Gill Model

Steady response to heating:

Fig. 1. Exact solution to the Gill model (no zonal compensation of mass sink) with zonally periodic boundary conditions. (top) Horizontal divergence (solid contours 0.1 to 0.9 by 0.2; dashed 0.02 and 0.06; and chain-dashed -0.1 to -0.02, by 0.04; all in units of D_0). (bottom) Velocity vectors and contours of vorticity (contour interval is $0.6D_0$, negative contours dashed). Full computational domain extends up to $|y/R_{co}| = 10$.

Gaussian heat source in center of domain.

Boundary conditions are infinite in y, periodic in x

Top panel: convergence Bottom panel: velocity vectors and vorticity

From Bretherton and Sobel 2003

Gill Model

Heating applied in region A.

Only subsidence contours are drawn (there is upward motion elsewhere).

From Gerber, Ito and Schubert (2001)

Summary of Derivations

- Barotropic and first baroclinic modes
- No barotropic mode => dynamics are linear!
 - No barotropic mode + Newtonian cooling + Rayleigh friction + prescribed latent heating => "Matsuno-Gill model"
- Moisture equation for precipitation term
 - Can make condensation the only nonlinearity

The Transients

Equatorial waves:

- Dry and with moisture
- Observations and models

• Start with derivations:

- o 1-D, non-rotating baroclinic modes
- Equatorial Kelvin wave derivation

Dispersion Relations for Equatorial Waves

- System has the following: (see Majda 2003 or Gill for more details)
 - Kelvin waves (nondispersive eastward propagating waves)
 - Mixed Rossby-gravity wave (Yanai mode)
 - Equatorial Rossby waves
 - Inertia-gravity waves

Structure of Equatorial Waves

Structures (Rossby and Kelvin):

Vectors = winds Colors = divergence contours (ignore the ovals)

Structure of Equatorial Waves

More structures (mixed Rossby gravity and WIG):

Vectors = winds Colors = divergence contours (ignore the ovals)

Equatorial Kelvin Waves in the Ocean

• These are seen in the ocean, and are key to El Nino

dynamics

Sea surface height anomalies

Equatorial Kelvin Waves in the Ocean

A global picture:

Atmospheric Obs. of Equatorial Waves

• Wheeler and Kiladis (1999) examined spectra of OLR data in the tropics:

Atmospheric Obs. of Equatorial Waves

- Filter out "background spectrum":
 - Can see all different wave types! Especially Kelvin, MRG, and ER. Also, the mysterious MJO...

Equatorial Waves in Idealized GCM

• In simplified moist GCM, Kelvin waves dominate the

spectrum

They can propagate around and around the equator multiple times!

Full GCM Waves

Observations versus models:

Obs AM2

From Lin et al (2006)

Full GCM Waves

Models are too weak, too fast

Obs

NCAR CCSM

From Lin et al (2006)

Equatorial Waves

- In observations, speeds are significantly slower than predicted by the dry theory
 - o Kelvin wave travels at ~15-20 m/s in obs
- Also true in simplified GCM/full GCMs:
 - Speeds are still significantly slower than predicted by the dry theory
 - o Even in fastest model, only get ~30 m/s speed
- There's a simple theory for speed reduction that involves condensation
 - Derivation w/ active moisture

Convectively coupled Kelvin waves

• In simplified moist GCM, GMS reduction leads to slower convectively coupled waves:

Wavespeed can be tuned to essentially any value in this model

See Frierson (2007b) for more detail

Equatorial Waves

- Alternative theory for wave speed:
 - Higher vertical mode structure causes phase speed reduction

Schematic of Kelvin wave structure from Straub and Kiladis (2003)

- What powers the waves?
 - Evaporation-wind feedback derivation

Madden-Julian Oscillation

• 30-60 day eastward propagating envelope of enhanced/suppressed precip

Figure is boreal winter OLR composite

From MJO diagnostics webpage

MJO Structure

Has characteristics of Kelvin wave and Rossby wave

Movie of Indian Ocean Twin Cyclones

• Precipitable water satellite images:

