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Abstract Weakening of the tropical overturning circulation in a warmer world is a robust feature in
climate models. Here an idealized representation of ocean heat flux drives a Walker cell in an aquaplanet
simulation. A goal of the study is to assess the influence of the Walker circulation on the magnitude and
structure of climate feedbacks, as well as to global sensitivity. We compare two CO2 perturbation
experiments, one with and one without a Walker circulation, to isolate the differences attributable to tropical
circulation and associated zonal asymmetries. For an imposed Walker circulation, the subtropical shortwave
cloud feedback is reduced, which manifests as a weaker tropical-subtropical anomalous energy gradient and
consequently a weaker slow down of the Hadley circulation, relative to the case without a Walker
circulation. By focusing on the coupled feedback circulation system, these results offer insights into
understanding changes in atmospheric circulation and hence the hydrological cycle under global warming.

1. Introduction

An aquaplanet model provides a simplified framework for understanding how atmospheric feedbacks con-
trol regional patterns of climate change. Such simulations have proved useful for identifying both robust
behaviors of the atmosphere as well as fundamental uncertainties in the response of clouds and pre-
cipitation [Medeiros et al., 2008; Stevens and Bony, 2013; Rose et al., 2014]. However, the feedbacks in an
aquaplanet are, by the nature of the experimental setup, zonally symmetric. While this is an important first
approximation to investigate, and may hold approximately in the middle and high latitudes, we expect
and see striking zonal asymmetries in the tropics. In particular, the standard aquaplanet configuration does
not capture the full expression of real-world atmospheric circulations and associated cloud response in the
tropical Pacific.

Many of the Pacific asymmetries are linked to the Walker circulation, a tropical overturning circulation char-
acterized by convection over the west Pacific warm pool and subsidence over the eastern Pacific. Variability
in the Walker circulation is associated with El Niño–Southern Oscillation [Bjerknes, 1969; Julian and Chervin,
1978] and the Asian monsoon [Webster et al., 1998]. Importantly, the Walker circulation represents a coupled
system between ocean and atmosphere. The strength of equatorial Pacific wind stress in the lower branch
of the Walker circulation induces changes in ocean circulation, thermocline depth, upwelling, and air-sea
fluxes [Xie, 1998; Xie et al., 2010; Lu and Zhao, 2012], which in turn feed back on the atmosphere.

Tropical circulation is anticipated to weaken under global warming. Two consistent arguments are pro-
posed with analogs in the west and east Pacific, respectively. First, in regions of ascent, a smaller increase in
global precipitation with warming (2%/K) relative to the increase in boundary layer water vapor (7%/K per
Clausius-Clapeyron) implies a decrease in convective mass flux [Betts, 1998; Held and Soden, 2006]. Second,
in regions of descent, a larger increase in dry stability relative to the radiative cooling of the troposphere
implies a weakening of subsidence [Knutson and Manabe, 1995]—at the same rate as the convective mass
flux argument of Held and Soden [2006]. By both metrics, then, the overturning atmospheric circulation
weakens as the climate warms. This weakening is a robust result in general circulation models (GCM) [Vecchi
and Soden, 2007] and observations [Vecchi et al., 2006]. Though the zonally asymmetric (i.e., Walker) compo-
nent exhibits a stronger signal, the zonally symmetric (i.e., Hadley) component is also projected to weaken
[Held and Soden, 2006; Lu et al., 2007].

The strength of the tropical overturning circulation affects the persistence of radiatively important low
clouds in the eastern Pacific [e.g., Bony et al., 2004]. The Walker circulation is thus implicated in driving
changes in cloud cover that are thought to provide the largest source of uncertainty in model estimates of
climate sensitivity to increased greenhouse gases [Colman, 2003; Soden and Held, 2006; Webb et al., 2006].
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Soden and Vecchi [2011] show that for a suite of GCMs, the individual members exhibit high variability in
cloud feedback with large zonal asymmetries across the tropical Pacific. However, many of these features
are averaged out in the ensemble mean, which is characterized by a positive high cloud feedback in the
longwave, consistent with the tendency of tropical anvils to conserve cloud top temperature [Zelinka and
Hartmann, 2010], and offsetting shortwave feedback. Understanding the coupling between clouds and
circulation is central to the accurate representation of climate feedbacks in models.

