GFD1 AS509/0C512 Winter Q. 2017 Dargan Frierson
lab 2 P.B.Rhines Tues 17 Jan 12.30
Rotating fluids-I

In classical fluid dynamics, without the effects of rotation or density stratification, the fluid has no vorticity
unless viscous forces or external forces produce it. If a fluid starts from rest (no velocity, no vorticity), it cannot
develop vorticity. Viscous forces arise in boundary layers at rigid boundaries, and are often the main source of
vorticity, and thus are important to the production of fluid dynamical drag and propulsion.

All this changes in a rotating fluid. Rotation of the fluid as a whole provides a background vorticity equal to
twice the rotation rate €2, regardless of viscosity. This omnipresent vorticity can be amplified and expressed in

ocean eddies and atmospheric weather systems. The Earth’s rotation vector Q has a definite polar axis,
deciding the orientation of the planetary vortex lines.

It helps to consider a mechanical form of solid body rotation: a gyroscope. We use bicycle wheels to gain a
sense of the dynamics of steady rotation. A steadily rotating point mass is accelerating, despite its constant
speed: the direction of the velocity changes, requiring a force toward the center of rotation. Rotational motion

involves angular momentum, call it a.m., formed by taking the cross product of a position vector R from the
center of rotation to the mass, and the velocity U which is perpendicular to R. For the gyroscope these are
perpendicular, so that a.m. is simply MRU, where U is the magnitude of U . With the angular velocity of the
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The angular momentum L=MR*Q=MRxU , which here is MRU, changes at a rate equal to the applied
torque. M is the mass, F' is an external force, R X F the external torque, and I = MR? is called the moment of

inertia. Torque vectors perpendicular to €2, such as the gravity force acting through the center of mass, or a
twisting applied to the axle of the gyroscope, will change the direction but not the magnitude of the a.m. With
the mass distributed about the rim of the wheel at radius R, the equations are the same. Changing the a.m.,
by tilting the bicycle wheel, requires a torque which may need to be quite strong, particularly with heavy
(water-filled) tires. More generally, for a rigid body of arbitrary shape, the moment of inertia I is a tensor

Standing on a lazy-susan platform, and twisting the rotating wheel, the change in angular momentum of the
wheel is communicated to the person holding it. Strangest of all, the gyroscope set on the floor (or with its axle
in the palm of your hand) does not fall down...it gradually rotates (‘precesses’) about the vertical. The torque of
the gravity force on the tilted wheel is a horizontal vector at a right angle to the axle of the wheel. The
gyroscope chooses the most efficient way to produce a.m. in the direction of the torque, by changing the
direction of the axle rather than simply falling down.
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The a.m. vector precesses to satisfy the equation of motion (¥). While this is still not very intuitive, it helps
to realize that if we start by holding the axle of the wheel fixed at an angle to the vertical, and then set it down
on the floor, it will ‘fall down’ a little as it begins to precess. It will overshoot and oscillate gently (‘nutation’ or
‘nodding’) as it precesses, as in the figure above. The rate of slow precession of a tilted gyroscope is a vertical

vector, say Q »» which is proportional to the gravity torque. Steady precession is given by
dL =~ - = -
—=Q,XL=RXF
dt
To get the direction right use the righthand screw rule for the cross product.

Taylor-Proudman flow. Each small vertical column of water on the rotating table has a.m. For fluid flows
with small enough velocity, it requires a lot of torque to tilt over those columns, and hence when we stir the
fluid it ends up moving in columns: 2-dimensional fluid flow. Colored dye in the image below lines up in
ribbons that are thin when viewed from above. Think of the rotation as endowing the fluid with stiffness,
which makes a vertical fluid column resist either deforming or tipping over.
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The columns of fluid are so strongly constrained by their rotational stiffness that when they flow over a
bump, they try to lift the water surface rather than reduce their height: the ‘waffle grid’ mountain below, left,
sits on the bottom with 15 cm of water overhead. A very slow flow deforms the water surface in response,
producing a distorted image of that shape (central two figures). This is imaged with a technique known as
optical altimetry, which reveals the very small (hills and valleys ~ 1 micron = 10 m high) vertical distortion of
the water surface. It is sort of a Salvador Dali image of the ‘waffle’. The slow flow does not in fact manage to
preserve the column heights, yet it leaves an imprint of the waffle shape in the surface above.
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Similarly, if the flow encounters a taller mountain, it will try to go around rather than over it, in order to avoid
changing the height of the water column; the fluid above the mountain acts like a tall, solid cylinder in
deflecting the flow at all vertical levels. This ‘virtual’ cylinder of fluid is called a Taylor column. It is an extreme
case for very slow flow.

Concentration of ‘spin’ (angular momentum). Beyond the strange and powerful nature of angular
momentum of a spinning object, and its resistance to change, if we forcibly change the moment of inertia of a
spinning mass, its rate of spin Q will change to conserve a.m., MRU = MR2Q. This we experienced with water
jugs held at arms length while rotating on the lazy-susan platform. Drawing them inward caused extreme
acceleration.... the figure-skater effect. It is reversible, slowing the rotation when the arms are extended again.

Translated to the fluid, this same sequence of events occurs whenever fluid columns change their vertical
length. Generally speaking, this leads to the concentration of the Earth’s spin by the fluid, producing rotating
weather systems, ocean eddies and jet-like concentrated flows...jet streams and oceanic boundary currents.

An example occurs with slightly faster flow encountering a change in fluid depth. Then, flow does succeed in
rising to cross above the mountain in the figure below. . Our gyroscope experience shows that the vortex tube
will try to remain vertical as it squeezes over the mountain top. In that case the height h of the fluid column
must decrease, and its horizontal area A must increase to keep the volume of the vertical tube,

volume = A h = constant.
The spin of the column must decrease, while the fluid columns initially sitting above the mountain are
stretched vertically as they flow into deeper water. Their spin increases.

Planetary and relative vorticity. The total vorticity of the fluid is the vector sum of the planetary and
relative vorticities
2Q+@; o=V xiu
Angular momentum of a fluid column is proportional to its vertical vorticity only as long as the column remains
circular. Fluid columns generally deform, after which their a.m. can be changed by pressure forces, so we must
abandon that idea and consider the vorticity itself. The vortex-tube strength is the product of total vorticity
and the horizontal area A of the tube, which with Ah being constant, is proportional to

q = 12Q+d1/h .
This is also called potential vorticity, a direct generalization of the vortex-tube strength conservation in a
classical, non-rotating fluid. Quite remarkably, the potential q governs a vast range of atmosphere/ocean
flows, while remaining conserved following fluid particles until altered by viscous forces. It generalizes
immediately and simply to fluids with density stratification.

For the flow over the mountain, vortex tubes are squashed and conservation of vortex-tube strength says that
the relative vertical vorticity w decreases to compensate for the decrease in h (Q here is the background
rotation of the fluid which does not change). Starting from rest, the block of fluid initially above the mountain
moves downstream into deeper water and is stretched vertically. So, conversely, its relative vorticity increases.
If initially the relative vorticity vanishes or is small this means that @ is anticyclonic over the mountain and
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A clockwise large scale flow (red arrows) encountering a mountain sheds a cyclonic vortex, while anticyclonic vorticity twists the flow above the
mountain . This is a source of ‘lee cyclo-genesis’ in the atmosphere and ocean. GFD lab, UW.

cyclonic in the block of fluid in the lee the mountain, to conserve (2Q+ @ )/h. The red cyclone in the figures
originated in fluid above the mountain.

Coriolis force. How does this relate to the Coriolis force? The usual derivation uses a coordinate
transformation to express the momentum equation for an observer rotating with the Earth. Consider a
rotating mass, however, rotating nearly steadily but with a small extra azimuthal velocity, v’. The total
azimuthal (round-and-round) velocity is

v=Qr+v

where r is the radial distance. The acceleration toward the center of rotation is

v2/r = Q2r + 20V + v2/r
The first term is the mean centripetal acceleration, the second is the Coriolis acceleration 2Qv’ (linear in v’)
and the third is the contribution to the centripetal acceleration (nonlinear in v’). The mean centripetal
acceleration is one component of the gradient of the ‘geopotential’ function, ® = 1202r2, a potential energy
term that defines the ‘horizontal’ direction on a rotating planet. The Coriolis ‘force; is an acceleration when
viewed by a non-rotating observer. It arises naturally from angular momentum conservation.

The ratio of the nonlinear acceleration v’2/r to the Coriolis acceleration is v'/2Qr. If we identify r with the
horizontal length scale L of a fluid circulation, this becomes the Rossby number
Ro = U/2QL.
Natural flows with large scale, small velocity on a rapidly rotating planet have small Rossby number, Ro <<1.
Putting in some numbers, a 10 m sec wind in a weather system with L. = 1000 km has a Rossby number

10/(104x 10°%) = 0.1. Here we have fudged a bit, taking the local vertical component of Q at mid-latitude. An
ocean circulation gyre with U = 0.1 m sec! and L =1000 km has a Rossby number even smaller, ~ 103.

Fluid columns with small Rossby number become resistant to vertical stretching, yet if imposed, the
stretching will have a strong effect. The mountain height in the experiment here is less than %4 of the fluid
depth. Yet it strongly affects the flow. This can be shown by estimating the fractional change in velocity, say
dU/U caused by squeezing or stretching by an fractional amount dh/h. The answer, dU/U ~ Ro (dh/h) which
is much greater than dh/h, is left as an exercise for the reader.

In both examples, an observer who is observing the Earth but not rotating with it would say that the
circulations have the same sense of rotation as the Earth (that is, the Earth’s planetary vorticity >> the relative
vorticity of the circulation. In essence, large-scale flows inherit the spin of the planet. A rotating observer does
see both cyclonic and anticyclonic weather systems and ocean gyres but both appear cyclonic to the non-
rotating observer. It is noteworthy that tropical cyclones and even tornadoes with diameter just a few hundred
m. almost all rotate in the same sense as the Earth...cyclonically.

Vortex production by convection. It is useful to consider where the energy comes from, when studying a
fluid circulation. We noticed that as the fluid in the rotating cylinder is cooled by surface evaporation, tiny
tornadoes appear almost everywhere. The cooling only amounts to 0.1 °C or less, but it is enough to cause



surface water to sink. This draws in fluid horizontally, which does the figure-skater thing, concentrating the
planetary spin into a cyclonic vortex. Colored dye at the surface is drawn down the core of these vortices in the
figure below, seen in perspective from above.
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Convective vortices driven by surface cooling in a
rapidly rotating fluid, where the sinking region forms
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We also made vortices by removing fluid from the surface with a syringe or ‘turkey-baster’, thus stretching
the vertical vortex lines. And, by floating snowballs at the surface. Their melting both cooled the surrounding
water and made very dense melt water, leading to cyclonic vorticity which spun the snowballs anti-clockwise.

Energy increases when angular momentum is concentrated. Why are the ‘tornadoes’ so small? When the
figure skater (with water jugs) draws their arms inward, spinning faster, angular momentum is conserved but
the kinetic energy, KE, of the spin increases. This is supplied by the force drawing the weights inward: force x
distance = change in mechanical energy. With such small buoyancy forcing, the convection cannot have much
KE and thus cannot draw fluid in from a large radius. Hence, nature chooses small cells. The vorticity
description of rotating convection is actually complex. Here the converging sinking at the surface stretches
vertical vortex lines, making cyclonic relative vorticity. However at the bottom, the fluid diverges, flowing
outward away from the vortex core. This makes some anticyclonic vorticity deep down, but boundary layer
friction tends to reduce this.

Recall the discussion of dissipation of energy in the turbulent fluid of a stirred ‘bath-tub’: vortex tubes are
stretched, likely increasing their length and | @ | by factors of a thousand or more in a few seconds. Their
cross-sectional area decreases accordingly, and the small-scale motions thus created are vulnerable to viscous

forces, that can destroy the mechanical energy at a net rate H_[ vI@ I’ dV ;v is the viscosity coefficient and dV

a volume element. But before this happens, those small-scale eddies have gained much energy by the figure-
skater mechanism, stealing it from the large eddies of the initial flow.



