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Slow climate mode reconciles historical and
model-based estimates of climate sensitivity
Cristian Proistosescu* and Peter J. Huybers

The latest Intergovernmental Panel on Climate Change Assessment Report widened the equilibrium climate
sensitivity (ECS) range from 2° to 4.5°C to an updated range of 1.5° to 4.5°C in order to account for the lack
of consensus between estimates based on models and historical observations. The historical ECS estimates
range from 1.5° to 3°C and are derived assuming a linear radiative response to warming. A Bayesian method-
ology applied to 24 models, however, documents curvature in the radiative response to warming from an evolving
contribution of interannual to centennial modes of radiative response. Centennial modes display stronger ampli-
fying feedbacks and ultimately contribute 28 to 68% (90% credible interval) of equilibrium warming, yet they
comprise only 1 to 7% of current warming. Accounting for these unresolved centennial contributions brings his-
torical records into agreement with model-derived ECS estimates.

INTRODUCTION
Estimates of equilibrium climate sensitivity (ECS) from global climate
models (GCMs) (1) and paleoclimate records (2) are generally
consistent with a range of 2° to 4.5°C, but a number of studies based
on historical instrumental records (3–7) yield a lower range of 1.5° to
3°C (8). These systematically lower observational estimates have been
interpreted as demonstrating that GCMs are overly sensitive to CO2

forcing and that the ultimate amount of warming that Earth would
experience at a given concentration of greenhouse gases is less than
previously thought (5, 7).

A major challenge in inferring ECS from instrumental records is
that the current climate system is not in energetic equilibrium. On av-
erage, Earth’s surface currently takes up between 0.1 and 0.9 W/m2

more heat than it loses (9), in which this rate of heating is denoted
asH. To extrapolate to the temperature at which radiative equilibrium
would be reestablished, a proportionality between changes in outgoing
radiation, R, and global mean temperature, T, is generally assumed
(3–8, 10), l = (F −H)/T. F represents anomalies in downward radiative
forcing, and the difference gives the upward radiative response, R =
F − H. If l is assumed constant over time, then ECS can be inferred
by zeroing outH and assigning F equal to the forcing associated with a
doubling of atmospheric CO2, giving an estimated ECS of F2×l

−1.
The validity of this extrapolation is questionable, however, because

of the well-documented time dependence of l, or the net radiative
feedback, in climate simulations (11–18). This time dependence is a
prime suspect for the systematic differences betweenGCMs and histor-
ical estimates of ECS (19). So far, efforts at resolving the discrepancy
have been stymied by the lack ofmethodology to quantitatively account
for changes in l (8). We derive a generalized fit of the change in l in
24 GCM simulations from phase 5 of the Climate Model Inter-
comparisonProject (CMIP5) (20) anduse the results to estimate the bias
inherent in historical energy budget constraints on climate sensitivity.

RESULTS
Time dependence in the net radiative feedback of GCMs is related to
changing patterns ofwarming (12, 17, 21) and interannual tropospheric

adjustment (22). Various simple linearmodels have been postulated to
describe this variability in l. One set includes a fast-responding upper
ocean that is coupled to amore slowly responding deep ocean (14, 23),
sometimes including an efficacy term that modifies howmuch surface
warming is associated with oceanic heat fluxes (13, 24). Another
simple model represents the presence of distinct regions that have
their own response time scales and feedbacks (16).

What model formulations are most useful for representing the
heterogeneous evolution of the forced response of GCMs remains
a subject of ongoing research, but it is possible to generically repre-
sent generically how global mean temperature evolves in existing
simple models (14, 16, 22–24), or any other linear system, using ei-
genmode decomposition (25)

Tn tð Þ ¼ anT2�
tnF2�

exp �t=tnð Þ∗F tð Þ ð1Þ

where * represents the convolution operator. Each eigenmode of the
temperature response, Tn, characterizes the rate and magnitude at
which global temperature is excited by radiative forcing. The rate
of response is governed by the time scale, tn, and the ultimate magni-
tude by a fractional contribution, an, of the ECS, T2×/F2×. The amount
of warming that is realized at time t is also a function of the struc-
ture of the forcing, F, where eigenmodes with small values of t are
more strongly excited by high-frequency variations than those with
larger values.

We expand the classical eigenmode decomposition of the tem-
perature response (25–28) by jointly considering the decomposition
of the radiative response. In any linear model of the climate system,
the eigenmodes of the radiative response are directly proportional to
those of the temperature response, Rn = lnTn, with each eigenmode
potentially having a distinct net feedback parameter ln (29). In par-
ticular, eigenmodes are inferred for simulated global average
temperature, T(t), and top-of-atmosphere energy flux, H(t), using a
full Bayesian methodology that accounts for autocorrelated noise in
T and H, uncertainties in extrapolating T and H to full equilibrium,
and uncertainties in forcing, F2×. Performing the inference on both
T and H allows for a joint posterior distribution of the eigenmode
decomposition and the equilibrium sensitivity without a priori speci-
fying an ECS, as is necessary with other methods (23, 25). Further-
more, the approach accounts for the fact that coefficients governing
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the distribution of allowable autocorrelations and uncertainties (the so-
called hyperparameters) themselves need to be inferred from the data.