Zonal asymmetries are not a general feature of the aquaplanet, and yet they are clearly fundamental to
more complex models, as well as to nature. A goal of this study is to assess the influence of the Walker
circulation on the magnitude and structure of feedbacks, as well as to global sensitivity. We apply an incre-
mental approach and compare two aquaplanet simulations, one with and one without a Walker circulation,
in order to isolate the portion of differences that can be cleanly attributed to tropical circulation. We are fur-
ther motivated to investigate whether feedbacks may in turn offer insights into understanding changes in
atmospheric circulation under global warning.

2. The Walker Aquaplanet

We employ the Geophysical Fluid Dynamics Laboratory Atmospheric Model 2.1 [Delworth et al., 2006] in
its aquaplanet configuration with perpetual equinox and daily mean solar zenith angle. The ocean is rep-
resented as a 20 m mixed layer. Sea ice is treated as infinitesimally thin; the ocean albedo is increased to
0.5 where surface temperature drops below 263 K, but the model has no representation of ice thermody-
namics. The critical temperature for sea ice formation was chosen to reproduce a realistic ice line latitude,
when compared to the modern climate. Our perturbation is achieved by an instantaneous doubling of
CO2, followed by integration to equilibrium. The idealized configuration allows us to isolate the physics and
dynamics of the atmospheric response to CO2 in the absence of land-surface processes and seasonal and
diurnal cycles. The limitations of these simplifications are discussed in section 5.

A prescribed ocean heat flux divergence is applied to the ocean surface to generate a zonal overturning
circulation in the tropics. The specified ocean heat fluxes (commonly referred to as “q-flux”) are constant in
time, and they represent the influence of ocean circulation on the surface temperature. The q-flux is given by
the following equation, modified from Merlis and Schneider [2011]. Gaussian lobes of positive and negative
divergence are positioned on the equator at longitudes 𝜆E and 𝜆W :

∇ ⋅ FO(𝜆, 𝜙) = Q1 exp

[
−
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𝜆2
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[
−
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𝜆2
1

− 𝜙2

𝜙2
1

]
(1)

where 𝜙 is latitude and 𝜙1 = 7◦; 𝜆 is longitude and 𝜆1 = 30◦, 𝜆E = 120◦, and 𝜆W = 270◦. Q1 = 75 W m−2, which is
the peak magnitude of the anomalies. The resulting q-flux is shown in Figure 1. It is zero in the global mean.

Figure 1c shows the control (i.e., 1 × CO2) zonal mass stream function, averaged over the last 10 years of
our 30 year integration. The aquaplanet exhibits both Hadley and Walker cells, and circulation strength is
broadly consistent with observations [Trenberth et al., 2000]. Ascent is focused over the positive ocean heat
flux anomaly and descent over the negative heat flux anomaly, as expected. The distribution of clouds is
consistent with these vertical motions. Upper level cloud fraction peaks at 200 hPa over the warm pool and
reaches a minimum (at all levels) over the cold pool. The cloud feedback (discussed later) is a consequence
of changes to the location and amount of these clouds, as well as their optical properties, for a doubling of
CO2. Near-surface winds indicate low-level convergence into the warm pool. Outgoing longwave radiation
is reduced in regions of high clouds and increased in clear-sky regions, which occur over boundary layer
clouds. The equatorial sea surface temperature (SST) gradient between the warm and cold ocean anomalies
is 3 K.

