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Abstract
The climate change projections of the Intergovernmental Panel on Climate Change are based on scenarios for future emis-
sions, but these are not statistically-based and do not have a full probabilistic interpretation. Raftery et al. (Nat Clim Change 
7:637–641, 2017) and Liu and Raftery (Commun Earth Environ 2:1–10, 2021) developed probabilistic forecasts for global 
average temperature change to 2100, but these do not give forecasts for specific parts of the globe. Here we develop a method 
for probabilistic long-term spatial forecasts of local average annual temperature change, combining the probabilistic global 
method with a pattern scaling approach. This yields a probability distribution for temperature in any year and any part of the 
globe in the future. Out-of-sample predictive validation experiments show the method to be well calibrated. Consistent with 
previous studies, we find that for long-term temperature changes, high latitudes warm more than low latitudes, continents 
more than oceans, and the Northern Hemisphere more than the Southern Hemisphere, except for the North Atlantic. There is 
a 5% chance that the temperature change for the Arctic would reach 16 ◦ C. With probability 95%, the temperature of North 
Africa, West Asia and most of Europe will increase by at least 2 ◦ C. We find that natural variability is a large part of the 
uncertainty in early years, but this declines so that by 2100 most of the overall uncertainty comes from model uncertainty 
and uncertainty about future emissions.

Keywords  Carbon emissions · Coupled model intercomparison project · Intergovernmental panel on climate change · 
Pattern scaling method · Probabilistic population projections · Natural variability

1  Introduction

The Intergovernmental Panel on Climate Change (IPCC) 
has issued projections of global temperature change based 
on four different pathways for emissions and land use up 
to 2100, each in turn based on a different socioeconomic 
scenario for the world’s future and designed by a different 
research group (Van Vuuren et al. 2011; Stocker 2014). 
However, these projections were not based on a fully sta-
tistical approach. Raftery et al. (2017) developed a fully 
probabilistic approach to forecasting emissions, using a 
country-specific version of the Kaya identity, and probabil-
istic forecasts of population, GDP per capita, and carbon 

intensity (CO2 emissions per unit of GDP) for each country. 
They derived a probabilistic projection of global averaged 
temperature by convolving the emissions projections with 
the probabilistic relationship between emissions and average 
temperature agreed by the IPCC (Pachauri et al. 2014). Liu 
and Raftery (2021) developed a better method for translat-
ing carbon emissions to temperature change based on the 
Coupled Model Intercomparison Project Phase 5 (CMIP 
5) ensemble of climate models (Hurrell et al. 2011), that 
explicitly accounts for the bias and noise in the models that 
make up the ensemble.

There has been less work quantifying the probability 
distribution of local temperature change; see, for example, 
Schölzel and Hense (2010) for one example for a very lim-
ited local area. The IPCC reports contain probability dis-
tributions of local climate change to 2100 for each of four 
prescribed emission scenarios that take into account climate 
model uncertainty. However, these probability distributions 
are for 20-year averaged temperature (Houghton et al. 2001; 
Solomon et al. 2007; Stocker 2014). Since annual averaged 
temperature is nearly white noise (see below), averaging 
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over a 20-year period reduces the contribution of natural 
variability by a factor of 

√

20 ∼ 4.5 . Similarly, studies have 
reported on the uncertainty in local climate changes within 
a single model by performing a large number of simulations 
and then examining the ensemble average change compared 
to the spread about the ensemble average, where the former 
is that model’s forced response and the latter is that model’s 
representation of natural variability, which often suffers 
biases compared to the observed natural variability (e.g., 
Kjellstrom et al. 2011; Hawkins and Sutton 2012; Kay et al. 
2015; Hawkins et al. 2016; McKinnon et al. 2017). Also, 
neither approach takes into account the probability distri-
bution of future emissions. Here, we aim to fill the gap. We 
develop a fully statistical approach to long-term temperature 
projections, yielding a probabilistic forecast of local temper-
ature change at any desired location that takes into account 
uncertainty in population, GDP per capita, energy usage, 
climate model uncertainty and natural climate variability.

Our method is based on the previous probabilistic 
forecast of global averaged temperature (Liu and Raftery 
2021; Raftery et al. 2017). A typical way to bridge the gap 
between global temperature and local temperature is to use 
the pattern scaling method (Santer et al. 1990; Tebaldi and 
Arblaster 2014). Santer et al. (1990) estimated the spa-
tial features of the externally forced change, standardized 
by global averaged temperature warming, on the basis of 
2xCO2 equilibrium simulations using atmospheric models 
coupled to slab ocean models. Tebaldi and Arblaster (2014) 
estimated the pattern for global mean temperature change 
using the simulations from CMIP 5 focusing on multi-model 
mean patterns, and they verified that the common pattern is 
independent of the choice of emission scenario. Building on 
this result, we adopt the estimation method of Tebaldi and 
Arblaster (2014) based on the CMIP 5 simulations under the 
RCP 8.5 pathway. We then combine the estimates of patterns 
for temperature change with the samples of global mean 
temperature from the Markov chain Monte Carlo (MCMC) 
estimation of the Bayesian hierarchical model of Liu and 
Raftery (2021) to obtain the samples of local temperature 
which approximate its distribution.

In addition to the projections of temperature, it is also 
important to trace the sources of projection uncertainty. 
Hawkins and Sutton (2009) decomposed the uncertainty into 
three sources: internal variation (i.e., unforced temperature 
variability simulated by the models), climate sensitivity 
and scenario uncertainty. For the uncertainty scenario, they 
assumed the three IPCC emission scenarios A1B, A2 and B1 
were equally probable. They showed that internal variation 
was a major contributor to overall prediction uncertainty at 
first, and that its contribution fell rapidly over time, based on 
the earlier CMIP 3 ensemble of climate models. However, 
their method is based on the variance of model predictions 
rather than the variance of the prediction errors, defined as 

the differences between predictions and observations, and 
so ignores the latter part of overall uncertainty. We use the 
simulations from CMIP 5 and find similar results for most of 
the local areas, with the prediction error naturally included 
in our model.

The paper is organized as follows. In Sect. 2, we describe 
the data we use, and describe the method, giving results 
of its assessment by out-of-sample predictive validation. In 
Sect. 3, we show the estimation results of the scaling pat-
tern and natural variability, as well as the projection results 
of temperature. We conclude in Sect. 4 with a discussion.

2 � Methods

Our overall method consists of several steps, and these are 
shown in the systems diagram in Fig. 1. We now describe 
the different parts of the method.

2.1 � Data

We produce a probabilistic forecast of CO2 emissions using 
the method of Raftery et al. (2017), which combines proba-
bilistic forecasts of population, GDP per capita, and carbon 
intensity for most countries. These forecasts are based in 
turn on past data on these quantities. For population, we 
use the UN’s 2019 estimates of population for all countries 
from 1950 to 2015 (United Nations 2019). We include 159 
countries with good historic data on all of population, GDP 
and carbon emissions; these account for 99% of the world’s 
population. We use probabilistic population projections for 
each of these countries produced by the model used by the 
UN (Raftery et al. 2012).

GDP per capita data come from the Maddison Project, 
2018 version (Bolt et al. 2018), using data from 1960 to 
2015. This uses purchasing power parity (PPP) rather than 
market exchange rates, and we use real GDP per capita 
in 2011 US dollars with a 2011 benchmark. Data on CO2 

GDP, Popou-
lation, CO2
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CMIP 5 Data

Global Average Tem-
perature Projections
(Raftery et al., 2017;
Liu & Raftery, 2021)
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Estimation of natural variability
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Local Temperature
Projections (this
paper)

Fig. 1   Systems diagram of our method
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emissions come from the Global Carbon Budget (Le Quéré 
et al. 2018). We use data from 1960 to 2015.