Despite the advantages of the eigenmode approach, there is also a
limitation:Although the climate system is anticipated to evolve along a
continuum of climate modes (30), the duration of the model simula-
tions constrains us to fitting a small number of modes. Three eigen-
modes are used on the basis of fewer modes leading to systematic
discrepancies between our fit and the simulations during initial model
adjustment (fig. S1), and the use of more eigenmodes failing to im-
prove the fit, as judged by a Bayesian information criterion. This num-
ber of eigenmodes has been used elsewhere to describe the global
temperature response of GCMs to both an abrupt increase in CO2

and a slow ramp-up of the forcing (25, 26). Our Bayesian fits generally
parse the 140- to 300-year-long simulations into annual, decadal, and
multicentennial modes, consistent with previous results (25–27, 30),
although results differ slightly across GCMs (Table 1 and table S1).

Figure 1 illustrates the evolution of Earth’s energy imbalance with
global warming in a representative GCM, and results from 23 addi-
tional GCMs are shown in figs. S2 to S5. Toward the limit of zero
forced temperature response, our Bayesian inversion provides an
estimate of the radiative forcing associated with a doubling of CO2.
A broad range of 2.9 to 5.3 W/m2 [90% credible interval (CI)] across
the ensemble reflects rapid initial temperature adjustments that limit
the information that can be extracted from global mean values and
stochastic radiative imbalances contributed by internal climate varia-
bility that obscure the forced response. Simulations using fixed sea
surface temperatures (SSTs) can be used to independently constrain
F2×, but these may give estimates that are biased low because land
temperatures are allowed to evolve independently and tropospheric
adjustment further opposes radiative forcing (31). Ourmaximum like-
lihood values of F2× are larger than the fixed SST estimates from the

10 models reported in Assessment Report 5 (AR5) of the Inter-
governmental Panel on Climate Change (IPCC) (1) by a median of
0.1 W/m2, with only one estimate indicating a smaller value. Better
determination of the forcing simulated within GCMs and the forcing
historically experienced by the actual climate system would improve
understanding of climate sensitivity (32).

The other limit indicated in Fig. 1 is toward full equilibration of
top-of-the atmosphere radiation, but in which the approach of H
toward zero typically involves an inflection. The radiative response,
l(t), or the negative of the slope of H with respect to T, typically de-
creases inmagnitude, such that greater warming is required to achieve
radiative equilibrium. For these simulations, equilibrium warming
equates to ECS and has a median of 3.5°C across the ensemble, with
a 5 to 95% CI of 2.2° to 6.1°C. The skewed distribution of ECS (33)
can be seen in Fig. 1 as the geometric result of uncertainties in l(t)
having an asymmetric influence on the temperature at which top-of-
atmosphere energy flux reaches zero. Individual GCM ECS estimates
have maximum likelihood values similar to those reported by the
IPCC (table S1). However, the 95th percentile of ECS increases from

Table 1. Contributions of fast and slow modes to equilibrium and
historical warming. The posterior median and 5 to 95% CI values for the
time scale, t, and feedback factors, l, of individual eigenmodes are
provided, along with the fraction of warming contributed in equilibrium
and from historical forcing as of 2011.

Eigenmode parameters Median 5% 95%

t1 (years) 0.8 0.2 2.6

l1 (W/m2 per°C) 1.6 0.4 4.0

Contribution to inferred equilibrium warming 24% 10% 40%

Contribution to historical warming 47% 26% 75%

t2 (years) 9 4 37

l2 (W/m2 per°C) 1.4 0.8 2.8

Contribution to inferred equilibrium warming 32% 15% 48%

Contribution to historical warming 49% 24% 72%

t3 (years) 350 180 960

l3 (W/m2 per°C) 0.8 0.3 1.6

Contribution to equilibrium warming 44% 28% 66%

Contribution to historical warming 3% 1% 7%
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Fig. 1. Evolution of top-of-atmosphere energy flux as a function of global
temperature. Annual average (brown dots) and 10-year running average values
(black line) of top-of-atmosphere energy flux (TOA flux or H) and global-average
temperature (T) are shown for a representative CMIP5 GCM (NorESM1-M) along
with draws from the Bayesian fits (pink lines) and their median (red line). The dis-
tributions of radiative forcing (green line along y axis) and ECS (purple line along
x axis) are estimated as part of the Bayesian fit. Curvature in the fit can be compared
against a constant equilibrium feedback parameter that connects median radiative
forcing to median warming (dashed gray line), where convexity indicates a de-
crease in themagnitude of l(t) with time. Note that the line of constant l used here
connects median TOA and ECS values, whereas a regression line from the Gregory
method (10) is used elsewhere. Also, note that both T and H are halved to facilitate
comparison of these results using quadrupled CO2 forcing with the standard def-
inition of ECS using doubled CO2. Ticks at top of graph indicate simulation year.
NorESM1-M was chosen on the basis of having the minimum total deviation from
the ensemble median in ECS, ICS, and F2× (see figs. S4 to S7 for the other 23 GCMs.)

..........................................................................................................................

..........................................................................................................................
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4.5° to 6.1°C due to accounting for inflections in l(t) more fully as
compared to previous estimates (34, 35).

As simulations warm, the net feedback operating at any instant
represents a weighted average across each mode in the Bayesian fit

lðtÞ ¼ ∑N
n¼1lnTnðtÞ
∑N

n¼1TnðtÞ
ð2Þ

Estimates of sensitivity based on the historical record are obtained by
dividing F2× by l(t). Typically, l is assumed constant, but we include
t to emphasize that Eq. 2 indicates time dependence. We refer to these
estimates as instantaneous climate sensitivity, ICS(t) = F2×/l(t). ICS is
sometimes referred to as effective ECS (8) when instrumental esti-
mates are discussed but is distinct from other definitions of effective
ECS used for GCMs (15). (Our point is that ICS may be an ineffective
estimate of ECS.)

Equation 2 represents how different modes of warming cause
variations in ICS over time. The slowest mode has a characteristic
time scale of 350 years (CI, 180 to 960 years) and contributes a
median of 44% (CI, 28 to 66%) of the total inferred equilibrium
warming across the Bayesian fits. Historical forcing, however, only
weakly excites this slow mode, such that it only contributes 3% (CI,
1 to 7%) of the historical warming (Fig. 2 and Table 1). This contri-
bution is computed by applying the best estimate of effective historical
forcing from 1750 to 2011 provided in IPCCAR5 (36) to the Bayesian
fit associated with each GCM. This small response reflects that the
slowest mode still remembers volcanic cooling episodes prevalent be-
tween 1750 and 1900 and that it is slow to realize warming frommore
recent increases in radiative forcing. In comparison, had the 2011
forcing of 2.2 W/m2 been continuously applied since 1750, the slow

mode would instead contribute 29% (CI, 18 to 43%) of the warming.
The structure of historical forcing is thus strongly biased toward
sampling the faster modes of response with characteristic time scales
of 0.8 years (CI, 0.2 to 2.6 years) and 9 years (CI, 4 to 37 years).

The faster modes of response have larger magnitudes of l, with
best estimates of 1.6 W/m2 per°C (CI, 0.4 to 4.0W/m2 per°C) for the
ultrafast mode and 1.4 W/m2 per°C (CI, 0.8 to 2.8 W/m2 per°C) for
the fast mode, as compared to 0.8 W/m2 per°C (CI, 0.3 to 1.6 W/m2

per°C) for the slow mode. Larger magnitudes of l indicate that less
warming is required to achieve radiative equilibrium. Thus, sampling
essentially only the fast modes in historical estimates biases ICS
toward lower values than ECS. In particular, sampling ICS in a man-
ner that is consistent with observational estimates leads to an ICS of
2.5°C (CI, 1.6° to 4.2°C), or 1°C cooler than ECS (Fig. 3).

It is also possible to explore the spatial patterns associated with each
mode through regression onto the temperature variability expressed at
individual grid boxes (29). As can be expected from differences in ef-
fective thermal inertia (14, 37–39), the fast and intermediate modes
project primarily onto continental regions, whereas the slow mode
projects most strongly onto regions associated with oceanic upwelling
(fig. S6). The implied pattern of transient warming is in good agree-
ment with historical observations andmodel simulations (fig. S7). Fur-
thermore, our inference of the slow eigenmode being relatively more
powerful agrees with simulations indicating a strong net radiative
feedback associated with warming in the Eastern Equatorial Pacific
(16) and the Southern Ocean (17), as well as with simulations showing
that prescribing historical SSTs yields a smaller net feedback relative to
allowing upwelling regions to more fully equilibrate (18, 21). Our
results thus indicate that the slow warming of the Eastern Equatorial
Pacific and Southern Ocean are primarily responsible for the distinc-
tion between ECS and ICS.

DISCUSSION
A recent review of observationally based estimates of ICS shows a
median of 2°C and an 80% range of 1.6° to 3°C, wherein the range
is obtained by trimming the highest and lowest estimates from across
the 10 available studies (8). This range of observationally inferred
ICS values is contained within and centered on the maximum like-
lihood value of the distribution of ICS values that we estimate from
applying historical forcing to the GCM eigenmode decomposition
(Fig. 3B). Accounting for further issues involving forcing efficacy
(40, 41) and temperature sampling methodology (42) might narrow
the distributions and bring them into even closer agreement. Note
that although historical GCM runs are consistent with instrumental
temperature records (43), ICS cannot be directly determined from
these runs because the radiative forcing is insufficiently known, gener-
ally having been diagnosed under the explicit assumption of constant
radiative feedback (35).