We apply the radiative kernel method of calculating climate feedbacks, following Soden and Held [2006].
Feedbacks are computed by convolving the kernel (𝜕R∕𝜕x, i.e., the top-of-atmosphere flux sensitivity to a
small perturbation in climate variable x) with 10 years of equilibrated monthly anomalies, dx (2 × CO2 minus
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Figure 1. Ocean heat flux convergence, q-flux, in W m−2 (a) at the lon-
gitude of the warm pool and (b) at the equator. Positive values indicate
warming tendencies. The western anomaly is located to coincide with
the real-world west Pacific warm pool, the eastern anomaly, with the
eastern Pacific cold tongue. (c) Zonal mass flux at the equator, induced
by q-flux, for 1 × CO2 climatology. Solid lines indicate clockwise flow.
Contour interval is 5 × 109 kg s−2.

1 × CO2). The feedback is divided by
the local near-surface air temperature
response, ΔTs, to give units of W m−2 K−1;

𝜆x = 𝜕R
𝜕x

dx
ΔTs

(2)

where x represents temperature, specific
humidity, or surface albedo. A more com-
mon approach is to divide by the global
mean surface temperature change, ΔTs;
however, as Feldl and Roe [2013a] dis-
cuss, the local definition offers a number
of advantages when regional patterns of
climate change are of interest.

A strength of our analysis is that we
explicitly calculate radiative kernels for
our precise Walker aquaplanet experi-
mental setup. To create the kernel, small
perturbations are applied independently
to the temperature (T), water vapor (q),
and surface albedo (𝛼) fields of the
1 × CO2 simulation, and their effects
on the top-of-atmosphere (TOA) radia-
tive flux are calculated. The kernels we
derive resemble the kernels calculated
from the aquaplanet of Feldl and Roe
[2013b] (used in the symmetric calcula-
tions herein) but with zonal asymmetries
due to the inclusion of a Walker circu-
lation, which affect the tropospheric
structure in the tropics.

The cloud feedback cannot be simply
calculated using radiative kernels, due to
nonlinearities associated with their com-
plex spatial structure. Following Soden
et al. [2008], we compute the cloud
feedback, 𝜆c, from the change in cloud
radiative effect, ΔCRF, with adjustments
for cloud masking:

𝜆cΔTs = ΔCRF + (K0
T − KT )dT + (K0

q − Kq)dq + (K0
𝛼
− K𝛼)d𝛼 + (ΔR0

f − ΔRf ) (3)

where K0 terms are the clear-sky kernels, ΔR0
f

is the clear-sky forcing, and ΔCRF is defined as the difference
between net downward radiative fluxes in all-sky (i.e., the observed meteorological conditions, including
clouds if present) and clear-sky (i.e., assuming no cloud) conditions. The additional cloud masking terms are
needed because the presence of clouds modifies the TOA fluxes due to underlying lapse rate, water vapor,
surface albedo, and CO2 [Soden et al., 2004].

Radiative forcing due to the CO2 perturbation enters in equation (3), and there are choices to be made here
as well. Three common metrics are stratosphere-adjusted forcing, fixed SST (or troposphere-adjusted) forc-
ing, and a constant, global mean value. The radiative forcing should represent any TOA flux changes after
introduction of the forcing agent but before surface temperature change, i.e., cleanly separating forcing
from feedback. While the fixed SST radiative forcing may be preferred because it accounts for rapid cloud
responses directly to CO2 [Colman and McAvaney, 2011; Andrews et al., 2011], it is a noisy calculation with
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Table 1. Global Mean, Annual Mean Feedbacks for Aquaplanet Simulations With (Top Row) and Without (Bottom Row)
Walker Circulationsa

P LR WV A Net Cloud LW Cloud SW Cloud Net Residual

Walker −3.03 −0.53 1.46 0.34 1.15 0.38 0.77 −0.61 −0.16
Symmetric −3.03 −0.69 1.62 0.35 1.33 0.49 0.83 −0.43 −0.31

aPlanck (P), lapse rate (LR) plus water vapor (WV), and albedo (A) feedbacks are strikingly similar. The net feedback
is the sum of the linear feedbacks. The residual in the local energy balance is interpreted as the nonlinear term. Units
are W m−2 K−1. In both cases a stratosphere-adjusted estimate of radiative forcing is used (ΔRf = 3.4 W m−2). Note
that the global mean of globally defined feedbacks presented in this table differs from the global mean of the locally
defined feedbacks of Figure 2 by a factor of ΔTs(𝜙)∕ΔTs .

