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» Cloud and aerosol
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Radiative Forcing VSEElSEHMERREIcliaiive Forcing

What is ERF2

» It is Radiative Forcing + Rapid
Adjustments

What are Rapid Adjustmentse
» Forcings, not due to AT

» Fast atmospheric and surface
changes which can be due to
factors such as rise in CO,.

» CO,can change radiative affects in
atmosphere, altering the rising and
falling patterns of clouds.

Newly included since the AR4
Aerosol radiation interactions

» i.e. black carbon radiation
absorption

Aerosol cloud interactions

» i.e.increased CCN for cloud
formation

Irradiance Changes from Irradiance Changes from
Aerosol-Radiation Interactions (ari) Aerosol-Cloud Interactions (aci)

)

Radiative Forcing (RFari) Adjustments Radiative Forcing (RFaci) Adjustments
Effective Radiative Forcing (ERFari) Effective Radiative Forcing (ERFaci)

Figure 7.3: Schematic of the new terminology used in this assessment report (ARS) for aerosol-radiation and aerosol-
cloud interactions and how they relate to the terminology used in AR4. The blue arrows depict solar radiation, the grey
arrows terrestrial radiation, and the brown arrow symbolises the importance of couplings between the surface and the
cloud layer for rapid adjustments. See text for further details.
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Clouds in Presen’r—Day Clima’re System

>

>

Cloud systems moving from deep
tropics to subtropics

After the publication of AR4, new
remote sensing technologies have
allowed more accurate
measurements of cloud water
vapor content, vertical profiles,
and movement.

» Cloud-profiling radar (CRP) on
CloudSat satellite

» CALIOP LIDAR on the CALIPSO
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Clouds in Preseni-Day Climate System

» Cloud systems in mid-high latitudes

Warm front of cyclone
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Cloud responses expected from
warming due to greenhouse gasses

Equator

Figure 7.11: Robust cloud responses to greenhouse warming (those simulated by most models and possessing some
kind of independent support or understanding). The tropopause and melting level are shown by the thick solid and thin
grey dashed lines, respectively. Changes anticipated in a warmer climate are shown by arrows, with red colour
indicating those making a robust positive feedback contribution and grey indicating those where the feedback
contribution is small and/or highly uncertain. No robust mechanisms contribute negative feedback. Changes include
rising high cloud tops and melting level, and increased polar cloud cover and/or optical thickness (high confidence);
broadening of the Hadley Cell and/or poleward migration of storm tracks, and narrowing of rainfall zones such as the
ITCZ (medium confidence); and reduced low-cloud amount and/or optical thickness (low confidence). Confidence
assessments are based on degree of GCM consensus, strength of independent lines of evidence from observations or
process models, and degree of basic understanding.




Types of Cloud Models: Scale, Integration, & Application

» High resolution models can explicitly calculate
turbulence inside of clouds

» Applications include:
» Aerosol fransport
» Aerosol processes

» Precipitation characteristics

-
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» Cannot be applied over GCM scales Climate System

» Can be used to aid in parameterizing General Circulation Model (GCM)

microphysical processes (turbulence),
entrainment, and precip. for GCMs

=
o
=

» Increases in processin% power — Global Cloud
Resolving Models (GCRMs) and Super
Parameterization Models

» GCRM:
» Grid spacing 3.5 km

Super Parameterization (MMF)
&
Global Cloud Resolving Model (GCRM)

timescale (day)
2

-
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» Time scales of several months to a couple years
Cloud Resolving Model (CRM)
&

» Super Parameterization Models 10'} Large Eddy Simulation (LES)
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» CRM embedded in each grid cell of the GCM v 1 Ol 1 02 1 03 104 1 05 1 06 1 07

» CRM replaces some of parameterization i
(heheoiThe ome) it e spatial scale (m)

» Still need to parameterize individual clouds,
microphysics, and boundary layer conditions
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More computationally efficient than GCRMs




Aerosol Op’ncal Dep’rh (AOD)
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Cloud-aerosol interactions, cosmic

rays, & solar radiation management
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Figure 7.16: Schematic depicting the myriad aerosol-cloud-precipitation related
processes occurring within a typical GCM grid box. The schematic conveys the
importance of considering aerosol-cloud-precipitation processes as part of an interactive
system encompassing a large range of spatial-temporal scales....




“Although advances have been considerable, the
challenges remain daunting. The response of cloud
systems to aerosol is nuanced...and the
representation of both clouds and aerosol-cloud

interactions in large-scale models remains
primitive.”







Since AR4
Global scale: greater diversity of
interactions
Observational studies increasingly
guantitative
Regional scale modeling growing

Finer-scale process models (e.g.,
turbulent mixing) & buffering effect




hiqued droplets can form

More aerosols result in a larger concentration of smaller
droplets, leading o a brighter cloud. However there are
many other possible aerosol-cloud-precipitation

processes which may amplify or dampen this effect




Take-aways:
Hygroscopic: able to attract & hold water

molecules from the air.
What really matters is how much water there is.

Models generally indicate a net cooling effect due

to aerosol-cloud interactions.
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Weak/local predictions at best:

e Atmosphericions from cosmic rays = aerosol
nucleation = impact CCN concentrations?
Charges accumulate at cloud boundaries =
conductivity gradients = influences cloud droplet

formation and interactions?
Dargan thinks it’s mostly bogus.







Global concerns?
Not reducing CO2 - ocean acidification
Only works during daytime =2 influences diurnal
cycle
May actually lower rainfall?

Sulphate aerosol SRM =2 acid rain?
Unanticipated consequences...
Potential problems with each method?

1) PROGRESS? 2) PHYSICAL BASIS 3) COSMIC' RAYS




