ATMS 301 Homework # 3, Autumn 2016

Due: Monday, November 14, 2016 at the beginning of class Please show all your work.

1. A parcel of air at sea level in western Washington has a temperature of 10°C and is saturated.

(For this problem, you may assume the moist adiabatic lapse rate Γ_s is $6.2 ^\circ C \cdot km ^{-1}$ and that the dry adiabatic lapse rate Γ_d is $9.8 ^\circ C \cdot km ^{-1}$.)

(a) The parcel is forced to rise to an elevation of 2 kilometers at the crest of the Cascade Mountains. What is its new temperature?

(b) After passing the Cascade crest, the parcel descends dry adiabatically down the east side of the mountains to an elevation of 500 meters. What is its new temperature?

2. The environmental lapse rate is $8 ^\circ C \cdot km ^{-1}$. (You may assume the same values of Γ_s and Γ_d as in #1.)

(a) If an unsaturated air parcel is displaced upwards, will it continue to rise? Why?

(b) If a saturated air parcel is displaced upwards, will it continue to rise? Why?

3. An air parcel is at sea level with a pressure of 1000 hPa and a temperature of $15 ^\circ C$. (You may assume the same values of Γ_s and Γ_d as in #1.)

(a) The parcel rises dry adiabatically to a height of 1.5 kilometers. What is its new temperature?
(b) At this point, the parcel becomes saturated. It continues to rise another 1.5 kilometers. What is its new temperature?

(c) After rising a total of 3 kilometers, the parcel is now at a pressure of 700 hPa. What is the density of the parcel? (You may assume the value of the gas constant R is $287 J \cdot kg^{-1} \cdot K^{-1} = 287 N \cdot m^{-1} \cdot kg^{-1} \cdot K^{-1}$.)

4. The mixing ratio w of a parcel is $3.5 g \cdot kg^{-1}$. The temperature of the parcel is $0^\circ C$ so the saturation mixing ratio ws is $3.8 g \cdot kg^{-1}$. What is the relative humidity of the parcel?

5. Does moisture (water vapor) in the atmosphere make vertical instability more or less likely? Explain.