high spatial and temporal variability. Here we use a stratosphere-adjusted radiative forcing [Ramaswamy et
al., 2001; Hansen et al., 2005] derived from the basic aquaplanet without a Walker circulation; stratospheric
changes are expected to be comparable between the experiments. The global mean value is 3.4 W m−2. As
Feldl and Roe [2013b] show, the choice between the two aquaplanet-derived forcings has only a minor effect
on the feedback analysis for this model setup.

3. Atmospheric Feedbacks and Transport

Climate sensitivity is remarkably similar between the two experiments, in spite of the very different patterns
of tropical circulation. The symmetric (i.e., no q-flux) experiment has an equilibrium climate sensitivity of
4.8 K and a net feedback parameter of −0.43 W m−2 K−1. For the Walker experiment, we find values of 4.5 K
and −0.61 W m−2 K−1, respectively (Table 1). As expected, global mean surface temperature change is
reduced given a more negative net feedback. However, if we were to estimate climate sensitivity assuming
linearly independent feedbacks (i.e., ΔTs = ΔRf∕

∑
𝜆x), then we would anticipate a larger difference (30%).

The reason we find only a 6% reduction in sensitivity is that the residual nonlinear term (right-hand column)
is halved. Thus, the doubling of CO2 leads to considerable warming when a Walker circulation is present,
even though the feedback is more stabilizing, because of increased linearity. The nonlinearity is explained
by Feldl and Roe [2013b] as due to interactions among feedbacks, including clear-sky masking.

Global mean feedbacks are presented in Table 1 for the Walker and symmetric aquaplanets. The tempera-
ture feedback is strongly negative: A warmer planet emits more radiation to space (Planck feedback), and
the weakened lapse rate, which is a consequence of moist adiabatic stratification, leads to emission from a
warmer atmosphere than if lapse rate were fixed (lapse rate feedback). The water vapor feedback is strongly
positive because humidity is highly sensitive to warming and because moistening the atmosphere increases
infrared opacity and downwelling radiation. The surface albedo feedback is positive and controlled by sea
ice processes in this model. In general, the longwave (LW) cloud feedback is associated with the role of
clouds in reducing emission, and the shortwave (SW) cloud feedback is associated with the role of clouds in
increasing planetary albedo (i.e., a positive SW cloud feedback indicates a decrease in reflectivity). The effect
of a particular cloud on the energy balance depends strongly on its height and optical thickness.

The Planck, surface albedo, and combined water vapor plus lapse rate feedbacks are unchanged between
the two experiments. However, the cloud feedback is weaker (less positive) in the Walker aquaplanet, pref-
erentially due to changes in the longwave component. To identify the source of the differences in cloud
response, we turn to the spatial structure of the aquaplanet feedbacks. As in the global mean, the zonal
mean net feedback is weaker in the Walker aquaplanet relative to the symmetric aquaplanet (Figures 2a and
2b, black line). The largest differences occur in the subtropics, associated with cloud and water vapor feed-
backs, hinting at the role of the zonal circulation in modulating the meridional circulation. We expect to see
a large water vapor feedback, for instance, where strongly suppressed subtropical descent leads to anoma-
lous moistening. North-south hemispheric asymmetries in Figure 2 are due to internal model variability.

