Next: Moisture Effects on Mean Circulation

- Non-rotating Walker cell derivation
 - o "Weak temperature gradient" aside
 - Precipitation change with global warming aside
- Application to Hadley cell derivation
- Testing in simplified moist GCM

Hadley Circulation in Moist GCM

Hadley circulation is sensitive to some conv. scheme

parameter changes:

Tropical precipitation distribution with identical forcing, moisture content, etc.

• Not sensitive to others:

Changing convective relaxation time by a factor of 8

See Frierson (2007a) for more detail

Effect of Gross Moist Stability

- Parameters that don't change GMS don't affect Hadley cell
- GMS can change cell strength though
 - Different than Satoh b/c dry region is never completely dry (precipitation in subtropics changes)

Tropical Energy Fluxes

 Oceanic flux is actually larger than atmospheric flux in the deep tropics!

Tropical Oceanic Fluxes

- What determines oceanic flux larger?
- Relation to Hadley circulation flux?
- Held (2001) derivations:
 - Ekman transports
 - Oceanic upwelling mass flux
 - Oceanic and atmospheric energy fluxes

Tropical upwelling

Tropical upwelling forces thermocline up, drives
SSTs down

Figure 1.3 Temperature along approximately 160° W in the Pacific from the Antarctic to Alaska. Vertical exaggeration is 5.5×10^3 in the upper 1000 m and 1.11×10^3 below 1000 m. (After Reid, Intermediate Waters of the Pacific Ocean, The John Hopkins Oceanography Studies, The John Hokins Press, 1965.)

