-wave limit discussed
by Neelin (1991). Insofar as our inverse modeling ap-
proach is successful, our results are consistent with the
relevance of such SST modes in the real physical sys-
tem. However, the satisfaction of the fast-wave limit is
sufficient but not necessary for the validity of our dy-
namical interpretation.

The characterization of a system as “deterministic”
or “stochastic” is a matter of which timescales are being
emphasized. Our stochastic forcing may be determin-
istic, nonlinear, even chaotic at some timescale shorter
than the interannual scale considered here. The as-
sumption made is that internal nonlinearities vary
quickly enough that their effect on the slow, determin-
istic dynamics on interannual timescales may be de-
scribed by a stochastic differential equation (Wong and
Zakai 1965; Papanicolaou and Kohler 1974; Arnold
1974; Hasselmann 1976; Gardiner 1985; Kloeden and
Platen 1992). Note that this description does not pre-
clude the existence of additional, external stochastic
forcing.

The inverse modeling technique used here is based
upon the principal oscillation pattern (POP) technique
(Hasselmann 1988; von Storch et al. 1988), which has
been used by many researchers (e.g., Blumenthal 1991;
Xu 1993; Xue et al. 1994). As discussed in Penland
(1989), the use of the POP technique implies certain
assumptions about a dynamical system, and examining
those assumptions allows further extensive diagnosis
of the system. An especially appealing feature of the
inverse modeling formalism presented here is that it
incorporates tests for determining when the linear ap-
proximation is not valid. Even when this happens,
however, one can still hope to learn something useful
about a system.

The possibility that the coupled ocean—atmospheric
dynamics may be dominated by stable modes driven
by stochastic forcing has been considered previously.
Such a situation obtained in the model of McWilliams
and Gent (1978) when realistic parameters were cho-
sen. Schopf and Suarez (1988) argued that if the
McWilliams—Gent scenario was a proper paradigm of
ENSO the spectrum would show frequencies of the
“selected”” modes. This argument assumes that the os-
cillating behavior is dominated by one or just a few
chosen modes and is not only inconsistent with Pen-
land and Magorian (1993), who found that many
modes are necessary to make accurate predictions, but
also ignores the possibility of nonmodal growth. Some
studies (e.g., Lau 1985; Zebiak 1989; Kleeman and
Power 1994 ) have considered the effect of stochasticity
in models dominated by deterministic nonlinear ENSO
dynamics. Latif (1987) found the random component
of the wind stress to be important to the ocean dynam-
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ics of the Hamburg Ocean General Circulation Model.
Finally, Neelin (1990) discusses the difficulty of de-
termining whether the system is dominated by a de-
terministic limit cycle and is perturbed by noise, or is
stable and is sustained by noise. The particular con-
tribution made here is the evidence obtained from data
that stochastic forcing plays an important role in ENSO
dynamics. ‘

The paper is organized as follows. Section 2 reca-
pitulates the basic procedures to be followed in ap-
proximating any dynamical system as a stable, linear,
stochastically driven system, and describes some tests
for establishing whether or not the approximation is
valid. The ENMs of the linear system are presented in
section 3. The maximum potential of SST growth over
finite time intervals from modal interference is quan-
tified in section 4 by means of a maximum amplifi-
cation (MA) curve, determined through an optimal
perturbation eigenanalysis. The eigenanalysis also de-
termines the optimal initial SST patterns associated
with such growth, the “right singular vectors” of the
linear evolution operator. In principle, different initial
patterns exist for optimizing growth over different time
intervals. However, in our problem practically the same
pattern is obtained for a wide range of time intervals,
allowing us to call it the optimal structure. Evidence
that growth as indicated by the MA curve actually oc-
curs in the physical system is presented in section 5.
The three ENMs whose interference is most important
in this growth are also discussed there. Given the in-
verse-modeling results, one is now in a position to con-
sider tests for linearity in section 6. In section 7, an
experiment with Penland and Matrosova’s empirical
dynamical model of ENSO is described to show that
the stochastic forcing plays an important role in exciting
the optimal structure. Some annual cycle effects are
presented in section 8. Section 9 considers the impli-
cations of our observational results for the theory and
modeling of ENSO variability, and concluding remarks
are made in section 10.

2. Inverse modeling preliminaries

Any dynamical system may be represented in the
form

ax/dt = BX + n(Xx) + f, (1)

where X is the state vector, B is the linear system matrix
(also known as the deterministic feedback matrix ), and
n(X) and f are nonlinear and external forcing terms.
The components of X represent the values of all system
variables in some linear vector space, not necessarily
of finite dimension. For example, in the coupled global
atmosphere—-ocean system, X could represent the de-
viation of all relevant atmospheric and oceanic vari-
ables from their climatological values at all grid points.
Understanding the evolution of any subset of these,
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such as tropical SSTs, first involves determining what
the relevant variables are. In essence one looks for a
dynamical subsystem. If one does not have preconcep-
tions of the system, only observations, then the simplest
viable trial subsystem for tropical SSTs is a linear sys-
tem driven by Gaussian white noise. Thus, one rewrites
(1)as

dx/dt = Bx + £, (2)

where x now contains only tropical SSTs, B is the ap-
propriate submatrix of B, and the nonlinear and forc-
ing terms have been replaced by a white noise forcing
£. This trial model states that the evolution of anom-
alous tropical SSTs is governed by a multivariate linear
Markov process. As discussed previously, this is not to
say that influences such as anomalous surface heat
fluxes and advection by anomalous ocean currents
forced by anomalous winds are unimportant, but rather
that they may be represented as linear terms in SST
plus Gaussian white noise. This may seem like an
oversimplification, but its validity may be checked in
several ways as described below.

1f (2) is an accurate representation of reality, then
given a state vector x(¢) at time #, the most probable
vector x(¢ + 7y) at time ¢ + 714 is (e.g., Penland
1989)

R(1 + 7o) = exp(Bro)x(1). (3)

As discussed further by Penland (1989), the statistics
of such a system must be Gaussian. The matrix B can
therefore be determined from the observed time series
x(?) by an error variance minimization procedure
as :

B =175"'In{C(79)C(0)7'}, (4)

where C(7¢) and C(0) are the covariance matrices at
lag 7o and lag O,

C(79) = (x(t + 10)x"(1))
C(0) = {x()x(1)). (5)

Angle brackets here denote an ensemble average, es-
timated as a time average for variables with stationary
statistics. Note that empirical orthogonal functions
(EOFs) are the eigenfunctions of C(0). For a system
with stationary statistics it can be shown (appendix A)
that the eigenvalues of B obtained in this manner have
negative real parts.

Having obtained B, forecasts of x can now made for
an arbitrary lead time 7 as

x(t + 7) = exp(B7)x(t) = G(7)x(¢), (6)

where G(¢) = exp(B7). This is the essence of the pre-
diction technique used by Penland and Magorian
(1993). Because of the presence of the white noise
forcing £ in (2), the forecasts in (6) differ from the
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actual x(¢ + 1), by e(7). Penland (1989) shows
that the expected value of the global error 6(7)
= (e(7)Te(r)) is the trace of the error covariance
matrix,

(e(r)e(r)") = C(0) = G(r)C(0)G™(r). (7)

The forecast error is stationary in the “wide sense” in
that on average it depends only on the lead time 7 and
not on the time ¢ the forecast is made. It is convenient
to normalize § by the trace of C(0) so that it increases
fromé=0at7r=0toé=1ats= 0.

Given B and C(0), the properties of the forcing £
can be determined from the fluctuation-dissipation
relation (Gardiner 1985; Penland 1989; Farrell and
Ioannou 1993; Penland and Matrosova 1994)

BC(0)+ C(0)B"+Q =0, (8)

where Q = (7 d! is the covariance matrix of the

- white noise forcing multiplied by dt. A rigorous deri-

vation of (8) involves considering the multivariate
Fokker-Planck equation. Nevertheless, the existence of
some such relation can readily be anticipated from (7)
in the limit of small ¢ = At in which the error covari-
ance matrix is identified with Qdtr ~ QAt. It is im-
portant to recognize that Q obtained from (8) is in
general symmetric but not diagonal. Thus, the forcing
must have spatial coherence; that is, it cannot be white
in both time and space. The dominant patterns of forc-
ing are then determined as the eigenfunctions of Q
with the largest eigenvalues. These are also referred to
as noise EOFs. A full discussion is given in Penland
and Matrosova (1994).

The above procedure can of course be applied to
observations x(¢) of any dynamical system, not just a
system of the form (2). Thus, one may choose any lag
70, determine B via (4) and Q via (8), and use (6) to
make forecasts. However, if the system is of the form
(2), one will also find that, in general,

e its statistics are Gaussian, (9a)
o B is independent of the lag 7 that is
chosen to determine it, (9b)

o Q determined from (8) is positive definite, (9c)
o the forecasts based on (6) are good, and (9d)
o the forecast errors grow as predicted by

(7), assuming no error in the initial conditions.C (9¢)

These are demanding tests and some allowance should
be made for the errors in estimating the covariance
matrices in (5) from the available observations. Also
a failure to meet these tests should not immediately be
taken to imply that the dynamical equations for the
phenomena in question must be nonlinear. It could be
that one has not specified the correct subset x of X in
(2). In the tropical SST problem this might indicate
the need to include anomalous ocean currents and
thermocline depths explicitly in x instead of implicitly
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as, for example, in the fast ocean-wave limit. Steps (4)-
(8) could then be repeated with the extended x to see
if the requirements (9) are satisfied better. One might
also consider an explicit treatment of surface wind
stresses, although this is probably less crucial given the
relative success of several “slave-atmosphere” type
coupled atmosphere-ocean models (e.g., Neelin 1991;
see also Penland and Matrosova 1994). Finally, there
is the possibility that the system is linear but the ex-
ternal forcing cannot reasonably be approximated as
white noise. These facts should be kept in mind when
examining the observational evidence for the validity
of (2) and (9) for the tropical SST evolution problem
in the following sections.

3. Empirical normal modes
a. Data

Our data source is the Comprehensive Ocean-—-At-
mosphere Data Set (COADS) (Slutz et al. 1985). SSTs
for the period January 1950-December 1990 in the
tropical Indo-Pacific basin (30°N-30°S, 30°E-70°W)
were consolidated onto a 4° X 10° latitude~longitude
grid. Anomalies were obtained by subjecting the data
to a three-month running mean, and then removing
the grand mean and the annual cycle at each grid
point. An EQF analysis of these smoothed anomalies
was performed. All subsequent calculations were per-
formed in the space spanned by the first 15 EOFs and
transformed into geographical space for interpreta-
tion. The time-dependent coeflicients of the first 15
EOFs define the 15-component state vector x(¢) of
this paper. In the following, it will be useful to keep
in mind that the typical magnitudes of the compo-
nents of x(¢) are proportional to the square root of
the fraction of the SST variance explained by the cor-
responding EOFs.

The first 15 EOFs explain 67% of the total SST vari-
ance, and more than 90% of the variance in the area
known as Nifio-3, indicated by the outlined box (6°N-
6°S, 150°-90°W) in Fig. 1a. The decision to truncate
the EOF series at 15 was guided partly by the desire to
focus on large-scale variability and partly by the need
to eliminate small-scale errors in the data. The calcu-
lations were repeated with 10 and 20 EOFs to confirm
that none of our main conclusions depended upon this
choice. Henceforth, all references to SST in this paper
will be to the 15 EOF truncated dataset unless specified
otherwise.

Figure 1a shows the geographical distribution of the
SST variance associated with the 15 EOFs. For future
reference, the first two EOFs are shown in Figs. 1b and
Ic. They explain 31% and 7.3% of the total variance
of the anomalous 3-month running means, respec-
tively. The time coefficients of these patterns (the prin-
cipal components) are the components x; (¢) and x,(z)
of the 15-component state vector x(¢). Figure 1 high-
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Variance of anomalous S5Ts

First EOF 3%

7.3%

F1G. 1. SST variance associated with the first 15 EOFs of 3-month
running mean SST anomalies from the annual cycle. The contour
interval is 0.2°C2. The outlined box in the eastern Pacific denotes
the Nifio-3 region. The first two EQFs are shown in the bottom two
panels. In these plots positive values are indicated by solid and nega-
tive by dashed contours. The contour interval is 0.025 in arbitrary
units.

lights the familiar fact that SST variability in the Trop-
ics is dominated by large-scale fluctuations in the
equatorial central and eastern Pacific Ocean associated
with the ENSO phenomenon. The panels are consistent
with the appearance of warm waters first off the coast
of Peru, and their subsequent intensification and west-
ward expansion along the equator into the central Pa-
cific, especially when the time series of x,(¢) and x,(¢)
(not shown) are taken into account. It will be inter-
esting later in this section to compare EOFs | and 2
with the phase-quadrature components of one of our
ENMs, and assess to what extent that single ENM cap-
tures the essence of ENSO.

b. Calculation of the empirical normal modes

ENMs are the solutions of (2) without the forcing
term g, that is, of

dx/dt = Bx, (10)
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TABLE 1. Properties of the empirical normal modes. Properties of the solutions of (10) are given below assuming that they have been
expressed in the form (11). All modes are damped. The “growth index” for the mode in the last column is the quantity (13). If the growth
index is less than 1 then the mode is not only damped but overdamped; that is, its energy (12) decays monotonically.

Decay time Period Growth
Mode (months) (months) b index
1 23.8 0 —_ —
2/3 17.4 365 3.1 0.54
4/5 10.1 159 4.6 0.69
6/7 8.5 46 2.5 0.66 «
8/9 7.9 25 1.9 0.7]1 <«
10/11 7.3 85 6.7 0.84
12/13 4.4 18 2.7 0.85
14/15 3.7 72 5.4 0.72 <«

with B as given by (4).! They are of the general form
u; exp(B;t)c;, where u; is the jth eigenvector of B, §; is
the corresponding eigenvalue, and c; is an arbitrary
complex constant. Any real solution of (10) may be
expressed as a linear combination of these ENMs. Note
that although B is real, its eigenvectors and eigenvalues
can be complex; however, they come in complex con-
jugate pairs. To obtain a real solution both members
of the pair must be included with amplitudes that are
complex conjugates of one another. One can choose ¢;
in such a way that each such combination is expressed
as

(11)

where o; and w; are the real and imaginary parts of 8,
the vectors a; and b; are real and satisfy the conditions
a;+b;=0,a;-a;=1,and b; - b; > 1. The inner product
a-b of two real vectors is defined in general as a+b
= a"Db, where D is a constant positive-definite real
symmetric matrix. The L, norm given by D = 1 will
be implied here unless stated otherwise. We will refer
to the combination (11) of a complex-conjugate mode
pair as a single oscillatory mode with phase-quadrature.
components a; and b;, respectively. Note that one may
also represent purely exponentially damped ENMs in
the form (11) by setting w; =0 and b; = 0.

For a system with stationary statistics it can be shown
(appendix A) that the ¢;’s in (11) are negative. Table
1 shows the periods 27 /w and decay times —1/a of
the ENMs of our 15-component dynamical system,
displayed in order of decreasing decay time (compare
with Fig. 2 of Ghil and Vautard 1991). There is one

x;(t) = {a; cosw;t + b; sinw;t } exp(o;t),

! These are also referred to as POPs in the literature. The term
empirical normal mode is more appropriate in cases where the dy-
namical system can be shown to be of the form (2) through satisfaction
of the requirements (9). Also, not all solutions of (10) are necessarily
oscillatory, and as shown later, the ordering of POPs in terms of their
damping rates does not always reflect their true importance in the
system. It is also not always the case that any one oscillatory mode
dominates the system’s statistics. The adjective “principal” can
therefore be ambiguous. :

purely exponential mode (which happens to be the least
damped mode in our system) and seven oscillatory
modes. The modes with periods of 46, 25, and 72
months are highlighted in Table 1 for future reference.
These timescales are reasonably close to those usually
associated with ENSO. However, the modal periods
are not reliably determined from the relatively short
data record. We show here the results for 7o = 7
months; repeating the analysis at other lags yields pe-
riods for the “46-month” mode, as identified through
pattern correlations, between 37 and 59 months,
roughly consistent with a perturbation theory estimate
(Penland and Ghil 1993; Penland and Sardeshmukh
1995) for this period lying between 28 and 54 months.
The “true” period of the “25-month” mode is expected
to be between 19 and 30 months, while the uncertainty
in the “72-month” mode is so large that the mode is

Pattern b

Pattern a

F1G. 2. The phase-quadrature components @ and b of mode 6/7
with a period of 46 months and decay time of 8.5 months. The mode
evolves as a > b > —a — —b — a over 46 months while undergoing
decay. The ratio of the spatial rms of the patterns, (67b/a’a)'?, is
(2.5)"% ~ 1.6. The contour interval is arbitrary, but is the same in
the two panels, Negative values are indicated by dashed contours.
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statistically indistinguishable from an exponentially
decaying structure. As tempting as it is, therefore, to
assign a harmonic relationship to these modes, it is
dangerous to do so.

Mode 6/7, whose estimated period of 46 months is
closest to the 4-yr quasi periodicity of ENSO, deserves
a closer look. Figure 2 shows its phase quadrature
components a and b in geographical space. The mode
evolves from a to b to —a to —b to a over 46 months.
This sequence is in broad agreement with the composite
ENSO event described by Rasmusson and Carpenter
(1982). If mode 6/7 were the only dynamical mode of
importance in the system, the first two SST EOFs would
be identical to b and a and explain (2.5/3.5) X 100
= T71% and (1/3.5) X 100 = 29% of the SST variance,
respectively. The EOFs in Fig. 1 do indeed show some
striking similarities to Fig. 2. However, the similarity
is superficial. First of all, the two EOFs explain much
smaller fractions of the total variance. One can accom-
modate this by imagining that the system consists of
mode 6/7 plus noise. However, even in this scenario,
Fig. 2 predicts the ratio of the variance explained by
the two EOFs to be (b™b/a"a) = 2.5, whereas the actual
ratio is 31/7.3 ~ 4.5. Second, and more importantly,
the apparently realistic growth of SST anomalies sug-
gested by the evolution from a to b is seen to be illusory
when the damping time of 8.5 months for the mode is
taken into account. In the quarter cycle (11.5 months)
that it takes the mode to evolve from a to b, its am-
plitude diminishes by a factor e!!!*/8% ~ 3.5 s0 no
growth is in fact seen.

A freely evolving mode 6/7, despite its apparently
realistic period and spatial structures, thus fails to ex-
plain the most basic feature of ENSO, that of SST
growth. In fact, it can be shown that no single one of
our empirically derived modes can do this. In this con-
text it is necessary to be more precise about the term
“growth.” We define it as an increase of the domain
integral of squared SST anomalies; in our framework,
of the “energy” E(t) = x(t)- x(t). The light curve in
Fig. 3 shows the behavior of observed E(¢) over 1950-
90. For reference, the time series of Nifio-3 SSTs is
also shown (dark curve) with some prominent ENSO
events highlighted. Bearing in mind that E(¢) is a pos-
itive quantity, its correspondence with the Nifio-3 series
is high. Thus, ENSO events, both warm and cold,
dominate increases of F(z).

Now, because all the modes in Table 1 have ¢; <0,
x = 0 is a stable fixed point of the system (2), and any
initial perturbation that is allowed to evolve freely de-
cays eventually, both locally and globally. Thus, with-
out forcing, every component of x(¢) as well as E(¢)
tends to zero for large ¢. However, the decrease need
not be monotonic, even for a single mode. One can
show from (11) that E(¢), for an oscillatory mode,
evolves as
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FIG. 3. Thick curve: Time series of 3-month running mean Nifio-
3 SST anomalies over the period 1950-90. Thin curve: Time series
of the spatial rms E'/? of SST anomalies over the same period. The
domain over which the spatial rms is calculated is the entire tropical
Indo-Pacific basin. The minimum E'2 is 0.33 (°C).

Ej(t) = {aj °q; COSzwjl + bj 'bj sin2wjt} CXp(Zth),
(12)

that is, in the form of a damped oscillation. For small
oj, the energy oscillates between a, - a; and b; - b; while
undergoing a slow overall decay; thus, the energy in-
creases between times ¢ =~ nw/w;and t =~ (n + 0.5)x/
wiforn=0,1,2,3, - . -. There is, therefore, still the
possibility of attributing temporary increases of E(¢)
to the underdamped energy oscillations of a single
mode. A necessary condition for such an energy oscil-
lation to occur is that a growth parameter u; defined
as

(bj'bj“ l)

= Ja)211/2
] { I+ ( COI/ (rl) } [ ( R!j R l!f +1 )

] (13)

be greater than 1. If this condition is not met, the
energy oscillation is overdamped and E;(¢) decreases
monotonically. This is the case with all of the ENMs
in Table 1.

No single unforced mode can therefore explain the
growth of SST anomalies in the Indo-Pacific basin.
Growth can, however, be explained by the constructive
interference of several modes, even though the modes
themselves are individually overdamped. This is dem-
onstrated in the following section.

4. The maximum amplification curve

Given overdamped normal modes for each of which
E; decreases monotonically, one may ask if E also has
to decrease monotonically for any linear combination
of them. The answer is yes if the modes are orthogonal,
since then E is just the sum of the individual E;. How-
ever, in most systems of interest such as the one studied
here, the normal modes are not orthogonal, so the pos-
sibility exists for temporary energy growth from modal
interference. The growth or decay over any time in-
terval 7 may be written
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Maximum Amplification (MA) Curve
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FI1G. 4. (a) Thick curve with filled circles: The maximum ampli-
fication curve. Thick curve: Energy amplification of a forecast (6)
begun with the initial condition ¢(7) optimized to give maximum
amplification at 7 months. Light curves: Energy amplification of
forecasts begun with initial conditions optimized to give maximum
growth at other 7s.

E(7) _ {x(r)-x(r)}
E0) {x(0)-x(0)}

_ {G()x(0)-G(r)x(0)}

{x(0)- x(0)}
_ {x(0)-6"G(1)x(0)} (14)
{x(0)-x(0)} ’

where G(7) = exp(Br) with B as given by (4) and G”
is the transpose of G(7). The matrix G'G is real, sym-
metric, and positive-definite; therefore, its eigenvectors
¢; form a complete orthonormal basis, its eigenvalues
7, are real and positive and can be arranged in decreas-
ing order. It is evident that u(7) will be greater than 1
for any x(0) lying in the subspace of ¢;s with
eigenvalues v, > 1. The maximum growth {u(7) }max
= 4, will be obtained for x(0) parallel to ¢;. This ei-
genanalysis of GTG can be repeated for a range of s,
and v, plotted against 7. We call this plot the “Maxi-
mum Amplification” (MA) curve of the system, since
it quantifies the maximum growth possible over an
interval 7 in the absence of forcing. Note that growth
associated with individual underdamped oscillatory
modes is also included in this description. If the max-
imum of the MA curve is less than 1 (or its logarithm
less than 0), then no growth is possible without forcing,
and all growth events are unpredictable.

The MA curve for our system is shown as the thick
curve with filled circles in Fig. 4. What is actually plot-
ted is the logarithm of v, (7). The curve indicates that
no growth can be sustained by modal interference for
more than 18 months in this system. However, growth
of as much as a factor of e'7 ~ 5 is possible over seven
months. Associated with each 7 in Fig. 4 is an optimal

w(r) =
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initial condition x(0) = ¢;(7), the first right singular
vector of G(r). It is optimal in the sense that of all
possible initial conditions of unit amplitude, it evolves
into the longest state vector at time ¢ = 7. [It turns out
that in this system all other optimals have v,(7)
< v;(7).] The plain thick curve in Fig. 4 shows the
evolution of ¢ when x(0) = ¢,(7) is specified as the
initial condition in (10). It remains below the MA
curve and becomes tangent to it at £ = 7 = 7 months,
as expected. The behavior of y for several other initial

~ conditions that are optimal for other 7s is given by the

light curves. These show that although, in general, an
initial condition that is optimal for one r need not be
optimal for another 7, in our system it is almost op-
timal. In fact, we find that the ¢;s for r ranging from
3 to 15 months are spatially correlated with ¢,(7) at
levels of more than 0.9. We shall henceforth refer to
¢;(7) as the optimal initial structure for growth by
modal interference in this system.

As stated above, the MA curve indicates that growth
from modal interference cannot be sustained for more
than 18 months. This defines a predictability limit of
18 months for growth events, such as a non-ENSO
developing into either a warm or a cold ENSO event.
In view of the fact, however, that the dynamical system
is (2), not (10), this predictability limit is somewhat
optimistic. The system loses predictability due to the
white noise forcing according to (7). That curve may
also be recast as the growth curve of error energy
Herror{ 7) = 1 + 6(7) and compared with the MA curve
in Fig. 5 on the same log scale. The time 7, at which
the two curves cross gives a more conservative pre-
dictability limit than previously, of 15 months. In effect,
this is the forecast lead time at which growth from the
unpredictable stochastic forcing is expected to become

MA and Error Variance Curves
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FiG. 5. Filled circles: The maximum amplification curve. Open
circles: Logarithm of average error energy growth 1 + §(r) associated
with the stochastic forcing.
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comparable to that from the predictable modal inter-
ference. For ENSO growth to be predictable, it is there-
fore not only necessary that In{ y,(7) } be greater than
0 over some range of 7, but that it be greater than
In{ perror(7) } Over that same range.

Finally, it should be recognized that the MA curve
by itself only reveals the possibility of growth from
modal interference in any system. Whether and how
often such growth actually occurs depends upon the
likelihood of the state vector projecting on to the sub-
space of growing optimals at any given time. This issue
is examined in the next section.

5. Optimal SST growth

Figure 6a shows the optimal initial SST anomaly
structure ¢,(7) for growth by modal interference in the
tropical atmosphere-ocean system. When this is spec-
ified as the initial condition in (10), the SST anomaly
pattern evolves in seven months into the structure
shown in Fig. 6b, strongly reminiscent of the mature
phase of an ENSO event. Both Figs. 6a and 6b have
been contoured with the same contour interval.

Figure 7 demonstrates that not only is SST growth
as indicated by Fig. 6 possible, but that it does in fact
often occur. Shown is a scatterplot of the correlation
between the SST anomaly pattern with Fig. 6b versus
the correlation of the SST anomaly pattern seven
months earlier with the optimal structure, Fig. 6a. Ev-
idently, a large-enough projection (correlation greater
than 0.3) of an SST pattern on the optimal structure
is usually followed by a mature ENSO pattern seven

FIG. 6. (a) Top: Optimal initial SST perturbation ¢,(7) optimized
to give maximum amplification of SST anomalies at seven months.
When this is specified as the initial condition in (6) [or (10)], the SST
anomaly pattern evolves into the pattern shown in the bottom panel
(b). The contour interval is arbitrary (0.025) but the same in both
panels. Negative values are indicated by dashed contours.
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FIG. 7. Scatter diagram of the spatial correlation between Fig. 6b
and the SST anomaly field vs the spatial correlation of the SST
anomaly pattern seven months earlier with the optimal initial structure
for growth (Fig. 6a).

months later. Data points corresponding to the most
mature stage of some prominent warm and cold ENSO
episodes are highlighted as filled black circles on the
plot. Consistent with linear theory, a positive projection
of SST on the optimal structure leads to a warm event,
a negative projection to a cold event.

A straight line fitted to the scatter plot should ob-
viously have positive slope, and it does. Although the
scatter around the fit is large (the line explains about
53% of the variance), this scatter cannot be unambig-
uously ascribed to failure of the model. Even if there
were no stochastic forcing to introduce error into the
7-month forecasts, one would expect to see some scatter
in Fig. 7, unless the SST anomaly pattern always pro-
jected solely onto the optimal structure in Fig. 6a, which
it cannot. Besides, a linear stochastic numerical model
(discussed below) yields similar scatter. Neither should
the fact that ENSOs often follow a projection as modest
as 0.3 be taken as evidence against the importance of
the optimal structure. We expect the statistically ob-
tained pattern to be a combination of the regions that
are sensitive to the excitation of ENSO growth; we do
not expect the entire pattern to exhibit itself before
every extreme event. To understand this, consider the
stable, linear dynamics of a stretched string, the optimal
structures of which are equivalent to the normal modes
themselves. One need not force the string with a pattern
exactly equal to the optimal structure corresponding
to, say, the first even harmonic in order to excite it;
one need only force the string at any position away
from a modal node. Of course, since more than one
mode and more than one optimal structure are allowed
by that system, other modes will be excited as well.
The point is that although the whole pattern of an op-
timal structure gives those regions that are sensitive to
forcing, the projection onto the entire pattern need not
be large for its corresponding mode (or modes) to be
excited. ‘

Repeating the analysis with 10 EOFs yielded the
same optimal structure, with maximum growth oc-
curring over 8 months. This was done in order to verify
the robustness of our results. The time series obtained
by cutting from the record into two equal, nonover-
lapping pieces of 240 months each are not long enough
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to obtain accurate parameters for a 15-dimensional
system. However, acceptable results could be obtained
for a 10-dimensional system; that is, the modes were
recognizable as those found in the longer record. The
prediction errors were larger, sometimes by a factor of
2 at short lead times. Nevertheless, the first short record
(February 1950-January 1970) yielded an optimal
structure that correlated with that obtained from the
420-month record at 88%. Analogous treatment of the
second short record (February 1970-January 1990)
produced a pattern that correlated with the one in the
longer record at 92%.

The optimal growth shown in Figs. 6 and 7 is as-
sociated mostly with the constructive interference of
modes 6/7, 8/9, and 14/15 in Table 1. The individual
and collective contribution of these modes to Nifio-3
SSTs is given in Fig. 8. The individual series by them-
selves explain only 16%, 8.4%, and 1% of the variance
of the Nifio-3 time series respectively, but their sum
explains 69%. The fact that 16 + 8.4 + 1 # 69 again
emphasizes the importance of the spatial nonorthog-
onality of the normal modes in optimal SST growth.

In addition to growth, modal interference can also
shed light on the east-west propagation characteristics
of SST anomalies, not well understood at present. The
composite event of Rasmusson and Carpenter (1982)
emphasizes westward propagation, whereas events in
the last decade (including 1982 /83, the strongest event
of the century) have tended to display eastward prop-
agation (Rasmusson and Wallace 1983; Weickmann
and Kiladis 1994). Figure 9 shows longitude-time sec-
tions of equatorial SST during 1981-85. The sum of
the three modes is shown in panel (a) of Fig. 9, and
modes 6/7, 8/9, and 14/15 in panels (b), (c¢), and
(d), respectively. The individual modes show little if
any east-west propagation, but their sum shows sub-
stantial eastward propagation. Figure 10 depicts the
1971-75 case in an identical format. Again the indi-
vidual modes are mostly standing oscillations; this time
their sum shows strong westward propagation. One can
thus obtain eastward or westward propagation de-
pending upon the relative amplitudes of the three in-
terfering normal modes.

It is interesting that the modes that emerge as the
most important in our analysis of SST growth and
propagation are not the three least damped modes in
Table 1. Indeed mode 14/15 is the most damped.
Something other than growth rates is clearly important
in mode selection, and the only other mechanism in
our system is stochastic forcing. The influence of the
forcing can be seen in the three modal time series in
Fig. 8, which would all show a monotonic decrease
without it. Because of the forcing, the Fourier spectra
of the modal time series are not delta functions centered
at the modal frequencies in Table 1. As for any forced
oscillator, the spectrum of the forced response depends
on both the natural and the forcing frequencies in the
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Fi1G. 8. The dotted curve in all four panels is the time series of the
observed 3-month running mean Nifio-3 SST anomalies (°C) for
1950-90. The solid curve (a) in the top panel is the time series resulting
from the combination of modes 6/7, 8/9, and 14/15 in the Nifno-3
region. The solid curves in the bottom three panels are the time series
of these individual modes (b) 6/7, (c) 8/9, and (d) 14/15 in Nifio-3.
The correlation of these time series with the dotted time series is also
indicated.

problem. Further discussion of this point as it pertains
to (2)is given in Penland and Ghil (1993) and Penland
and Matrosova (1994 ). For our purposes it is sufficient
to recognize that the white-noise forcing (which has all
frequencies in it) plays an important part in mode se-
lection, and thence in exciting the optimal SST pattern
shown in Fig. 6a. A quantitative estimate of this influ-
ence is given in section 7.

6. Tests for the validity of linear dynamics

Evidence will now be presented that SST observa-
tions in the IndoPacific basin pass the tests (9a)—~(9¢)
within the limitations of the data.

a. Are the SST statistics Gaussian?

Figure 11a (heavy solid line) shows the cumulative
distribution function (cdf) of Nifio-3 SSTs on a
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F1G. 9. Hovméller plot of SST anomalies averaged over the equa-
torial belt 2°N-2°S during the 1982-83 warm event obtained from
_(a) the combination of modes 6/7, 8/9, and 14/15, (b) mode 6/7
alone, (c) mode 8/9 alone, and (d) mode 14/15 alone. The contour
interval is 0.5°C; positive anomalies are indicated by light and negative
by dark shading.

stretched Gaussian coordinate. The dashed straight line
shows the cdf for a normally distributed variable with
the same variance. If the distribution of Nifio-3 SSTs
were truly Gaussian, the points would fall on this
straight line. Nifio-3 was chosen because it is a region
of large SST variability, that is, with a large range of
SST anomalies, so presumably the likelihood of the
system deviating from small-amplitude linear dynamics
would be large there. Further, it is well known that our
predictions break down during the warmest phase of
the ENSO cycle, and since this phase is strongly rep-
resented in the Niiio-3 region, we hope that the anom-
alies there might present a sort of worst-case scenario.
A total of 490 monthly values from the 41-yr record
were used in the construction of this plot. It is evident
that all but 5% of the coldest and 5% of the warmest
months fall on the straight line. It is interesting that
there is no discernible S-shaped kink in Fig. 11a (see

Figs. 11cand 11d below), and therefore little evidence .

of the bimodality of Nifio-3 SSTs sometimes claimed
in the literature.

It is also worth mentioning that although Fig. 1la
suggests the SST anomalies deviating equally from
Gaussian behavior during both extreme warm and cold
events, the stretched coordinate system is based on the
variance in the entire time series, and inclusion of
points deviating from the true Gaussian distribution
causes the others to deviate from the empirically de-
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termined line. Further, the forecasts based on (6) are
substantially better during extreme cold events ( Pen-
land and Magorian 1993; Penland and Matrosova
1994, their Fig. 2). In other words, (2) is not as bad
an approximation during extreme cold events as might
be inferred from Fig. 11a. In fact, although the data
shown in Fig. 11a show deviations from the line at
both extremes, we believe that it would be more ac-
curate to ignore the warmest 10%-16% and fit the line
to the colder data.

Modes 6/7, 8/9, and 14/15 were shown above to
be important to the development of the ENSO event,
and their contribution to the Nifio-3 anomaly appears
more Gaussian, particularly during cold events, than
did the full Nifio-3 anomaly (note again that the
straight line in Fig. 11a was fit to the full anomaly).
We quantify this further below. Figure 11b shows the
cdfs for the real and imaginary parts of normal mode
6; plots for modes 8 and 14 (not shown) are similar to
Fig. 11b. The first two maps, corresponding to January—
March 1950 and February-April 1950, although rep-
resented in Fig. 11b (the two largest negative points
on each curve), did not contain sufficient data to pro-
ject accurately onto the EOF field in the optimal sense
defined by Reynolds and Livezey (1995; see also Xu
1993). We repeated all of our calculations without these
two maps and found no discernible differences in the
optimal structure or its growth rate; neither was there
any difference in the modal makeup of the field, except
that the period of the modal pair 14/15 was reduced
to 55 months. For this modal pair, the decay time is
so small as to make its much longer period aimost

F1G. 10. As in Fig. 9 but for the 1972-73 event.
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FI1G. 11. (a) Cumulative probability distribution (cdf) of 3-month running mean Nifio-3 SST anomalies (°C) over the period 1950-90
(filled circles). The dashed straight line is the cdf for a normally distributed variable with the same variance as the Nifio-3 SSTs. Also shown
(open circles) is the contribution to the Nifio-3 anomaly from modes 6/7, 8/9, and 14/15. Analogous cdfs are shown for (b) mode 6 (filled
circles: real part; open circles: imaginary part), (c) circular limit cycles with periods of 2, 4, and 6 yr, and (d) the x, y, and z components of

the Lorenz attractor in the limit cycle regime.

irrelevant. The other timescales, periods, and decay
times changed very little, usually by less than 1 month.

The real and imaginary parts have slightly different
slopes in Fig. 11b because their amplitudes are slightly
different, but the lines are straight. We began a test for
normality (Pearson 1900; Cochran 1952) by grouping
the amplitudes of each time series into K bins, choosing
K = 45 in accordance with the rule developed by Mann
and Wald (1942). If p; is the probability that a random
sample falls into the ithclass (i = 1,2, - - +K)and N
is the total number of points (N = 488 in this case),
then the expected number of points in each bin is m;
= Np;. If n; is the observed number of points in the
ith bin and if the values are distributed according to
the probabilities {p; }, then = (n, — m;)?/m;, which
measures the deviation of a histogram of an ENM time
series from the expected histogram of data sampled
from a normal distribution having the same mean and
variance, is X 2 distributed with (K — 1) degrees of free-
dom. Our null hypothesis is that each ENM time series
is normally distributed around its sample mean (close

to zero) with its sample variance. Accordingly, we es-
timate p; as p(x;)Ax, where p(x;) is the normal dis-
tribution evaluated at x;, the center of the i/th bin, and
Ax is the bin width. The limits of the distribution were
chosen as plus and minus the smallest integer larger
than the maximum amplitude of the time series. Values
of X for the real and imaginary time series coefficients
of modes 6, 8, and 14 are shown in Table 2, along with
the probability that a histogram with 45 bins obtained
from random samplings of a normal distribution would
result in a value of X2 larger than that obtained from
the ENM coeflicient time series. For example, 76% of
an ensemble of histograms generated from samplings
of a -normal distribution having the same mean and
variance as the time series coefficients of Re(ug) would
be expected to have values of x? greater than 37.03.
The ideal value of X is zero, but the expected value
is 44 and its expected variance is 88. The sample mean
of our six time series is 46.56, which is well within one
standard deviation of the expected mean. The calcu-
lated variance around the sample mean is 71.02, and
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TABLE 2. Test for normality of ENM time series. Values of x?
measuring deviations of histograms of ENM coefficient time series
from expected histograms of normal distributions having the same
mean and variance (see text for details). The probability that a
histogram with 45 bins obtained from random samplings of a normal
distribution would result in a value of X? larger than that obtained
from the ENM coefficient time series is given as 1 — P(x?), where
P(x?) is the cumulative distribution. For example, 76% of an ensemble
of histograms with 45 bins generated from samplings of a normal
distribution having the same mean and variance as the time series
coefficients of Re(us) would be expected to have values of X2 greater
than 37.03. The ideal value of X? is zero, but the expected value is
44,

x? 1 - P(x%

Re(ug) 37.03 76%
Im(ug) 56.32 10%
Re(ug) 46.98 35%
Im(ug) 37.88 73%
Re(uy4) 45.05 43%
Sample mean 46.56 Expected mean 44.00
Variance around sample

mean 71.02 Expected variance 88.00
Variance around

expected mean 78.89

the calculated variance around the expected mean is
78.89, both values being within the expected variance
of 88. Similar numbers (not shown ) are obtained from
analyzing the output of a numerical model that is linear
by construction. Note that although the hypothesis of
normality of any single ENM coefficient time series
need not be rejected at the 95% level, only 5% of all
appropriate normal distributions occurring in nature
would pass this test anyway, and the probability of all
six passing that test is orders of magnitude smaller.

Considering the contribution to the Nifio-3 anomaly
from these three modal pairs (Fig. 11a, open circles),
we found a value of X% = 48, a value that would be
superceded by 32% of all appropriate Gaussian pro-
cesses. In contrast, the Nifio-3 anomaly from all of the
normal modes (Fig. 11a, filled circles) has a value of
x2 = 73, which would be superceded by fewer than 1%
of Gaussians having the same mean and variance. The
departure from normality is due to the strong positive
skew in the histogram (not shown), consistent with
our contention that the model breaks down during
warm events. These X? results therefore further support
the hypothesis that much of the relevant dynamics are
dominated by Gaussian dynamics except during warm
events. At the very least, the hypothesis cannot be ruled
out at any meaningful level.

We end this section by comparing Figs. 11aand 11b
with cdfs corresponding to systems with circular (i.e.,
sinusoidal time series; Fig. 1 1¢) and highly noncircular
limit cycles (Fig. 11d). Three sinusoidal time series
with periods of two, four, and six years were generated
and sampled at monthly intervals. As seen in Fig. 11c,
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their S-shaped cdfs lie on top of one another in this
projection. Fig. 11d shows the cdfs for the x, y, and z
components of the Lorenz system in the regime where
its attractor is a stable limit cycle (¢ = 10, r = 30, b
= (.25, but otherwise as discussed in appendix B) (see
also Sparrow 1982). The kinks in these distributions,
not evident in Figs. 11a and 11b, are clear.

b. Is B independent of the lag v, that is chosen to
determine it?

This is a hard test, and failure does not imply non-
linearity (appendix B). Thirteen estimates of B (which
in EOF space isa 15 X 15 matrix ) were generated from
(4) using data for the period February 1950-January
1985 and 74 = 3, 4, 5~, -+ «, 15 months, respectively.
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F1G. 12. (a) Top curve: The Euclidean norms of B obtained using
different lags 7, (in months) in Eq. (4). The 14 curves below it are
the norms of the 14 submatrices B, of decreasing rank, each with
first element B, ;. Thus, the bottom curve shows B, = B,; as a function
of 7o. (b) The magnitude of B times a typical constant vector A as a
function of 7. See text for further explanation.
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The top curve in Fig. 12a shows the Euclidean norm
of these matrices as a function of 7. Clearly the curve
is not flat. What matters in (2), however, is not so
much B itself as Bx, and since the higher-indexed
components of x have typically smaller magnitudes
(in EOF space), the 15th column of B is less important
than say the 4th column and should be given less weight
in the comparisons. One way to do this is to compare
the submatrices B, of B of rank n < 15, starting with
the upper left corner: B, = [ B;,], which acts on x;; B,
= [By, Bi2; By, Bs,], which acts on x; and x,; and
so on. The 15 curves in Fig. 12a show the Euclidean
norms of these submatrices as a function of 7. Note
that B,s = B. It is evident that starting with the n = 1
curve at the bottom, the curves remain approximately
flat until about n = 8, although some slope in the curve
is seen starting with » = 4. This is a consequence of a
restriction on the inverse modeling procedure, dis-
cussed in appendix B, analogous to restricting Fourier
‘analysis to frequencies lower than the Nyquist fre-
quency. POP analysis and related procedures involving
lagged covariances can give erroneous results if per-
formed at lags greater than half the smallest oscillation
period in the system, and large uncertainties can occur
when the lag is near this half-period. From Table 1 it
is seen that one modal pair has a period of 18 months,
and the analysis at 7o = 9 months yields an eigenvalue
corresponding to this mode with Im(8,7¢) equal to .
This particular modal pair does not have much vari-
ance, and so its effect on the product Bx is small. How-
ever, modal pair 8/9, with a period of 25 months, is
very important to the system, so the large uncertainties
obtained using 7o = 11 months cannot be ignored.

Figure 12b depicts this in another way. A “typical”
state vector A is defined as one with components pro-
portional to the square root of the SST variance ex-
plained by the corresponding EOF; the figure shows
the length of BA as a function of 7. The curve is nearly
flat up to 7o = 10. However, as in Fig. 12a, 74 = 11 is
an outlier, and the curve for larger values of 7 is not
flat.

c. Is Q determined from (8) positive definite?

The 13 leading eigenvalues of Q are positive; two
eigenvalues are negative. Two negative eigenvalues are
also found when the analysis is repeated with 20 SST
EOFs instead of 15. However, using 10 EOFs, all ei-
genvalues are positive. Further analysis of this case
yields an optimal structure very similar to the one
found with 15 EOFs and also dominated by three
ENSO-type modes with periods of about 30, 40, and
60-80 months (see also Penland and Magorian 1993,
their Table 1). This result can be interpreted as im-
plying either that the higher-indexed EOFs are not de-
termined reliably from the COADS data, or that the
trial model (2) is only approximately valid, with non-
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linearities represented primarily in the high-index, low-
variance EOFs. Both interpretations are likely. We note
in passing that Penland and Matrosova ( 1994) neglect
the noise EOFs associated with the two negative eigen-
values of Q, and report no discernible adverse effect
on their results.

d. Are the forecasts based on (6) good?

For this test it is important that the training and
verification periods be separate. As already stated, B
was determined (using 7o = 7 months) from the first
420 months of data in the complete 490-month record.
Forecasts were then made using the remaining data
(February 1985-November 1990).
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F1G. 13. (a) Filled circles: Normalized domain-integrated error
variance of SST forecasts based on Eq. (6) as a function of forecast
lead time. Asterisks: Error variance predicted by Eq. (7). Open circles:
Error variance of persistence forecasts. Horizontal line: Error variance
of climatology forecasts. Dashed lines: 95% confidence interval ap-
propriate to the theoretical error curve. See text for further expla-
nation. (b) Rms prediction error of the Niiio-3 anomaly as a function
of lead time. Asterisks: Rms error of linear model forecasts. Filled
diamonds: Rms error of forecasts based on a univariate autoregressive
process. Open circles: Rms error of persistence forecasts. Horizontal
line: Rms error of climatology forecasts.
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The filled circles in Fig. 13a show the global forecast
error variance 6 as a function of forecast lead time,
normalized with respect to the domain-integrated SST
variance. As the data have been subjected to a 3-month
running mean, only lead times of 3 months and larger
are considered. The curve represents an ensemble av-
erage of 47 to 68 forecasts, depending on lead time,
and is to be compared with the theoretically expected
error curve (asterisks). Also shown is the 95% confi-
dence interval (dashed lines) around the expected error
curve for independent predictions made by the linear
process for the number of forecasts made at a given
lead time (e.g., for 47 forecasts at a lead time of 24
months, 48 forecasts at a lead time of 23 months, etc.).
Of course, the 3-month running mean means that ad-
jacent predictions are not independent, and the number
of degrees of freedom is therefore reduced by a factor
of 3. Taking this into account increases the width of
the 95% confidence interval by about 60%. We have
chosen the more stringent confidence interval to pro-
vide a more conservative test of fitness. Because the
eigenvalues of B have negative real parts, the eigen-
values of G(7) are smaller than unity and approach
zero at large 7. The forecast at long lead times is thus
a zero anomaly forecast, that is, climatology. Thus, é
increases from 0 to 1. The curve with open circles shows
the average error of persistence forecasts. This increases
from 0 to 2, because at long lead times the error ap-
proaches the expected difference between two arbitrary
state vectors instead of the difference between an ar-
bitrary state vector and climatology. The solid hori-
zontal line shows the expected error of climatology
forecasts, which remains constant at 1 because it is the
expected difference between an arbitrary state vector
and climatology.

The forecasts based on (6) are clearly much better
than persistence forecasts. They are also much better
than climatology for lead times of less than about 15
months. The forecasts for Nifio-3 SSTAs (Fig. 13b)
display essentially the same level of skill and may be
compared with forecasts performed using a univariate
AR model (dashed line in Fig. 13b). In fact, the fore-
casts made with the inverse model (2) are of compa-
rable quality to those made with the best “forward”
dynamical models at present (see, for example, the
National Oceanic and Atmospheric Administration’s
Experimental Long-Lead Forecast Bulletin).

e. Do the forecast errors grow as predicted by (7)?

In Fig. 13a, the curve with asterisks is the theoreti-
cally predicted error growth curve. It closely approxi-
mates the actual error growth curve and, except for
lead times of five months or less, the differences are
statistically insignificant. (The difference between the
theoretical and observed error curves in a system dom-
inated by nonlinearities is much larger; see appendix

PENLAND AND SARDESHMUKH

2013

B.) Nevertheless, a tendency for the actual error to be
larger than that predicted at short lead times and
smaller at long lead times is evident. The larger, sta-
tistically significant error at short lead times is most
probably due to the inability of the system to make
accurate predictions when initialized during the warm
phases of ENSO. The smaller error at long lead times
is harder to explain. It is possible that it reflects a slight
overestimate of the negative eigenvalues of B obtained
by specifying 7o = 7 months in (4). Note that the warm
phases of ENSO, in which the linear system has greatest
difficulty, are included in the training statistics. An im-
properly fitted linear model can be expected to give
degraded forecasts sooner than the true decay rates
would indicate. On the other hand, Penland and Ma-
gorian (1993), whose system was truncated to 10 EOFs,
found that eliminating warm events from the training
statistics resulted in slightly degraded predictions of
cold events. Therefore, either some of the stable, linear
processes continue to operate during the warm phases,
or eliminating 14% of the training period resulted in
less accurate parameters, or both.

In sum, the requirements (9a)-(9e) are reasonably
well met by the model (2) for slowly evolving (3-month
running mean ) tropical SST anomalies. This enables
a meaningful discussion of the normal modes of the
real physical system as the free solutions of (2).

7. The role of the forcing in exciting the optimal
structure

The system matrix B estimated from (4) and the
forcing matrix @ estimated from (8) can be used to
generate a time-dependent empirical dynamical model
of tropical SSTs of the form (2). As discussed by Pen-
land and Matrosova (1994), the appropriate method
of integrating (2) when using a finite time step Az is a
two step process:

y(z + At) = (1 + BADy(2) + (A1) /?8r(t) (15a)
x(t+ At/2) = {y(t + At) + y(£)}/2 (15b)

with y(0) = 0 (see also Kloeden and Platen 1992;
Kloeden et al. 1994). Here r is a vector whose com-
ponents are independent Gaussian deviates, each with
unit variance, that is generated once at each time step.
The term $§ is a constant matrix whose columns are
the eigenvectors {{,} of @ multiplied by the square
root of the corresponding eigenvalues {g,}. Thus, Q
= \Ifq\I/T — {\I,ql/Z} {\I,ql/Z}T — SsT

The model was exercised for 10 yr and output col-
lected for the subsequent 2000 yr. The time step was
3 h. The covariance matrices € o4c(70) and Cpmoge(0)
were estimated from model output and confirmed to
reproduce the observed C(r¢) and C,04e1(0) used to de-
termine the B and § matrices specified in (15). In some
modeling exercises, one might wish to specify B and $
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and test for dynamical consistency when an observed
C(0) is not available. In this case, Cp040(0) should be
compared with the covariance matrix consistent with
the fluctuation-dissipation relation (appendix C). The
numerical algorithm (15) is carefully designed to en-
sure consistency with (8), provided a small enough
time step is used. We find a time step of 3 hours to be
necessary. It should be noted that this is much smaller
than the time step required for computational stability
using a forward time step in this problem. By construc-
tion, then, our model is guaranteed to reproduce the
observed C(0) and C(7, = 7). However, it is not guar-
anteed to reproduce coherent phenomena, such as a
realistically evolving ENSO, as well. The latter is nev-
ertheless true as shown by Penland and Matrosova
(1994) and further attests to the validity of (2). We
obtain essentially the same results using 15 SST EOFs,
as opposed to their 20 EOFs. As in their analysis, we
use the time series 673 of model Nifio-3 SSTs to char-
acterize the model output and its sensitivity to modi-
fications in the white noise forcing. Warm events in
the model are identified as upward excursions of 673
across a 1-standard deviation threshold with the proviso
that 673 dip below —0.4°C between events. A com-
posite event derived from them (not shown, but see
Penland and Matrosova 1994) has many features in
common with a composite event derived from obser-
vations. Furthermore, a composite map 7 months be-
fore peak warming correlates with the optimal structure
in Fig. 6a at 85%. Figure 14 shows a scatter plot anal-
ogous to Fig. 7 for the first 2000 months of the model
run. Clearly, the large scatter in Fig. 7 is not inconsistent
with a linear, stochastically driven system. Note that
the nearly identical fit (slope = 1.73 vs 1.75) and scatter
(correlation of data with fit = 0.73 vs 0.71) in Figs. 7
and 14 are not guaranteed by our generation of the
model from the observed C(7() and C(0).

Agreement of statistics by itself does not guarantee
realistic realizations, and so we present three 40-yr seg-
ments of the Nifio-3 sea surface temperature anomaly
(SSTA) from the model run along with the true Nifio-
3 record (Figs. 15a—-d). Some readers will quickly
identify which plot is the real one: first because of the
relative location of the warm events, and second be-
cause we did not subject our model output to a three-
month running mean since the empirically derived pa-
rameters are supposed to account for that. However,
the verisimilitude of the model output is good.

As stated previously, our principal aim in this section
was to determine the influence of the forcing on warm
ENSO events through its excitation of the optimal ini-
tial structure for SST growth. The noise EOFs with the
largest projection on ¢,;(7) are ¥3(0.68) and y¥s(0.30)
(not shown). These explain 12.3% and 6.9% of the
total noise variance, respectively. A modified white-
noise forcing was generated by setting the third and
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FIG. 14, Scatter diagram of the spatial correlation between Fig. 6b
and the SST anomaly field as generated by the linear model vs the
spatial correlation of the model’s SST anomaly pattern seven months
carlier with the optimal initial structure for growth (Fig. 6a). The
slope and scatter are nearly identical to that of Fig. 7.

fifth columns of S to zero in (15) and enhancing the
other columns by a constant factor so as to retain the
same total forcing variance. The model was then rerun
for 2000 years with the modified forcing.

Figure 16 shows the amplitudes of the real and
imaginary parts of modes 6, 8, and 14 for both model
runs; it is seen that the effect of the modified forcing
is to reduce the basinwide warming as described by
these modes. These effects may seem somewhat mod-
est. This is partly by design, since we chose only to
reduce (by about 20%) but not eliminate the noise
projection on the optimal structure in the modified
run. The idea was to modify the forcing just enough
to alter the statistics of the modeled ENSO events
without radically affecting the character of the events
themselves.

8. The annual cycle

The accuracy of our prediction method is far more
susceptible to the phase of the ENSO cycle than it is
to the phase of the annual cycle. In particular, accurate
predictions through the spring season are common
(Penland and Magorian 1993; Penland and Matrosova
1994). To further investigate the annual cycle, we di-
vided our verification period (February 1985-Novem-
ber 1990) into seasons and plotted the forecast error
variance as a function of lead time for initial conditions
taken from each season (not shown ). The error during
the verification period is dominated by the 1986-87
warm event, and a large variation of the error with
season at short lead times is observed, primarily due
to the seasons in which the 1986-87 warm event was
strong (specific cases are shown in Penland and Ma-
trosova 1994). On the other hand, the 5-yr verification
period is-too short to draw any unambiguous conclu-
sion about seasonality. Verification on the training set
obviously cannot give a good idea of model accuracy;
however, the model parameters were calculated re-
gardless of season, so one might get a hint of the sea-
sonal dependence of model accuracy by calculating er-
ror curves stratified by season for the entire dataset.
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FI1G. 15. (a)-(d) Three 40-yr segments of the Nifio-3 SST anomaly calculated from output generated by the linear model.
Also shown is the measured record. Which is which?

This was done, and the error variance was normalized
by the stationary variance, that is, the amount of vari-
ance contained in a/l the seasons during the verification
period (Fig. 17a). The seasonality of the error curves
is weak at short lead times; again, examination of in-
dividual cases shows that the phase of the ENSO cycle
dominates the error. However, Fig. 17a does show
some influence of the annual cycle at large lead times
(r > 1yr).

It turns out that the annual cycle seen in Fig. 17a at
large lead times is due to the stationary normalization.
When the normalizing variance appropriate for the
season of the verifications is specified, the annual cycle
disappears (Fig. 17b). Consistent with linear dynamics,
this implies that while the variance of the field does
indeed contain an annual cycle, this measure of the
accuracy of the predictions does not.

A stronger presence of the annual cycle is felt in the
frequency of occurrence of the optimal structure. Fig-
ure 18 shows the number of times the size of the pro-
jection of the optimal structure onto the SSTA’s in any
particular month exceeds 0.3 in our dataset. For clarity,
two cycles are exhibited. Although every month is rep-

resented, it is clear that the optimal structure occurs
primarily in the boreal spring.

These results do not contradict our basic premise of
a linear stable system driven by stochastic forcing; nei-
ther do they contradict the validity of the 7-test. How-
ever, a modification is in order. If one assumes that
Eq. (2) holds, but where {£(£)£(¢')T) = Q(2)8(1 — 1)
and Q(¢) is periodic, then the method of obtaining B
is unchanged as long as the estimated statistics are ac-
cumulated over an integral number of periods. This is
why we chose our training period to be exactly 35 years.
The fluctuation—dissipation theorem is generalized to

d(xx")/dt = B(xx") + (xx")BT + Q(1), (16)
so that Eq. (8) holds as long as C(0) and Q are inter-
preted as averages over the period. That is, the eigen-
vectors of Q as calculated from Eq. (8) have survived
the annual averaging process. In particular, the pre-
diction method [Eq. (6)] is unchanged. It can be shown

that the probability density for the system x(¢ + 7)
conditioned on an initial condition x'(?) is

pix, t+ 7|x, 1) = 2x) V?[Det2(¢, 7)]7V/?
X exp{—i(x — G(M)X)'2(t, 1) '(x — G(r)x)}, (17)
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FIG. 16. Amplitude of normal modes during the composite warm event. Solid line: Full model. Dotted line: Modified forcing.

where at x(¢ + 7) = G(7)x'(¢), with G(7) independent of ¢.

T - That is, the 7-test still holds. Note that Eq. (18) allows

Z(t, 7) = (e(t, 7)e(t, 7)) ={x(t + 7)x(t + 7)) periodicity in the predictability, which could allow

_ g T T for the small annual cycle seen in Fig. 17. A more

GNOX(0)THG(N)T. (18) detailed study of the role of the annual cycle in the

The probability density [Eq. (17)] is of the same propagation of SST anomalies is a topic of current
form as that for the stationary case and is maximized research. :



AUGUST 1995

1.2 —r—r—

LA B t A B B B N R

.
&

1

0.8

Lt S R

0%

0.4

P B W

0.2

Normalized Error Variance

PLI I e B B B SR |

0....1L4.|I.||xl,.|.l.“|

5 10 15 20
Lead time (months)

[=]
»n
h

—
(3]

LB A S N B S S B S B B

o

LI A B B B B B

—

o
o

<
'S

Normalized Error Variance
=) =)
(54 [=))

paa e v bv e b v by el a

T A s o

P Y S T S S Y SV S S AN ST S T T BT WOC Y

10 15 20
Lead time (months)

<

N
(V]

F1G. 17. Error variance stratified by season of the initial condition.
Light solid line: December-January-February initial conditions. Dot-
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November initial conditions. Heavy solid line: Theoretical curve for
the stationary process. (a) Errors calculated from the entire record
normalized to the stationary variance. (b) Errors calculated from the
entire record normalized to the seasonal variance.

9. Discussion

The inverse modeling analysis of this paper can be
put in the context of the forward dynamical models
by considering the evolution equation for SSTs in the
form

T, = —uly—vT,— wl,+ F. (19)

Here T is the temperature of the surface ocean layer,
whose changes are determined by advection by the
ocean current velocities #, v, and win the x, y, and z
directions and by F. This last term represents the com-
bined effect of surface sensible and latent heat fluxes,
shortwave and longwave radiation, as well as sub-grid-
scale diffusive processes. In many simple models F is
parameterized in terms of 7. Further, the vertical de-
rivative is simplified as
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{T—(Ts+ Fh)}
H b

Tz = {T_ Tsub}/H = (20)

‘where Ty, is a characteristic subsurface temperature

at depth H, which is communicated to the surface by
the upwelling w. The term Ty, is itself parameterized
in some models (e.g., Neelin 1991) in terms of ther-
mocline displacements / as T; + T'h, where Ty is a
characteristic thermocline temperature and I" a con-
stant of order 0.1 K m™!. Writing all variables as cli-
matology plus an anomaly a = @ + &/, the equation
for the SST anomalies may be written

T, = —ul,— 0T, — wT/H+ F(T) (21a)
—uT,—vT,— wl,+ wTh/H (21b)
+ nonlinear terms, (21c)

where the primes on the anomalies have been dropped
for convenience. The terms on the right-hand side of
(21a) are already of the form B,;(T), where B; is a
linear nonlocal spatial operator. The anomalous cur-
rents and thermocline depth in (21b) evolve in response
to the anomalous surface winds V, which are them-
selves a response to 7'. One thus needs an ocean model
to obtain (u, v, w, #) from V and an atmospheric model
to obtain V from 7. If on the timescales of ENSO
evolution the winds adjust quickly to SSTs and the
ocean currents and thermocline depth adjust quickly
to winds, then one can represent (21b) as A4,(V)
= A;(A2(T)) = By(T). Defining B(T) = B)(T)
+ B,(T), (21) becomes

T, = B(T) + nonlinear terms
= B(T)+§ (22)

where the nonlinear terms have been approximated as
a white noise forcing £. The nonlinear terms here

20 T T

yoo L v e by

# |Projectionsl > 0.3

) = Y
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Month

FIG. 18. Number of times the size of the projection by the optimal
structure onto the SST anomaly field exceeds 0.3 in any month. For
clarity, two cycles are shown. Coarse shading: positive projection.
Fine shading: negative projection.
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should be interpreted as the sum of the nonlinear terms
in (21I¢c) plus the error made in parameterizing (21b)
as a linear nonlocal spatial operator B,( 7). Equation
(22) is of the form (2).

One can thus derive (2) from (21) through a series
of well-defined approximations. It should be stressed
that this derivation of (2) is not unique; in fact, it is
possible to derive (2) assuming that SSTs adjust quickly
to changes in ocean dynamics (the so-called fast SST
limit) rather than vice versa. The important question
is whether (22) is valid. The observations as analyzed
in this paper suggest that it is. The five conditions (9a)-
(9e) for the validity of (22) are all reasonably well
satisfied. The occurrence of optimal growth as predicted
by the eigenstructure of a matrix derived from B pro-
vides further evidence in support of (22).

Although we have not given here the explicit form
of B in terms of climatological variables, we have dem-
onstrated its relevance in the tropical climate system
and determined some of its important properties from
the observations. Any forward dynamical model of the
system should have its equivalent B whose eigenstruc-
ture should match that of the observed B. It is not
difficult to see how B could be misrepresented. Its ac-
curate representation depends upon accurate mean
ocean currents and temperature gradients, an accurate
ocean anomaly model 4,, and an atmospheric anomaly
model 4,. Note that 4, also affects the formulation of
F(T) in (21a), rendering it nonlocal. This is because
the anomalous latent heat flux, which makes a large
contribution to £(7), depends not only on anomalous
ocean temperatures 7 but also on anomalous winds V
= Az( T).

As discussed in several studies (e.g., Neelin 1991;
Barnett et al. 1991; Lau et al. 1992), the precise balance
of terms in (21) is delicate, but can nevertheless
strongly affect the dynamics of SST evolution. Neelin
(1991) argues for the general importance of unstable
SST modes [the free solutions of (22)] in the system
over that of coupled Kelvin and Rossby modes on the
grounds that although their propagation is sensitive to
which terms dominate in (21), their instability itself
is not. Our conclusion differs from his in one funda-
mental respect. This is that the SST modal solutions
are stable. This then necessitates the consideration of
modal interference, optimal structures, and forcing.

Some further insight can be gained by going back
to the formalism of equations (1) and (2). Again, we
consider the “fast-wave limit,” where oceanic variables
adjust quickly to SSTs. Again, this limit is chosen for
exposition purposes and is not crucial for the validity
of our dynamical interpretation. Let x; denote SSTs
[the same as x in (2)], X, denote atmospheric variables,
and x, denote oceanic variables other than SST. Then
one may represent the anomaly equations in the cou-
pled system as
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{%T = Lrx, + Lroxo + Lyxr + &7
SST equation (23a)
61;‘: = Lax, + Lioxo + Lurxr + &
Atmospheric model (23b)
% = Loax, + Looxo + Lorxr + &
Ocean model. (23c)

If the atmosphere experiences the effect of ocean dy-
namics only through the SSTs, then L4 is zero. As-
suming that on the long timescales of SST evolution,

dax,
dt
de

Z =0 currents and thermocline depth

=0 winds adjust quickly to SST, and (24a)

adjust quickly to winds, (24b)

enables one to eliminate the ocean variables and write

d

O e LuXa + Lixr + 7 (25a)
dt =

dx,

i— = LuXo+ Larxr+£,=0,  (25b)

where
L, = Lrr — Lroloblor,
L. = Lzs — Lrokoblos,
Er=Er— LroLobto.

Equations (25) embody the Bjerknes hypothesis in its
simplest form, that is, that winds affect SSTs, and SSTs
affect winds. Invoking (24a) now enables the atmo-
spheric variables to be eliminated as well, giving

dxg/dt = Bxr + §, (26)

where B = {L, — L, Liilir} and ¢ = &7 — LT0L510§0
— L,bai,. Thus, one recovers equation (2).

Now, the facts that (i) atmospheric models forced
with prescribed SSTs give reasonably realistic winds,
and (ii) ocean models forced with prescribed winds
give reasonably realistic SST's suggest that the operators
L4, Ly, L, and L7 in (25) are reasonably well known.
This also suggests that the stochastic forcing term is
generally of less importance than L,.x, in the SST Eq.
(25a). The coupled system, however, has much longer
timescales than either of the uncoupled systems, if the
limits (24a) and (24b) are relevant. This indicates a
substantial cancellation between the two component
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parts of B in (26), and a strong sensitivity of forward
coupled models to model parameters.

At present, most forward coupled systems do not
include £, But they do include nonlinearities of the
type represented in (21c). It is easy to imagine how
this can be crucially important. If the model’s B has
negative eigenvalues (as our verifying tests suggest),
then without £ the system tends to die, that is, to go
permanently to a steady state. This encourages a mod-
eler to tune his model, effectively, we suspect, until B
has positive eigenvalues. Now the system is unstable,
with unstable growth arrested by nonlinearities, so
ENSO-like vacillations can be sustained even in a long
run without external forcing. By ignoring the stochastic
forcing, one can thus end up with the paradigm of a
chaotic nonlinear coupled system (e.g., Jin et al. 1994)
as opposed to a stochastically driven stable linear sys-
tem suggested by the observations.

16. Concluding remarks

It has been argued that the tropical climate system
can be approximated as a stochastically driven damped
linear system on interannual timescales, with the evo-
lution of SST governed by a stable linear operator B
and a spatially coherent white noise forcing £. The
properties of both have been determined from the
observations, and several tests have been applied to see
whether the assumptions inherent in the inverse mod-
eling actually hold. The two most important properties
of B are that it is not self-adjoint and that its eigenvalues
have negative real parts. Thus, the normal modes of
the system are evanescent and, without forcing, every
SST perturbation eventually decays. Perturbation
growth is nevertheless possible in the short term from
the modes interfering constructively with one another.
An optimal initial structure giving the maximum pos-
sible growth by this mechanism has been determined
theoretically, and its relevance in the real physical sys-
tem has been demonstrated. The unpredictable forcing
plays a secondary role while optimal growth is in
progress. In fact this is why growth is predictable at all,
up to 15 months ahead. The forcing is nevertheless
important in setting up the optimal structure and in
determining the recurrence time of ENSO events. It
is also crucial for keeping the system alive in the
long run.

The optimal structure and the forcing patterns (the
noise EOFs) that are highly correlated with it have
strong loadings in the south tropical Indian Ocean and
the South China Sea. Using cross-spectral analysis,
K. M. Weickmann (1994, personal communication)
has found SST anomalies in these areas to act has skill-
ful predictors of SSTA in the eastern equatorial Pacific
at a lead time of about two seasons. The proximity of
these locations to the subtropical jets must invite spec-
ulation that extratropical atmospheric processes play
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some role in triggering ENSO events (see also Barnett
et al. 1989).

The geographical coherence of the stochastic forcing
is important, and so it is not surprising that Zebiak
(1989) found little effect when a stochastic forcing,
which did not account for the geographical coherence
demanded by the fluctuation—dissipation relation, was
added to a model already tuned to give interannual
variability. Note also that the geographical properties
of a temporally white stochastic forcing cannot be re-
liably obtained by high-pass filtering the data. Even if
the patterns obtained in this manner are provided with
random coeflicients so that their time series are white,
one must still contend with the dispersion relation.
Since high frequencies are generally associated with
high wavenumbers, the forcing obtained in this way is
not likely to project significantly onto the adjoints of
the low-frequency modes, and is therefore unlikely to
excite those modes significantly. A model driven by
this forcing, therefore, will need nonlinearities to gen-
erate low-frequency variability, not necessarily as a
mirror of the real system, but by construction of the
model.

While a case can be made in support of linearity,
that is, of our model (2), it is important not to overstate
it. Conditions (9a)~(9¢) are satisfied, but only ap-
proximately. The scatter in Fig. 7 is not small. However,
this scatter is also produced in a numerical simulation
of the stochastic linear system (15), so the scatter by
itself cannot be used as evidence against the model.

It should be noted that the optimal structure shown
in Fig. 6a is in fact not unfamiliar. Some of its fea-
tures, such as warm SSTAs in the southeastern equa-
torial Pacific and a secondary maximum of warm
SSTAs on the equator at about 120°W, are recog-
nizable in the precursors to the mature phase of
composite ENSO events in several observational and
model studies (e.g., Rasmusson and Carpenter 1982;
Lau et al. 1992). Barnett’s (1991) complex EOF
(CEOF) analysis of the quasibiennial band shows
negative SST anomalies in the Indian Ocean and the
South China Sea and over Indonesia, as well as pos-
itive anomalies stretching from the equatorial west-
ern Pacific toward Baja California (although these
latter are displaced northward in comparison to those
in our optimal structure) six months before maxi-
mum warm SSTAs in the eastern Pacific. Similar
analysis of a low-frequency band shows (in the op-
posite phase) a cool eastern Pacific about six months
before maximum cold Pacific SSTAs. However, the
Indian Ocean and the eastern Pacific in the low-fre-
quency CEOF are too cool to be consistent with our
structure in its negative phase. Still, since his study
and ours both used COADS data, we believe our
analysis explains his precursors as manifestations of
the optimal initial structure for SST growth. An op-
timal structure found in the output of the Lamont
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coupled model (Xue et al. 1994 ) agrees with the ob-
served structure in that it has a cool-warm dipole in
the eastern equatorial Pacific. However, their pattern
has very little else in common with the observed one;
in particular, the narrow extent of their warm eastern
Pacific precursor is unrealistic, and there is no hint
of the band of warm water stretching from the equa-
torial western Pacific (160°-~170°E) up to Baja Cal-
ifornia. Xu and von Storch (1990) obtained an SST
“conjugate correlation pattern” associated with
ENSO based on its relationship to a POP found in
tropical sea level pressure. Their SST precursor pat-
tern had some of the characteristics of our optimal
structure, except that the southeastern tropical Pa-
cific SSTAs were of the same (rather than of oppo-
site) sign as the Indian Ocean in their pattern. We
speculate that this may be explained by their filtering
out all variance on timescales shorter than 15
months. Again, we believe our results explain their
precursor pattern as being related to the optimal
anomaly pattern for nonmodal growth of SSTs.

The annual cycle, which has not been treated ex-
plicitly in constructing the inverse model (2), is nev-
ertheless present implicitly. To the extent that the
anomaly amplitudes tend to be largest during a partic-
ular season, the covariance matrices in (5) emphasize
that season in all quantities derived from them. Thus,
the optimal structure shown in Fig. 6a tends to occur
more often during the boreal spring than other seasons,
consistent with the fact that the mature phase of ENSO
occurs more often during the (following) winter. The
obvious annual cycle in the occurrence of the optimal
structure (Fig. 18) does not at all compromise our dy-
namical interpretations; we find only a weak annual
cycle in the predictability (Fig. 17b). This may be con-
trasted with the necessity to include the annual cycle
in the predictors when POP analysis is applied to some
dynamical models (e.g., Blumenthal 1991; Baimaseda
et al. 1994; Xue et al. 1994). However, more detailed
work on the role of the annual cycle is necessary and
is currently underway.

Our study indicates that prediction skill is more de-
pendent on the phase of the ENSO cycle than it is on
the phase of the annual cycle, but this phenomenon is
not unique to our stable linear system. In particular,
Davey et al. (1993) have found that the seasonal de-
pendence of forecast skill in a simple nonlinear delayed-
oscillator system is indirect; the seasonal variation of
skill in that model depends on the phase locking of
ENSO to the annual cycle.