The distinct features of the Walker aquaplanet feedbacks are associated with the presence of the imposed
warm and cold pools at the equator (Figures 2c and 2d). The net feedback (black line) exhibits striking zonal
asymmetries in the tropics and subtropics—in particular, a negative feedback over the cold pool where
the Intertropical Convergence Zone is suppressed and equatorial precipitation minimized. This behavior is
mirrored in the cloud feedback (blue line). The cold pool is characterized by a broad region of negative long-
wave cloud feedback (Figure 2g, purple line) and a weakening of the positive shortwave cloud feedback
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Figure 2. (a–d) Annual mean (W m−2 K−1) Planck (red), lapse rate (orange), water vapor (green), surface albedo (gray), cloud (blue), and net feedbacks (black)
for the zonal mean and at longitude bands specified in Figure 1b. (e–h) Components of cloud feedback, ΔCRF for SW (black) and LW (purple), masking terms
(cyan), and forcing correction (magenta). (i–l) Midtropospheric vertical pressure velocity, 𝜔 (Pa s−1), in the 1×CO2 climate (blue) and 2×CO2 minus 1×CO2
anomalies (black).

along the equator (black line). The remaining feedbacks in Figures 2c and 2d are more zonally symmetric,

though the water vapor feedback (green line) is enhanced on the subtropical flanks of the cold pool. Inter-

estingly, while the deep tropics exhibit remarkable cancellation between positive and negative feedback at

the warm and cold pool, such that it resembles the symmetric zonal mean, there is no such cancellation in

the subtropics.

Cloud changes are consistent with the structure of the cloud feedback and result from the interplay of

suppressed ascent and descent in both the zonal and meridional components of tropical circulation. In our

simulations, the Walker circulation weakens by 45% and the Hadley circulation by 15% under CO2 doubling.

By comparison, coupled model studies report 5–10% K−1 [Vecchi and Soden, 2007] and 0–4% K−1 [Lu et al.,

2007], respectively, which roughly converts to 22–45% and 0–18% for our climate sensitivity. This tendency

of overturning circulation to weaken is also apparent in midtropospheric vertical velocity in pressure coor-

dinates, 𝜔 (Figures 2i–2l). A decrease in ascent at the equator is indicated by a positive anomalous vertical

velocity (black line) and is largest at the warm pool and in the symmetric zonal mean. Accordingly, these

regions see decreases in cloud fraction aloft, by up to 15%, that are consistent with the negative longwave

cloud feedback and the compensating positive shortwave cloud feedback. Upper level cloud changes at the

cold pool—where high clouds are thinner to start—are smaller but also more spatially extensive (Figure 3,

bottom right).
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Figure 3. (top row) Cloud fraction climatology (contour interval, 0.1)
and (bottom row) change (contour interval, 0.03) at the longitude
bands specified in Figure 1b. Decreases in cloud fraction, consistent
with a positive SW cloud feedback, are indicated by solid lines.

4. Some Longitudes
are Less Cloudy

By adding a Walker circulation, we
disrupt the symmetry of the Hadley cir-
culation and introduce broad regions
of negative cloud feedback near the
equatorial cold pool. This feedback
lowers the net feedback, both locally
and in the zonal mean. Since anoma-
lous energy transport is directed away
from regions of net positive feedback,
the gradient of cloudiness will play an
important role in the climate response.
With one notable exception, midlevel
cloud fraction at all but the highest lat-
itudes decreases under CO2 doubling,
with largest changes at 30◦. This cloud
response manifests as a positive SW
ΔCRF (Figures 2e–2h, black line) and
negative LW ΔCRF (purple line) and is
consistent with a reduction in strength
of the meridional circulation. The excep-
tion is at the cold pool, where another
process is superimposed on the weaken-
ing of the Hadley circulation: the Walker
circulation also weakens. Competing

circulation tendencies at the ascending branch of the Hadley circulation and descending branch of the
Walker circulation largely cancel at the equatorial cold pool (Figure 2k, black line). In particular, where the
tropical high clouds are thinner to start, the cloud changes are also much smaller under CO2 doubling. Con-
sequently, the SW cloud effect essentially disappears over the cold pool (Figure 2g), the LW effect dominates
the ΔCRF, the cloud feedback is neutral, and the net feedback, negative (Figure 2c).