Slow feedback contributions to warming only weakly manifest in
the current climate system because the rise in greenhouse gas con-
centrations that occurred primarily in the past 50 years has forced
the system for a short period relative to the multicentennial time
scale of the dominant slow mode. This small manifestation makes it
difficult, if not impossible, to accurately estimate ECS from historical
observations and highlights the importance of paleoclimate records
for the purpose of observationally constraining slow feedback pro-
cesses (2). Looking forward, these results also highlight the fact that
the warming current greenhouse gas concentrations commit us to
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Fig. 2. Evolution of fast and slow modes under historical forcing. Response of
the CMIP5 GCMs to AR5 historical forcing from 1750 to 2011 (brown) and to an abrupt
increase in 1750 to the 2011 forcing value of 2.2 W/m2 (blue). Responses are derived
from the medians of our Bayesian fit, which permits for parsing ultrafast (mode 1, solid
lines), fast (mode 2, dashed line), and slow (mode 3, dash-dot lines) contributions.
Equilibrium contributions (green lines), referred to as committed warming in this con-
text (43, 44), are also parsed according to mode for a net forcing of 2.2 W/m2. Mode 3
accounts for 44% of equilibrium warming but only 3% of present warming (see
Table 1 for the median and 5 to 95% range for relevant parameters).
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(44, 45) will evolve according to a slow mode of response that is dis-
tinct from present warming patterns.

MATERIALS AND METHODS
Eigenmode decomposition was performed on global and annual aver-
age temperature, T, and top-of atmosphere energy flux,H, using a full
Bayesian statistical inference methodology. Simulations involving an
instantaneous quadrupling of CO2 were considered across 24 GCMs
(table S1). These simulations have the highest signal-to-noise ratio of
the available CMIP5 simulations, do not suffer from issues of col-
linearity between forcing and response, as in simulations with linear
increases in forcing, and are not subject to uncertainties in the struc-
ture of the applied forcing, as in the historical GCM simulations; and
the sustained forcing most strongly excite the slowest modes of re-
sponse. In addition, values of ECS stated by the IPCC (1) are based
on these abrupt quadrupling simulations (34, 35).

The constant forcing, denoted as 2F2×, permits simplification of
Eq. 1 (25), to

TðtÞ ¼ 2T2� ∑
3

n¼1
an
�
1� expð�t=tnÞ

�
ð3Þ

where the evolution toward an equilibriumwarming of 2T2× involves
three eigenmodes that have contributions of relative magnitudes, an,
and characteristic time scales, tn.

The radiative response to increased global average surface tem-
perature is represented as evolving along the same eigenmodes

RðtÞ ¼ 2F2� ∑
3

n¼1
bn
�
1� expð�t=tnÞ

�
ð4Þ

toward a radiative equilibrium wherein R equals the radiative forcing,
2F2×. Fractional contributions of eigenmode n are given by bn. It
follows that the radiative feedback associated with mode n is

ln ¼ Rn

Tn
¼ bnF2�

anT2�
ð5Þ

where F2×/T2× is the net equilibrium feedback. Previously described
simple linear models for changes in l(t) (14, 19, 23, 25) assumed three
or fewer modes such that their temporal evolution can be fully de-
scribed using Eqs. 3 to 5 (29).

The radiative response,R, is not directly available fromGCMsimu-
lations. However, the top-of-atmosphere energy flux, H, could be re-
lated to the radiative response as H = F − R, yielding

HðtÞ ¼ 2F2�

�
1� ∑

3

n¼1
bn
�
1� expð�t=tnÞ

��
ð6Þ

for the abrupt CO2 quadrupling experiment. Note that responses were
corrected for GCM drift using the standard methodology (35),
wherein drift values for T andH were computed in preindustrial con-
trol runs and subtracted from the quadrupling simulation.

Bayesian inference was performed by conditioning the parameters
in Eqs. 3 and 6 on time series ofT andH from the CMIP5 simulations.
Variability thatwas not linearly related to the forced response inT andH,

Fig. 3. Equilibrium and instantaneous climate sensitivity distributions. (A) Dis-
tribution of ECS from 5000 posterior draws of our Bayesian fit to each of 24 GCMs
(indicated by colors). Aggregating across the posterior draws for all GCMs yields a
median of 3.4°C and a 5 to 95% CI of 2.2° to 6.1°C. (B) Similar to (A) but for instanta-
neous climate sensitivity. ICS is obtained by applying AR5 historical forcing to our
Bayesian fits and has a median of 2.5°C and a 5 to 95% CI of 1.6° to 4.2°C. The range
of ICS values estimated in historical studies (vertical dashed black lines) (8) bracket the
most likely GCM values, demonstrating consistency between observational and GCM
results when they are appropriately compared.
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which can arise, for example, from internal modes of variability, such as
ElNiño,was represented as anormally distributed first-order autoregres-
sive processes with autocorrelation parameters rT and rH and variances
s2T/(1 − r2T) and s

2
H/(1 − r2H). This formulation was supported by the

posterior residuals (figs. S8 and S9) that had a structure consistent with
an autoregressive process and exhibited only minor deviations from a
normal distribution when subjected to a Kolmogorov-Smirnov test that
accounts for autocorrelation (46).

Uniform priors were prescribed for parameters defined on bounded
intervals. Autocorrelations rT and rH were defined on the interval 0
to 1, and an and bn were defined on the surfaces defined by the sum
of points,∑3

n¼1an ¼ 1 and∑3
n¼1bn ¼ 1. Unbounded parameters were

given weakly informative exponential priors that helped the sampling
scheme converge more quickly by focusing the sampling away from
implausible regions. T2× and F2× had exponential priors with means
of 10°C and 10 W/m2, respectively; time scales t1, t2, and t3 had
exponential priors with means of 10, 100, and 1000 years, respec-
tively; and SDs sT and sH had exponential priors with means of 10°C
and10W/m2, respectively. The posteriormaximum likelihood value for
each parameter was consistent within 1% even if the means of all
exponential priors were increased or decreased by a factor of 10,
whereas the upper 95% value associated with each parameter was
consistent within 10%. This low sensitivity to drastic changes in priors
demonstrated that the simulation results from GCMs determined the
posterior estimates.

Full Bayesian statistical inference was performed using the statisti-
cal modeling platform Stan (47). In particular, a joint posterior
distribution was obtained for F2×, T2×, tn, an, bn, sT, sH, rT, and rH
using a Hamiltonian version of Markov chain Monte Carlo with a
No-U-Turn Sampler (48). Posterior distributions for radiative feed-
backs, ln, were computed from the joint posterior using Eq. 5. Results
shown in the main text were from 5000 draws across five chains of
1000 realizations. Each chain was sampled after an initial burn-in pe-
riod of 500 draws. To provide a complete representation of our results,
we provided these draws from the joint posterior in data file S1.

ICS was inferred for the historical period by applying historical
forcing to the estimated eigenmode response for each GCM. In partic-
ular, we applied the best estimateAR5historical forcing (36), as used in
previous studies (5, 7, 8), to draws from the posterior distribution of
the eigenmode decomposition for each GCM to obtain the time series
of T and H.

In the main text, l(t) was computed as (F −H)/T, where anomalies
in forcing, heat uptake, and global temperature were computed as the
departures in 2011 from preindustrial conditions, and ICS was ob-
tained as F2×/l(t). Note that values of F2× associatedwith each posterior
draw could vary from the 3.7 W/m2 assumed in the AR5 estimate of
historical forcing. To propagate this uncertainty, we multiplied F by
F2×/3.7 for each draw before obtaining the values of H and T. We ob-
tained amedian ICS value across all draws andGCMs of 2.5°C (CI, 1.5°
to 5.4°C). Inferences of “effective ECS” from the observational record,
whichwe referred to as ICS, had been obtainedusing different intervals,
but these alternate choices did not much influence our estimates. For
example, computing l(t) = (DF−DH)/DT between the intervals 1859 to
1883 and 1995 to 2011, following Otto et al. (5), we obtained an ICS of
2.6°C (CI, 1.6° to 4.2°C). Similarly, using intervals of 1860 to 1879 and
2000 to 2009, following Gregory et al. (3), we obtained an ICS of 2.6°C
(CI, 1.6° to 4.1°C), and using the difference between values in 1955 and
2011, following Roe and Armour (4), we obtained an ICS of 2.3°C
(CI, 1.5° to 4.2°C).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/7/e1602821/DC1
Supplementary Text
fig. S1. Structure of residuals.
figs. S2 to S5. Figure 1 continued.
fig. S6. Spatial projection of the eigenmodes.
fig. S7. Historical temperature anomalies.
fig. S8. Autocovariance of temperature residuals.
fig. S9. Autocovariance of energy flux residuals.
table S1. Posterior parameter values for each GCM.
data file S1. Ensemble of posterior draws.
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Supplementary Text  

S1: Spatial Projection of Eigenmodes  

Generalizing equation (1) in the main manuscript, we can write the evolution of local 

temperatures in the abrupt quadrupling experiment as  

 
		
T(x , y ,t)=2T2×(x , y) αn

n
∑ (x , y)(1−exp(−t /τ n))   (1.1) 

where T2× is the local equilibrium sensitivity to a doubling of CO2 and αn (x,y) is the local 

relative contribution of each eigenmode, with 		 αnn∑ (x , y)=1 .The global analysis of eigenmodes 

was predicated on the assumption that equilibrium is reached when H asymptotes to zero.  Due to  

lateral heat fluxes in the system, however, equilibrium does not generally imply that H(x,y) →0.   

Furthermore, it has been shown that linearity in the temperature response to radiative forcing  

holds much better globally than locally (49). A more complete eigenmode decmposition approach  

that is applicable at the local level and computationally tractable awaits development.   

Here we simply examine how local temperatures evolve along the timescales defined at the global 

mean.  We fix τn to the posterior median values obtained from the global analysis, such that we 

can rewrite equation (1) as   

 		T(x , y ,t)= Tn∑ (x , y)φn(t)  (1.2) 

where ϕ n(t)=1-exp(-t/τn), and Tn(x,y)=2 T2×(x,y) α n(x,y) is the equilibrium warming associated 

with each eigenmode for a quadrupling of CO2. Tn(x,y) is obtained by performing a multiple 

linear regression of T(x,y,t) on ϕ n(t). The amplitudes of these modes are illustrated in fig. S2. 

Although the accuracy of this local projection is not quantified in the way that our global 

projections are and our main results do not depend upon these calculations, these local results are 

nonetheless useful for purposes of comparison against other simulations and studies.   