To estimate the common pattern of annual temperature 
change per ◦ C of global annual-average warming, we use 
the CMIP 5 model simulations (Taylor et al. 2012). These 
data include historical simulations back to January 1861, 
and provide estimates of future temperature up to Decem-
ber 2100 under the RCP 8.5 pathway with the following 35 
different CMIP 5 models: ACCESS1-0, ACCESS1-3, bcc-
csm1-1, BNU-ESM, CanESM2, CCSM4, CESM1-BGC, 
CESM1-CAM5, CMCC-CM, CMCC-CMS, CNRM-CM5, 
CSIRO-Mk3-6-0, EC-EARTH, FGOALS-g2, FIO-ESM, 
GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H, 
GISS-E2-R, HadGEM2-AO, HadGEM2-CC, HadGEM2-
ES, inmcm4, IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-
CM5B-LR, MIROC5, MIROC-ESM, MIROC-ESM-CHEM, 
MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, NorESM1-
M, NorESM1-ME. To forecast the global averaged tempera-
ture in each model, we adopt the method of Liu and Raftery 
(2021).

To estimate the natural variability in local temperature, 
we use the ERA5 reanalysis dataset (Hersbach et al. 2019), 
from which we use the air temperature at 2m above the 
surface of land, sea or inland waters. The data are updated 
monthly, are available from January 1979 onwards, and are 
gridded to a regular latitude-longitude grid of 0.25 degrees. 
We use the annual data from 1979 to 2015, averaging the 
data to a regular latitude-longitude grid of 2.5 degrees that 
is commensurate with the climate model output.

2.2 � Statistical model

Model specification We build the statistical model in three 
steps. First, we use the statistical model of Raftery et al. 
(2017) for probabilistic forecasting of CO2 emissions. This 
involves Bayesian hierarchical time series models for fertil-
ity and mortality, and hence population, for GDP, and for 
carbon intensity for each country. Second, we use the model 
of Liu and Raftery (2021) for global averaged temperature 
projections. We adopt their Bayesian time series models of 
the ensemble of CMIP 5 models forecasts, historical global 
averaged simulations and historical temperature anomalies 
for estimating the bias and measurement error variance of 
the CMIP 5 models. We then use the linear relationship 
between global averaged temperature and cumulative CO2 
emissions (Stocker 2014; Liu and Raftery 2021), together 
with the estimated uncertainty and bias of CMIP 5 models 
to generate global averaged temperature projections. Finally, 
we take the probabilistic forecast of global averaged tem-
perature as an input and use the pattern scaling method to 
generate the predictive distribution of future local, annual-
averaged temperatures.

Pattern scaling models We use s as the index for grid box 
and t for year. Altogether we have 72 × 144 = 10,368 grid 
boxes, so that s ∈ {1, 2,… , 10,368} . We denote the local 
annual-averaged temperature in year t and grid box s by yt,s 
and the global, annual-averaged temperature in year t by 
at . We denote by yt,s,i and at,i the corresponding local tem-
perature and global averaged temperature with respect to a 
specific CMIP 5 model i. We need this notation because the 
global averaged temperature projections in Liu and Raftery 
(2021) are model-specific.

We define two different kinds of patterns for tempera-
ture change. The first one is the model-specific pattern, 
denoted by bs,i which is time-invariant focusing on a specific 
CMIP 5 model i at grid box s. We call this the multi-pattern 
approach, because it estimates a different spatial pattern of 
temperature change for each climate model.

The second pattern is denoted by bs , focused on the multi-
model average at grid box s. We call this the single-pattern 
approach because it uses the same spatial pattern of tem-
perature change for all climate models. The single-pattern 
approach is often called “pattern scaling” (Tebaldi and 
Arblaster 2014), while the multi-pattern approach incorpo-
rates differences in the pattern of the forced response across 
CMIP 5 models.

Based on the pattern scaling method and the two 
approaches, we will use two models, namely:

and

Here �t,s is a zero-mean error term that represents the natu-
ral variability related to both time and space; it includes 
the prediction error in a natural way. The symbol � denotes 
mathematical expectation. We take t0 = 2015 which means 
we start our projection from 2016.