In addition to the near-zero tropical cloud feedback at the cold pool, the magnitude of the subtropical cloud
feedback is also reduced, which affects the zonal mean (Figures 2a and 2b). Consequently, the gradient
of the net feedback across the subtropics is weaker in the Walker aquaplanet compared to the symmetric
aquaplanet. As in the case of tropical high clouds, both the climatological cloudiness and cloud changes at
850 hPa are smaller at the longitude of the cold pool (Figure 3). Because the induced cold pool is a heat sink,
weaker vertical motions lead to more uniform cloud cover across the tropics and subtropics. In contrast, the
warm pool produces a stronger gradient in cloudiness and a stronger gradient in SW ΔCRF, cloud feedback,
and net feedback. Climatologically, the warm pool with its vigorous Hadley circulation bears more similarity
to the symmetric aquaplanet (Figures 2h and 2e). It is also of note that the cloud masking terms (Figure 2e,
cyan line), which are derived from the 1 × CO2 kernels, contribute to the stronger subtropical cloud feed-
back in the symmetric aquaplanet. At 15◦, for instance, both SW ΔCRF and the masking terms are larger
in the symmetric aquaplanet, compared to the Walker aquaplanet (Figures 2e and 2f), accounting for the
difference in feedback gradient.

We now turn to the Hadley cell response under global warming (Figures 2i and 2j). The zonal mean, cli-
matological meridional circulation (blue lines) is strikingly similar between the Walker and symmetric
aquaplanets. However, the response of the circulation under doubling of CO2 (black lines) is different:
The Walker aquaplanet exhibits a weaker slow down (14.9%), which is explained by the weaker subtropi-
cal feedback gradient. The symmetric case has a stronger feedback gradient and consequently a stronger
reduction in circulation (16.7%) (Circulation intensity is calculated as the difference between the extrema
of the meridional mass stream function below 100 hPa.). A positive feedback represents a region of anoma-
lous divergence of atmospheric heat flux, since the TOA fluxes are not efficiently accommodating energy
perturbations. Likewise for negative feedback and anomalous convergence. Thus, the stronger the feedback
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gradient, the more anomalous the heat trans-
port from subtropics to the tropics (i.e., the
larger the decrease in tropical heat export).
The primary way the atmosphere modulates
tropical energy transports is by changing the
intensity of the meridional circulation [Kang
et al., 2008]. We emphasize that because the
zonal mean climatological circulation is quite
similar between the two experiments, the feed-
backs are specifically affecting the sensitivity of
the circulation response. In other words, while
the climatological circulation sets the pattern
of feedbacks, it is the feedbacks that drive the
circulation response.

5. Summary and Discussion

In this study, we characterize the effect of
zonal circulation asymmetries upon climate

feedbacks. We have designed an experiment that takes advantage of simplified, aquaplanet boundary con-
ditions, paired with a full-complexity atmospheric GCM. Our climate sensitivity is reduced—from 4.8 K to
4.5 K—as a consequence of the Walker circulation, and this reduction is consistent with broad regions of
negative feedback in the vicinity of the imposed cold pool. The role of the Walker circulation is to suppress
the cloud feedback and enhance the water vapor feedback at the longitude of the cold pool, though the
latter is compensated by an enhancement of the negative lapse rate feedback. The pattern of the cold pool
cloud feedback is consistent with (1) minimal circulation changes and (2) uniformly less cloud cover. In
particular, the strongly positive SW cloud feedback is suppressed at the longitude of the cold pool, due to
only small decreases in tropical clouds aloft and subtropical clouds at low levels.

As a consequence of this weakly positive feedback on the subtropical flanks of the cold pool, the zonal
mean feedback gradient is weaker in the Walker aquaplanet (Figure 4). This places an energetic require-
ment on the response of the tropical circulation, predicting a weaker slow down of the Hadley cell under
CO2 doubling, compared to the symmetric aquaplanet. The radiative warming tendency in the subtrop-
ics (due to cloud and water vapor feedbacks) is balanced by dynamical cooling (weakening of descent,
i.e., less adiabatic warming) and the tropical radiative cooling tendency by weakening ascent. In the case
of a stronger energetic gradient between the subtropics and tropics, these responses will be correspond-
ingly stronger, as is born out in our experiments. Thus, regional feedbacks not only describe the radiative
response to an imposed forcing but also couple meaningfully to circulation changes. Because the feedback
can be expressed in terms of particular pieces of physics (water vapor, clouds, etc.), this work offers insights
for understanding the drivers of dynamical changes under global warming.

The Walker circulation alone appears to be insufficient to substantially alter global climate sensitivity in our
model. However, the differing circulation responses may shed some light on the increased linearity in the
Walker aquaplanet. In regions of strong moistening, we expect a larger nonlinearity [Feldl and Roe, 2013b].
This leads to two expectations: that the nonlinearity should display a peak in magnitude in the subtropics,
associated with a decrease in circulation intensity and relative moistening, and that the nonlinearity should
be smaller in the Walker case, because a weaker slow down requires relatively less moistening. Both are
observed, and future work will pursue the hypothesis that modest moistening (perhaps associated with
increased model realism) may be a requirement of the linear feedback assumption.

By integrating experiments with and without the simulated Walker circulation, a strength of this study is
that we isolate the effect of zonal circulation on feedbacks. However, a few caveats bear mention. First,
while aquaplanets capture a number of robust responses of the large-scale circulation and hydrological
cycle to warming, our simplifying assumptions do remove many of the key components of a realistic trop-
ical Pacific circulation. Land-sea contrast is expected to have a profound effect on boundary layer cloud
climatology, and the presence of continents also influences the midlatitude eddies that in turn interact with
the meridional overturning circulation. Moreover, convective parametrizations within GCMs are affected
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by the diurnal cycle, which we preclude by specifying a daily mean solar zenith angle. Future work will
incrementally add complexity.

A second caveat is that a slab ocean model with specified, and static, ocean heat transport does not
realistically represent ocean-atmosphere interactions. An understanding of the role of dynamical ocean
adjustments in the surface warming response remains elusive, and a number of coupled mechanisms have
been proposed. Vecchi and Soden [2007] find that in coupled models, the western Pacific shoals due to a
weakening of equatorial easterlies and that this shoaling leads to warming of surface waters—a negative
feedback on the strength of the Walker circulation. Hence, the atmospheric circulation weakens more in
slab ocean models, compared to fully coupled models, indicating that ocean dynamics are not of primary
importance. Specifically, Lu and Zhao [2012] suggest that the wind-evaporation-SST feedback (under which
a strengthening of near-surface wind decreases SST through enhanced evaporation) is the dominant mech-
anism affecting tropical SST patterns. In our aquaplanet simulation, we are unable to characterize the extent
to which coupled ocean-atmosphere processes modify the picture of regional climate change.

We have extended the climate feedback framework to consider the effect of ocean heat transport and
associated atmospheric circulation changes. In many ways, the Walker aquaplanet is quite similar to its
symmetric counterpart, with an overall symmetric pattern of warming. That is, strong regional feedbacks
are set by the climatological circulation, and the atmosphere redistributes heat such that the patterns of
warming remain remarkably uniform. In the tropics this is consistent with an efficient global circulation
that eliminates dynamical gradients. From the feedback perspective, the climate system tends to allocate
energy toward regions that can most effectively radiate to space, and our small reduction in global sensitiv-
ity appears to be a consequence of this effect: by punching a hole in tropical convergence zone clouds in
the mean state, we slightly increase the Earth’s ability to cool itself. Thus, sensitivity is controlled by both cli-
matology and dynamics, and comparison of the aquaplanet with and without a Walker circulation suggests
that shrinking the area of negative feedback will lead to enhanced sensitivity.
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