Hadley cell observations

• NCEP reanalysis (Dima and Wallace 2003):

Hadley cell observations

• ERA-40 reanalysis (Rei Ueyama):

Sin(latitude)

Momentum Equation Derivations...

- Held-Hou theory for Hadley cell
 - O Zonal momentum budget:
 - Angular momentum conservation
 - \times Winds reach very strong speeds quickly: e.g., $u=95 \, m/s$ at 25 deg
 - o Meridional momentum equation:
 - Geostrophic balance
 - One of the ignored terms was v dv/dy: assumed small relative to f u because v << u
 - ➤ Thermal wind in meridional direction then gives you temperatures
 - Reeelly small temperature gradients
 - o 0.6 K at 12 deg, 3.2 K at 18 deg

Next...

- Thermodynamics:
 - o To close the problem & solve for width, strength, etc
- First assume Newtonian cooling, as in Held-Suarez model

"Equal-area" argument

Conservation of energy:

Held-Hou Results

- Width is proportional to:
 - Square root of equilibrium temperature gradient
 - Square root of height of tropopause
- Inversely proportional to:
 - Rotation rate

Held-Hou Results

- Strength proportional to:
 - "Area" in equal area argument (distance from equilibrium profile)
- Strength inversely proportional to:
 - Radiative relaxation time
 - Static stability

Surface winds

Held-Hou Criticism

- o Good:
 - ★ Right width
 - Surface winds right sign in right places
- o Bad:
 - Upper tropospheric winds way too strong
 - × Circulation too weak
- o Ugly:
 - **x** Radiative equilibrium outside the cell
 - x Impossible to get surface winds outside the cell

Ways to Fix Problems?

- Can use a radiative-convective-eddy equilibrium temperature profile:
 - Eddies cool the subtropics, warm the higher latitudes

DJF eddy heat fluxes

- Would result in a stronger circulation
 - Cooling subtropics increases gradients within the Hadley cell

- Lindzen & Hou (1988): forcing asymmetric about the equator
 - Can predict boundary between cells, cell widths, & cell strengths

▼ ITCZ location (location of maximum heating) is specified in this

problem

Boundary b/w cells is poleward of "ITCZ"

- Lindzen & Hou (1988): forcing asymmetric about the equator
 - Asymmetry is very large between summer and winter hemispheres
 - × As in observations
 - Derivation: wind and temperature structure when forcing is off-equator (on the board)

Asymmetric Hadley cell

• Temperatures:

- Hou & Lindzen (1992): localized forcing
 - Delta-function (or highly concentrated) forcing: "ITCZ"
 - Basic idea described in Vallis

- Hou & Lindzen (1992): localized forcing
 - Gives stronger circulation (obviously)
 - Dangerous way to put in moisture
 - Might expect stronger circulation with more moisture/heating
 - ➤ However, one of the main things moisture does is change static stability: actually can get significantly weaker circulation with higher moisture contents with this effect
 - Models with active moisture budgets are preferable

- Fang and Tung (1996, 1997, 1999):
 - Analytic solutions w/ viscosity, vertical structure, etc
 - Changes with thermal relaxation time
 - Time dependent circulations

EYEBallskeleton

Adding moisture

- Satoh (1994): moisture
 - Ran simulations with a moist axisymmetric model (gray radiation, etc)
 - Developed theory for this

A first moist Hadley cell

- Satoh (1994): moisture
 - All simulations show very concentrated upward motion
 - Developed simple theory based on the axisymmetric simulations:
 - ★ Assume localized ITCZ, dry subtropics
 - Static stability determined by moist adiabat (humidity at equator)
 - ▼ Balance between radiative cooling and subsidence in dry subtropics determines strength
 - Angular momentum conserving winds
 - ➤ Width determined by thermodynamics (as in Held-Hou)

Satoh (1994) theory

- Satoh (1994): moisture
 - Interesting way to consider the effect of moisture without an active moisture budget
 - Dry region controls everything
 - Limited applicability though? Subtropics are clearly not dry:

Evap and precip NCEP Reanalysis 2

Satoh (1994) theory

Seasonal precip (July mean and December mean)

July precip

December precip

- We'll discuss models with active moisture shortly
 - These predict the width of the precipitating regions as well

Next: effect of eddies on the Hadley circulation

- We talked about ways to incorporate eddy heat fluxes into an axisymmetric model
- How about effect of eddy momentum fluxes?
 - Ferrel cell derivation
 - An eddy-driven Hadley cell model

Effect of eddy fluxes

- Compare the dry dynamical core model run axisymmetrically versus with eddies
 - Hadley cell is significantly stronger with eddies
 - Suggests eddies are a major driver in this model!
 - Heat fluxes or momentum fluxes?
- Not true in moist model!
 - Axisymmetric cell is stronger in moist GCM
 - Comparing axisymmetric and full Hadley cells in different models could be nice project

Dry GCM Results

• Hadley cell strengths:

