Gill Model

» Steady response to heating:

Gaussian heat source
in center of domain.

Boundary conditions are
infinite in y, periodic in x

Top panel: convergence
Bottom panel: velocity
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FiG. 1. Exact solution to the Gill model (no zonal compensation of mass sink) with zonally
periodic boundary conditions. (top) Horizontal divergence (solid contours 0.1 10 0.9 by 0.2; dashed
0.02 and 0.06; and chain-dashed —0.1 to —0.02, by 0.04; all in units of D,). (bottom) Velocity Fr0| N Bretherton and SObel 2003
vectors and contours of vorticity (contour interval 1s 0.6D , negative contours dashed). Full com-
putational domain extends up to |yWR_ | = 10.



Gill Model

» Also get cool asymmetric (about the equator) things:

A: Steady State ITCZ (a=2700 km, b=450 km, Yo=1 0.5°N)
T T '
05 Heating applied in
region A.

Only subsidence
contours are drawn
18 (there is upward
motion elsewhere).
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From Gerber, Ito and Schubert (2001)



» Barotropic and first baroclinic modes

» No barotropic mode => dynamics are linear!

No barotropic mode + Newtonian cooling + Rayleigh friction +
prescribed latent heating => “Matsuno-Gill model”

» Moisture equation for precipitation term
Can make condensation the only nonlinearity



The Transients
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Dispersion Relations for Equatorial Waves

» System has the following: (see Majda 2003 or Gill for

more details)

Kelvin waves (nondispersive eastward propagating waves)

Mixed Rossby-gravity wave (Yanai mode)

Equatorial Rossby waves
Inertia-gravity waves
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Structure of Equatorial Waves

Westward
a) n=1 Rossb




Structure of Equatorial Waves
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» More structures (mixed Rossby gravity and WIG):
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These are seen in the ocean, and are key to El Nino
dynamiCS TOPLX/Poseidon

Sea surface height
anomalies

DEC 1 1996




A global picture:

OCT 11992




Atmospheric Obs. of Equatorial Waves

* Wheeler and Kiladis (1999) examined spectra of OLR
data in the tropics:
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Atmospheric Obs. of Equatorial Waves

» Filter out “background spectrum”:

o Can see all different wave types! Especially Kelvin, MRG, and
ER. Also, the mysterious MJO...
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Equatorial Waves in Idealized GCM
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* In simplified moist GCM, Kelvin waves dominate the
spectrum

Space-time spectrum
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They can propagate around and around the equator multiple times!




Full GCM Waves
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Full GCM Waves

FREQUENCY (CPD)

(d) GFDL2.1
D T

T YT

PERICD (DAYS)

FREGUENCY (CPD

SARE ek

2 ~
ZONAL WAVENUMBER

S Y PR B S p—— | .

- S
ZONAL WAVENUMBER

10




» In observations, speeds are significantly slower than
predicted by the dry theory

Kelvin wave travels at ~15-20 m/s in obs

» Also true in simplified GCM /full GCMs:

Speeds are still significantly slower than predicted by the dry
theory

Even in fastest model, only get ~30 m/s speed

» There’s a simple theory for speed reduction that
involves condensation

Derivation w/ active moisture



* In simplified moist GCM, GMS reduction leads to
slower convectively coupled waves:
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Wavespeed can be tuned to essentially any value in this model

See Frierson (2007b) for more detail



 Alternative theory for wave speed:

Higher vertical mode structure causes phase speed reduction

w OLR
siratiform deep shallow 150 hP
~lfp—  —— S a c o
Schematic of Kelvin wave structure
. > 4 from Straub and Kiladis (2003)
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» What powers the waves?

Evaporation-wind feedback derivation



» 30-60 day eastward
propagating envelope of
enhanced/suppressed precip

Figure is boreal winter
OLR composite

From MJO diagnostics webpage
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MJO Structure

» Has characteristics of Kelvin wave and Rossby wave

3-D Structure of the MJO

Anticyclonic Oyres

Behind = Cyclonic

Enhanced Gyres Behind
vection s ' .
Convectio < Suppressed
Convection




Movie of Indian Ocean Twin Cyclones

 Precipitable water satellite images:




