Climate Dynamics (PCC 587): Feedbacks & Clouds

DARGAN M. W. FRIERSON
UNIVERSITY OF WASHINGTON, DEPARTMENT
OF ATMOSPHERIC SCIENCES

DAY 6: 10-14-13

Feedbacks

- Climate forcings change global temperatures directly
 - o E.g., solar changes, volcanoes, aerosols, greenhouse gases
 - We'll discuss these in more detail next lecture...
- Climate **feedbacks** *respond* to temperature changes but *also change* temperature themselves
- We've discussed many climate feedbacks already
 - Water vapor feedback is confidently positive
 - Lapse rate feedback is confidently negative

Ice-Albedo Feedback

- Warming → ice melting → dark open ocean visible → more warming
- Similar feedback is present for snow (revealing darker land surfaces below)

Very important for local Arctic temperatures

Not nearly as strong as water vapor feedback in global importance

Cloud Feedbacks

- Clouds: suspended liquid water droplets or ice crystals in air
 - o Don't confuse clouds (liquid or solid) with water vapor (a gas)
 - o Essentially, if you can see it, it's a liquid/solid

Clouds happen when humid air cools (often due to rising motion)

Cloud condensation nuclei (CCN) are necessary too: small particles the liquid or ice can stick to

Convective clouds growing over Tiger Mountain (Prof. Dale Durran)

Clouds

- Condensed water droplets or frozen crystals suspended in air
- Cloud formation happens when...
 - Moist air cools (so saturation is reached)
 - Cloud condensation nuclei (stuff that droplets/ice can stick to) help the process
 - × Without CCN, supersaturation can occur

Cloud Effects

- Two opposite effects:
 - Reflecting solar radiation (cooling)
 - **Based on their thickness**
 - Greenhouse effect (warming)
- Can either have warming or cooling effect depending on type!

Longwave Effects

- Clouds emit essentially like blackbodies in the infrared: $E = \sigma T^4$
- High clouds (cold tops):
 - Very small OLR
 - Trap heat effectively
 - Large greenhouse effect
- Low clouds (warm tops):
 - OLR isn't changed much
 - Small greenhouse effect

Cirrus around the world...

Modis satellite

Cloud Fraction

• Thick cloud fraction on Earth:

Cloud Fraction

• All cloud fraction:

High Cloud Fraction

High clouds (above 400 mbar)

Low Cloud Fraction

Low cloud fraction

Cloud Radiative Forcing

• Effect of clouds on longwave and shortwave radiation

Net Cloud Radiative Forcing

• Shortwave plus longwave:

Total Cloud Forcing

Cloud forcing = Average value – cloud free value

OLR: +26 W/m2

o Solar: -47 W/m2

o Net: -21 W/m2

Clouds have net cooling effect on climate

Cloud Feedbacks?

- If low clouds disappear w/ global warming, cloud feedback would be positive
- If instead low clouds increase => negative feedback
- High clouds may change too…
 - High clouds getting higher (due to tropopause rise) is a robust positive cloud feedback

 Clouds can be directly changed by humans though too...

Contrail Effects

Net contrail effects:

- Small warming effect on climate (around 0.01 W/m2 of radiative forcing)
- Nighttime flights are especially important for warming (25% of flights, 60-80% of warming), as are flights in winter (22% of flights, 50% of forcing)