 

 

Convolving the local eigenmodes with the AR5 historical forcing gives an approximation of the  

historical pattern of warming.  The local warming between a reference period of 1961-1990 to  

2000-2011 is similar to that found in historical GCM runs and the HadCRUT4 observational  

dataset (50), both in pattern and magnitude (fig. S3).  

  

S2: Generalized Linear Model   

We provide solutions based on linear response theory for two simple models used in the literature  

and cited in the main text to describe time dependency of the net radiative feedback.   

Linear Model Response: Let y be the state vector the climate system. If we assume that y  

describes small anomalies around a state of equilibrium, the evolution of the climate system in  

response to an external forcing F is described by   

 
			
d
dt
y = Jy+F(t)   (1.3)  

   

where J is the Jacobian of the system. We apply classic linear system methods and diagonalize  

the Jacobian as   

 		J=P
−1DP   (1.4)  

where P is the modal matrix containing the eigenvectors of the Jacobian, and D is the diagonal  

spectral matrix containing the eigenvalues. The exponential decay time scales of the eigenmodes  

are the negative inverses of the eigenvalues, such that τn = −1/D nn. The system has the well- 

known solution (51)   

 			y = y 0( )+ P−1
0

t

∫ eDτPF t −τ( )dτ   (1.5)  

Global mean temperature is a weighted sum of members of the state vector corresponding to  

surface temperature   



 

 			T =wT
t y  (1.6) 

Further, we assume that the system starts from a state of equilibrium, y(0) = 0, and that there is a 

single forcing time series, F(t), imposed on the system that is projected onto the different 

dimensions of the system according to  

 			F =wFF(t)  (1.7) 

We can now write the global temperature response, T, as  

 			T = wT0

t

∫ P−1eDτPwFF t −τ( )dτ   (1.8) 

 
			 
T = wTl

l
∑

k
∑

n
∑ P−1

lnPnkwFk exp −t /τ n( )! F(t)   (1.9) 

 

If we divide and multiply by τk, and by the equilibrium sensitivity parameter  

 
			

Teq
Feq

= −wTJ
−1wF = −wTP

−1D−1PwF   (1.10) 

we recover Eqn. 1 in the main manuscript  

 
		 
T =

Teqαn

Feqτ n
exp

n
∑ −t /τ n( )! F(t)   (1.11) 

where  

 
			
αn =

wTm
k
∑

m
∑ P−1

mnτ nPnkwFk

wTP
−1D−1PwF

  (1.12) 

with 
		

αn
n
∑ =1 .  

The net global radiative response, R, will likewise be a linear function of the state vector   



 

 

 			Rg =wRy   (1.13)  

which has to satisfy the condition that in equilibrium Req = Feq, and thus   

 		wRP
−1D−1PwF =1  (1.14)  

We can now write   

 
			 
R = wRm

n
∑

k
∑

m
∑ P−1

mnPnkwFk exp −t /τ n( )! F(t)   (1.15)  

 
		 
R = βn

n
∑

exp −t /τ n( )
τ n

! F(t)   (1.16)  

with   

 
		
βn = wRm

k
∑

m
∑ P−1

mnτ nPnkwFk   (1.17)  

The radiative feedbacks associated with each eigenmode can be computed (as per Eqn. 5 in the  

main text) as λn = βn/αnFeq/Teq   

 

		

λn =
wRm

k
∑

m
∑ P−1

mnτ nPnkwFk

wTm
k
∑

m
∑ P−1

mnτ nPnkwFk

  (1.18)  

  

  

Regional feedbacks model: In order to explain the time dependency of the net feedback, a three- 

box model has been proposed (16). The model has three independent regions, each evolving with  

their own characteristic time scale and radiative feedback   

 
		
C j

dTj
dt

= −λ jTj +F   (1.19)  



 

                                                 
 

 
		
T = 13 Tj

j=1

n

∑   (1.20) 

The matrices associated with this model are  

 

			

wF =
1/3
1/3
1/3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, wT =

1/C1
1/C2
1/C3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, wR =

λ1 /3
λ2 /3
λ3 /3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  (1.21) 

 

			

J=

− λ
C1

0 0

0 −
λ2
C2

0

0 0 −
λ3
C3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

  (1.22) 

 

Since the Jacobian matrix is already diagonal, each region represents an eigenmode, such that the 

solution is trivial  

 		τ j =C j /λ j   (1.23) 

 

		

α j =
1
3

λ j
−1

λ j
−1

j=1

n

∑
  (1.24) 

and the radiative feedbacks associated with each eigenmode are equal to the regional feedbacks. 

Energy fluxes between regions can be modeled by adding symmetrical off-diagonal terms in the 

Jacobian matrix, however in that case the radiative feedbacks associated with each eigenmode 

would no longer be equal to the regional feedbacks.  

 Two-layer ocean model: Another standard conceptualization of the evolution of the 

system is one where a fast-responding upper ocean is coupled to a slow-responding deep ocean,  



 

                                                 
 

 
		
Cs
dTs
dt

= −λeqTs −εγ (Ts −Td )+F   (1.25)  

 
		
Cd
dTd
dt

= γ (Ts −Td )   (1.26)  

Cs,d are the heat capacities of the surface and deep ocean, and Ts,d are the temperatures. Thermal  

coupling between the surface and deep is represented by γ, the equilibrium feedback parameter is  

λeq, and radiative forcing is F. Also included is a term for the efficacy of ocean heat uptake, ε.  

This term can be understood in the context of an effective forcing whereby the same global  

radiative forcing can illicit different global temperature responses (52), but where it is the transfer  

of heat between surface and deeper layers that forces surface temperature (13, 14). The radiative  

response of this two-layer ocean model can be written as   

 		R = λeqT −(1−ε )(T −Td )   (1.27)  

and the matrices associated with this model are   

 

			
wF =

1/Cs
0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
wT =

1
0

⎡

⎣
⎢

⎤

⎦
⎥ wR =

λeq + ε −1( )
1−ε

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (1.28)  

 

			

J=

−λeq + εγ
Cs

εγ
Cs

γ
Cd

−γ
Cd

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  (1.29)  

They can be used to solve for   

 

		
τ1,2 =

2CdCs
εγ +λeq( )Cd +γCs ±Δ

  (1.30)  

 
		
α1,2 =

Δ ± εγ −λeq( )Cd +γCs
2Δ   (1.31)  



 

 

 
		
λ1,2 = λeq

1+ ε
2 + ε −1( )γCs + εγCd ±Δ2εCd

  (1.32) 

where 

 		Δ = (εγ +λeq)Cd +γCs( )2 −4γλeqCdCs   (1.33) 

As expected, for the case of unit efficacy the feedbacks along the two eigenmodes are the same.  

Another formalism proposed to account for time-variability in feedback strengths is that of a 

virtual forcing (22), but because this representation is mathematically equivalent to the two-layer 

ocean model described here, the same form of eigenmode solution holds.  

 

 

  



 

                                                 
 

  

  

ig  S1  Structure of residuals. Residual temperature and top-of-atmosphere energy flux  

between GCM simulations and Bayesian fits. Residuals are shown for two-eigenmode  (a, c)  

and three-eigenmode (b, d) fits for each GCM (colored lines). The median residual across  

models (thick black line) shows systematic residuals for the two-eigenmode fits during initial  

decades after abrupt quadrupling of CO2 concentrations of model adjustment that are not  

present in the three-eigenmode fit. All eigenmode fits use posterior maximum likelihood  

value.  

f . .



 

 

 

ig. S2  Fig  1 continued.  
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ig. S3  Figure 1 continued.   
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ig. S4  Figure 1 continued.  
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ig. S5  Figure 1 continued.  
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ig. S6  Spatial projection of the eigenmodes. Local equilibrium amplitude,  

αn(x,y)T2×(x,y), for the fast (0.7 years, a), intermediate (9 years, b) and slow (350 years, c)  

eigenmodes, under  a uniform global radiative forcing value of 3.6 W/m2.  

  

  

f .



 

 

 

ig. S7  Historical temperature anomalies averaged over 2000-2011, relative to a reference 

period of 1961-1990, obtained from the ensemble average of the spatial projection of 

eigenmodes (a), the ensemble average of CMIP5 historical model runs (b), and the 

HadCRUT4 dataset (50) (c). 

 

 

 

 

f .



 

                                                 
 

  

 
ig. S8  Autocovariance of temperature residuals. Autocovariance of the residuals between  

the GCM simulations and the Bayesian fit for each model (red), and that inferred for residual  

noise by the Bayesian fit (blue, from values of σT and ρT ). Maximum likelihood parameters  

associated with each Bayesian fit are used in these calculations. The p-value of a  

Kolmogorov-Smirnov normality test for the residuals that accounts for autocorrelation (46)  

is also displayed for each GCM. Only MIROC 5 shows significant deviations from normality  

(p < 0.05) in the temperature residuals.  

f .



 

 

 
 ig. S9  Autocovariance of energy flux residuals. Same as Fig. S8, but for the top-of- 

atmosphere energy flux, H. Statistically significant  deviations from a normal  distribution  

are  found  for MIROC  5, CCSM4 and  IPSL-CM5B-LR. Notwithstanding  the  significance  

of the  p-value  for MIROC  5, four rejections  out  of 48 trials  across the  results  for  

temperature and  energy flux is consistent with  that expected  when the  null hypothesis   

holds and a test  is performed  at the 5% significance level.  
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model 
length 
years 

τ1       τ2         τ3 
years 

α1         α2         α3 λ1       λ2       λ3 
◦ C/(W/m2 ) 

σT           σH            ρT         ρH 
◦ C       W/m2 

F2×        ECS      ICS 
W/m2        ◦ C       ◦ C 

inmcm4 
GISS-E2-R 
GISS-E2-H 

GFDL-ESM2G 
GFDL-ESM2M 
MRI-CGCM3 

IPSL-CM5B-LR 
MIROC5 

BCC-CSM1-1 
CNRM-CM5 

CCSM4 
NorESM1-M 

CNRM-CM5-2 
MPI-ESM-MR 
MPI-ESM-P 

MPI-ESM-LR 
IPSL-CM5A-LR 

GFDL-CM3 
CanESM2 

IPSL-CM5A-MR 
FGOALS-s2 

MIROC-ESM 
CSIRO-Mk3-6-0 
HadGEM2-ES 

150 
151 
151 
300 
300 
150 
160 
151 
150 
150 
151 
150 
140 
150 
150 
150 
260 
150 
150 
140 
150 
150 
150 
149 

