GFD I

Frierson

Lecture 3: 1-9-17

Last time...

- Thermodynamic equation
 - Atmospheric equation can be written in terms of theta, T or rho
 - Approximate oceanic equation:
 - C DT/Dt = Q
- Adiabatic lapse rate: 9.8 K/km for atmos
 - Around 0.15 K/km for ocean
 - Ocean pressures increase 1 bar/10 m

Now you can tell your grandparents...

 Why hot air rises, but air is cold on top of a mountain!

Density/potential density of seawater

Fig. 3.2. The ranges of temperature T (in °C) and salinity S for 98% of the ocean as a function of depth [From Bryan and Cox (1972)], and the corresponding ranges of density σ and potential density σ_{θ} (see Appendix 3).

Today

- Buoyancy/static stability
- Moisture
 - Latent heating and equivalent potential temperature

Atmospheric Latent Heat Content

Surface moisture content, in Kelvin (Lq/c_p)