What is GFD?

ATM S 509/OCEAN 512
Geophysical Fluid Dynamics I
1-4-17

Key aspects of geophysical flows

- Rotation
- Stratification

Also:

- Topography/bathymetry/ inhomogeneous surface
- Latent heating/other diabatic terms

- Development of equations for the atmosphere and ocean
 - Fluid properties of air and water
 - Ways to talk about stratification
 - Mathematical formulation of rotating reference frame

- Conservation equations
 - Energy
 - Vorticity
 - Potential vorticity

- Scaling arguments
 - To rule out particular terms and find dominant balances
 - Deriving simplified equations
 - Sometimes based on order of magnitudes
 - Sometimes formal asymptotic expansions in small nondimensional parameters

- Examination of transient and steady response to forcing
 - Waves
 - Linear theory, Fourier analysis

- Instabilities
 - Convective
 - Barotropic, baroclinic, inertial

- Idealized physical systems
 - To illustrate phenomena most succinctly and elegantly
- Lab experiments/numerical experiments

Equations of Motion

- Conserved tracer
- Momentum equation
- Mass equation
- Equation of state

Equation of state for seawater

Equation of state for seawater

Fig. 1.3 A temperature-salinity diagram for seawater, calculated using an accurate empirical equation of state. Contours are (density -1000) kg m⁻³, and the temperature is potential temperature, which in the deep ocean may be less than *in situ* temperature by a degree or so (see Fig. 1.4). Left panel: at sea-level ($p = 10^5$ Pa = 1000 mb). Right panel: at $p = 4 \times 10^7$ Pa, a depth of about 4 km. Note that in both cases the contours are slightly convex.

Equation of state for seawater

Fig. 3.2. The ranges of temperature T (in °C) and salinity S for 98% of the ocean as a function of depth [From Bryan and Cox (1972)], and the corresponding ranges of density σ and potential density σ_{θ} (see Appendix 3).

More on nonlinear eqn of state

Mix these two parcels

More on nonlinear eqn of state

Mix these:

Fig. 1.3 A temperature-salinity diagram for seawater, calculated using an accurate empirical equation of state. Contours are (density -1000) kg m $^{-3}$, and the temperature is potential temperature, which in the deep ocean may be less than *in situ* temperature by a degree or so (see Fig. 1.4). Left panel: at sea-level ($p=10^5\,\mathrm{Pa}=1000\,\mathrm{mb}$). Right panel: at $p=4\times10^7\,\mathrm{Pa}$, a depth of about $4\,\mathrm{km}$. Note that in both cases the contours are slightly convex.

Density of Air vs Ocean

Fig. 3.3. Temperature variation with geopotential height for the U.S. Standard Atmosphere (solid line). This consists of straight-line segments with breaks at 11, 20, 32, 47, 51, and 71 km. The surface temperature is 15°C and the gradients, starting from the surface, are -6.5, 0. 1.0, 2.8, 0, -2.8, and -2.0 K km⁻¹. The dashed line shows the lowest and highest monthly mean temperatures obtained for any location between equator and pole, whereas the dotted line shows estimates of the 1% maximum and minimum temperatures that occur during the warmest and coldest months, respectively, in the most extreme locations. The scale at the right gives pressures and densities at 10-km intervals for the standard profile. [From NOAA/NASA/USAF, 1976.]

Air is much less dense than water (3 orders of mag or more)

Also air density changes much more than sea water (orders of mag vs 2%)