0.4       5          535 
0.4       3          229 
0.7       8          191 
1.0       6          407 
0.7       6          348 
0.7      11          209 
1.1      15          278 
1.5       9          442 
0.8       8          157 
0.6       9          271 
0.3       5          212 
0.5       7          342 
0.5       7          380 
0.5       7          234 
0.8       9          255 
1.2       9          267 
1.0      20          528 
2.7      54        1010 
2.5      30          597 
0.4      11          434 
0.2       5          403 
0.7      10          453 
0.9      11          417 
0.3       9          688 

0.19      0.53      0.28 
0.30      0.25      0.44 
0.33      0.31      0.37 
0.31      0.23      0.46 
0.20      0.31      0.49 
0.28      0.35      0.36 
0.31      0.27      0.42 
0.40      0.20      0.38 
0.26      0.35      0.39 
0.25      0.46      0.29 
0.19      0.34      0.47 
0.18      0.28      0.54 
0.21      0.39      0.40 
0.23      0.34      0.43 
0.30      0.26      0.44 
0.28      0.25      0.46 
0.26      0.35      0.39 
0.35      0.30      0.36 
0.38      0.19      0.43 
0.15      0.37      0.49 
0.10      0.37      0.53 
0.19      0.35      0.46 
0.14      0.15      0.70 
0.10      0.28      0.62 

1.7      1.5      1.9 
2.1      3.0      1.4 
2.2      1.8      1.4 
0.5      2.5      0.8 
1.2      1.9      0.9 
2.1      1.3      1.0 
1.6      1.1      0.7 
1.2      2.0      1.2 
1.7      1.4      1.0 
1.7      1.0      1.3 
1.1      1.8      0.9 
2.1      1.6      0.7 
0.6      1.2      0.9 
2.0      1.6      0.9 
1.5      1.8      0.8 
1.1      1.7      0.8 
0.8      0.8      0.8 
1.2      0.7      0.6 
1.1      1.2      0.5 
1.8      0.9      0.6 
3.2      1.0      0.7 
2.7      0.9      0.8 
2.0      1.2      0.3 
2.8      0.9      0.3 

0.06        0.19        0.55      0.06 
0.06        0.17        0.63      0.05 
0.05        0.17        0.23      0.03 
0.08        0.29        0.68      0.01 
0.08        0.29        0.46      0.01 
0.08        0.24        0.62      0.01 
0.12        0.40        0.10      0.01 
0.15        0.36        0.35      0.14 
0.06        0.19        0.50      0.04 
0.07        0.19        0.38      0.03 
0.09        0.26        0.54      0.06 
0.07        0.27        0.53      0.06 
0.07        0.20        0.53      0.03 
0.11        0.34        0.40      0.06 
0.13        0.36        0.26      0.05 
0.12        0.35        0.26      0.05 
0.11        0.22        0.40      0.03 
0.10        0.30        0.31      0.02 
0.10        0.26        0.33      0.03 
0.08        0.22        0.60      0.03 
0.13        0.39        0.47      0.04 
0.08        0.23        0.51      0.03 
0.12        0.38        0.39      0.04 
0.09        0.29        0.46      0.08 

3.1          1.9        2.4 
4.4          2.2        1.5 
4.3          2.4        1.9 
2.9          2.7        2.9 
3.4          2.7        2.4 
4.0          2.7        2.2 
3.1          2.8        2.7 
4.0          2.9        2.6 
3.9          2.9        2.4 
4.0          3.1        2.8 
4.0          3.2        2.5 
3.9          3.2        2.1 
3.4          3.5        3.9 
5.0          3.6        2.1 
4.8          3.7        2.3 
4.3          3.9        2.7 
3.2          4.0        4.4 
3.5          4.1        3.4 
3.9          4.4        3.4 
4.0          4.5        3.1 
5.0          4.7        2.4 
5.8          5.0        2.3 
4.0          5.7        2.4 
4.6          6.4        2.6 

Ensemble Median 
Ensemble 5th percentile 
Ensemble 95th percentile 

 0.7       9          354 
0.2       4          179 
2.6      37          956 

0.24      0.32      0.44 
0.10      0.15      0.28 
0.40      0.48      0.66 

1.6      1.4      0.8 
0.4      0.8      0.3 
4.0      2.8      1.6 

0.09        0.27        0.45      0.03 
0.05        0.17        0.15      0.00 
0.14        0.40        0.68      0.16 

3.9          3.4        2.5 
2.9          2.2        1.6 
5.9          6.1        4.2 

  
able S1  Posterior parameter values for each GCM. Median values for  

parameters in the Bayesian fit to each GCM. Ensemble values at bottom are  

computed assuming each GCM is equally likely.  
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