The inverse modeling analysis of this paper should
be viewed as nothing more or less than a dynamically
meaningful summary of the observations. One could
think of fitting a more complicated model than (2),
say (23), to the observations. However, it has been
shown that (2) is already a reasonable approximation.
This has enabled an estimation of the normal modes
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of the system. The most important result from this
analysis is the observational evidence that one cannot
explain ENSO growth in terms of any single unforced
normal mode.

We end by offering the following scenario of ENSO
evolution, a scenario that is as yet unproven but fits
the observations considered here: ENSO involves at
least three stable normal modes, and SST anomaly
growth occurs from their constructive interference after
an optimal nudge from the stochastic forcing. When
SSTAs become warm enough, instabilities do occur
and dominate the ENSO cycle until nonlinear satu-
ration is attained. The oceanic basin then cools until
the system becomes stable again, and stable linear dy-
namics dominate the subsequent evolution, including
any cold event, until stochastic forcing sets up the next
warm episode. Note that this scenario implies that the
relevant dynamical system hovers fairly near the critical
point for stability, and that the regimes of stable, non-
modal growth or unstable, modal growth may be af-
fected by a one or two degree temperature change in
climatology.
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APPENDIX A

Empirically Derived Eigenvalues
of the Linear Operator

By “‘stationary statistics” we mean that the covari-
ance matrices in (5) do not depend upon the definition
of the time origin. To show that the eigenvalues of B
derived from (4) have negative real parts, it is sufficient
to show that the eigenvalues of

G(7) = exp(Br)
(x(t + )XT(O) Y x()xT())™!

are less than unity, that is, { g,| < 1.
Let e(7) = x(¢ + 7) — Gix(¢). Then

<e(T)e(T)T>
= {x(t+71)—-Gx(1)} {x(t + 7) — Gx(0)}")
={x(t+ )X+ 7)) = Gx()XT(t + 7))
—{(x(t+ 1)xT(1))G" + G{x(1)x"(1))GT
= {(x(0)xT(1)) = G{x(1)x"(1))GT,

(A1)
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where use has been made of (x(¢ + 7)x7(#)
= G(r){x(0)xT(1)) and {(x(t + 7)x(z + 7)T
= (x(O)x(7)").
Consider now the eigenstructure of G and G:
G(r)u =ug(r), G'(7)v =vg(r),
and uv'=uTv=1

In mode space,
vieeTHv*

= vT{xxTHv* — vIGuvT {xxT )v*utGTv*,

where the superscript t denotes a Hermitian conjugate.
Thus, in mode space,

(ee™y = (da') — g(dd"Hg".
Now consider the ath element along the diagonal:
(eael) = (dodl) — gl dodl ) gl
= (1 — g.gl){(d.dL),

which gives {|€,|?) = (1 — | g.1*){| d.|*). But this
is only true if | g,| is less than 1.

APPENDIX B
The Tau Test

The “r-test” is a check that the logarithm of
the eigenvalues of the Green function

G = (x(1 + 7)x () Y{x()xT (1))~

vary linearly with lead time 7. Equivalently, the matrix
B = ;' InG should be independent of 7. This test is
prone to a “Type I error” (rejecting the hypothesis of
linearity when it is true). Among other reasons, a sys-
tem can be expected to fail the 7-test if 1) the system
consists of fewer time series than variables are needed
to describe it, 2) lead times longer than half the shortest
period of oscillation are chosen, or 3) nonlinear dy-
namics dominate. As an example of the first case, con-
sider the two-component linear system,

dx,/dt = x,, dxa/dt = —w’x, (B1)

but where only the time series x,(z) = 4 sin{(wt + ¢)
is provided for the construction of the inverse model.
Calculating the sample Green function at a lead time
of 7o gives

(x(t + 70)x(2))/{x*(t)) = cos(wre), (B2)

which obviously fails the 7-test. However, the 7-test is
satisfied if another sinusoidal time series with the same
frequency as the first but somewhat out of phase is
provided, and the method is able to identify the oscil-
lation frequency since the eigenvalues of the sample
Green function are exp(ziwtg), regardless of the phase
(except phases of n7). The uncertainty in the identi-
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fication depends, of course, upon the oscillation fre-
quency and the length of the time series. One would
expect, for example, a small but spurious decay rate
that would decrease with the length of the sample, un-
less one were lucky enough to have a time series exactly
equal to an integral number of oscillation periods.

The property that excessive EOF truncation results
in 7¢-dependent system matrices B (an error of O(7¢):
Penland and Ghil 1993) is a further example of case
1. In fact, a 7o-dependent B can be expected any time
the dimensionality of the measured system is insuffi-
cient to account for its dynamics, as the case of the
sinusoid discussed above exemplifies.

Lead times should be chosen less than 1/» the
shortest period of oscillation, and the length of the time
series necessary to identify accurately the oscillation
period and its associated normal mode increases as 7
approaches the half period. When the lead time is close
enough to the half period that it corresponds to a period
near the spectral peak of the damped mode, the mode
acquires an imaginary part Im(8,7¢), approximately
equal to 7. At larger lead times 7, harmonics of the
oscillation period rather than the fundamental are
yielded by the analysis. In this way, POP analysis is
restricted in much the same way that Fourier analysis
is, with the half-period of the shortest modal oscillation
analogous to the Nyquist period.

To see this effect, consider the submatrices B, of B
as described in the text. The 15 curves in Fig. 12a show
the Euclidean norms of these submatrices as a function
of 7¢. Two peaks are evident: one at 7o = 8 months
and the other at 7o = 11 months, near the half periods
of the 18- and 24-month modes. Similar peaked be-
havior is observed in a sample time series of equal
length obtained from a stable, linear model driven by
stochastic forcing (discussed in section 7) and, in fact,
this peak can be as far as three sample intervals smaller
than the half period if the corresponding decay time is
very small. Fortunately, the r-test applied to the Green
function, or, equivalently, the prediction error curve,
is not so dependent on sampling.

As an example of the third case, we consider the 7-
test applied to the three-component Lorenz system:

dx/dt = o(y — X) (B2a)
dy/dt =rx—y— xz (B2b)
dz/dt = xy — bz. (B2¢)

As in Penland (1989), the parameters ¢ = 10, r = 28,
and b = 8/3 were chosen to ensure a chaotic system.
The method of integration is explained in Penland
(1989); the time step was taken to be 0.001 dimen-
sionless time units (fu) and the system was sampled
every 20 time steps for a total of 4000 samples. The
training set, consisting of half the time series, samples
both lobes of the attractor. In fact, Penland (1989)
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FiG. Bl. (a) Theoretical and (b) calculated error variance for the Lorenz attractor as a function of lead time for 7o = 0.02tu (filled
diamonds), 0.04tu (open circles), 0.067u (open squares), 0.08u (light dotted line), 0.10zu (light solid line), 0.12¢u (dashed line), 0.14¢u (heavy
dotted line), and 0.16¢u (heavy solid line). (c) Theoretical and (d) calculated error variance for COADS SST anomalies as a function of lead
time for 7o = 3 months (light dotted line), 4 months (light solid line), 5 months (dashed line), 6 months (heavy dotted line), and 7 months

(heavy solid line).

found that the chaotic Lorenz system was better at
masquerading itself as a stable linear system if only
one finely sampled lobe was considered, and perhaps
the tangent linear analysis considered, for example, by
Lacarra and Talagrand (1988) would be appropriate
there. However, as we hope that our 35-yr sampled
SSTA system is representative of the entire ENSO
attractor, be it fixed point, limit cycle, or strange, the
appropriate comparison is with a sampling of the
Lorenz system that experiences both lobes of the at-
tractor.

Applying the inverse-modeling technique to the
Lorenz model output yielded an eigenvalue with an
imaginary part equal to 7 at a sampling of 7o = 0.2¢u.
Accordingly, the analysis was performed for lags in
the interval (0.0tu, 0.2tu) at 7o = 0.02tu, 0.04tu,
0.06tu, 0.08tu, 0.10tu, 0.12tu, 0.14tu, and 0.16¢u.
The theoretically expected error curves for the var-
ious 7¢s is shown in Fig. Bla, and the corresponding

error curves obtained from trying to predict the be-
havior of the second half of the series is shown in
Fig. B1b. The variation with 74 is severe. For com-
parison, we show on the same scale analogous error
curves taken from the SSTA system (Figs. Blc,d)
corresponding to lags in the interval (0 months, 9
months) at 7o = 3, 4, 5, 6, and 7 months. Although
there is some variation with 7, both bundles of
curves are much tighter than those corresponding to
the Lorenz system and, although the correspondence
between the theoretically expected error curves and
those obtained from predictions performed during
the verification period is not exact (probably due to
our failure to predict during the warm phase of
ENSO), the correspondence is much better than that
exhibited by the chaotic system. Penland (1989) and
Penland and Ghil (1993) provide a flavor of what
this error curve looks like for other linear and non-
linear systems.



AUGUST 1995 PENLAND AND

APPENDIX C

Derivation of Covariance Matrix for a Linear
Stochastic Process

In many applications, it would be very useful to be
able to generate the statistics of a linear stochastically
forced system, for which the dynamical equation is
known, without actually having to run a numerical
model. This is, in fact, possible. Consider a linear sys-
tem

dx,' M
—_— = i + i 1
Z E Bixxi + & (C1)

where £ is a stationary Gaussian white-noise vector with
covariance matrix { £ Ydt = Q and where the matrix
B has eigenvectors (normal modes) {u,} and adjoints
{v.} corresponding to eigenvalues {3,}. Both Q and
B are known, as is, therefore, the eigenstructure of each.
As in the text, we shall denote the equal-time covari-
ance matrix (xx T as Cy. The fluctuation—dissipation
relation for this system is

BC, + CB™ + Q = 0. (C2)

The problem is to determine Cq given B and Q. This
can be done by transforming Eq. (C2) into normal
mode space. Let u be the matrix the ath column of
which is the ath normal mode u,, and let v be the
corresponding adjoint matrix. The diagonal eigenvalue
matrix of B is called 8. Operating on the left of Eq.
(C2) by v and on the right by v*, where (*) denotes
complex conjugate, we find that

Dy + DeB* + M = 0, (C3)

where Dy = vICyv* and M = vTQv*, Physically, D, is
the equal-time covariance matrix of the time series
coeflicients of the normal modes, and M is the covari-
ance matrix of the white noise driving the normal
modes. In component form, since 8 is diagonal,

BaDaﬁ + Daﬂﬁ; + Maﬂ = 09
or
Dos = — Mg/ (Ba + B5). (C4)

Once the elements of Dy are obtained, the covariance
matrix is easily calculated as

Co = UD()I.IT,

where () denotes complex conjugate-transpose.

(C5)
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