Note that the models (1) and (2) are both marginal models 
that aim to produce proabilistic projections of local tempera-
ture in individual grid boxes separately, but do not aim to 
estimate a joint distribution of temperature in different grid 
boxes. Thus the method is appropriate for projecting tem-
perature in one grid box, but not, for example, the average 
temperature over a set of grid boxes. To do the latter would 
require estimating the joint projection distribution (including 
the correlation) of the temperatures in multiple grid boxes. 
Ignoring the spatial correlation between different grid boxes 
should not in principle affect the marginal distribution of 
temperature in any grid box, since the joint predictive dis-
tribution is a multivariate normal (MVN) distribution, and 
in an MVN distribution estimation of the marginal distribu-
tion of one variable (here the temperature in one grid box) 
is unaffected by the correlation structure (Muirhead 2005). 

(1)yt,s,i = �yt0,s + bs,i(at,i − at0,i) + �t,s,

(2)yt,s = �yt0,s + bs(at − at0 ) + �t,s.
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We show later that the resulting projections are indeed of 
good quality.

Also, note that we do not assume that the outputs of these 
models are i.i.d. Rather, we use the set of ESMs to represent 
the range of possible climate sensitivities supported in the 
literature.

The projections of local temperature are based on the fol-
lowing steps.

Global averaged temperature projections First we produce 
probabilistic forecasts of the CO2 emissions for all countries 
using the method in Raftery et al. (2017). We produce fore-
casts of population for all countries, and forecasts of GDP 
per capita and carbon intensity jointly for all the countries. 
We then draw samples of future population, and sample 
jointly from the posterior predictive distribution of GDP per 
capita and carbon intensity for all future years and countries. 
We then multiply them together to obtain posterior trajec-
tories of CO2 emissions for each country based on Kaya’s 
identity and then sum the country emissions to obtain the 
time-evolving probability distribution of global emissions.

We then make forecasts of the global averaged tempera-
ture anomaly for each CMIP 5 model based on our predicted 
CO2 emissions by using the linear regression model of Liu 
and Raftery (2021). For each emission trajectory, we calcu-
late the global cumulative emissions from 2015 and multi-
ply them by a coefficient specific to a CMIP 5 model that 
maps the global averaged temperature to the cumulative CO2 
emissions (Liu and Raftery 2021), which is estimated by the 
linear regression model.

Finally, we use the dynamic time series model of Liu and 
Raftery (2021) to forecast the bias and uncertainty of the 
historical CMIP 5 estimates, and we use these forecasts to 
correct the temperature anomaly forecast for each trajectory. 
All the models are fitted using Markov Chain Monte Carlo 
(MCMC) sampling, as implemented in the rjags package in 
the R programming language (R Core Team 2021).

Estimating the spatial pattern of temperature change We 
define two different patterns which are estimated by two dif-
ferent methods, the so-called “multi-pattern” ( bs,i ) and “sin-
gle-pattern” ( bs ) methods. Both of the estimation procedures 
involve only the CMIP 5 local temperature simulations.

Multi-pattern method We denote by ỹt,s,i the CMIP 5 local 
temperature simulations for year t, grid box s and CMIP 5 
model i. This value can be either a historical simulation or a 
projection of future temperature by CMIP 5. The multi-pat-
tern method is based on Eq. (1). We use a weighted average 
to estimate the corresponding global averaged temperature 
for year t, CMIP 5 model i, which is denoted by ãt,i . For ỹt,s,i , 
the weight is defined by the cosine of the latitude of grid box 
s, that is, cos(lats) . Specifically,

Define

where ỹ2080∶2099,s,i and ỹ1980∶1999,s,i denote the averages 
of local annual temperature at grid box s, model i for 
2080–2099 and 1980–1999 from CMIP 5 simulations. Sim-
ilarly, ã2080∶2099,i and ã1980∶1999,i denote the corresponding 
global, annual-averaged temperatures over the respective 20 
year periods. The multi-pattern estimate is then

which is the difference between the local average tempera-
ture of the late 21st century and the late 20th century stand-
ardized by the corresponding difference of the global aver-
age temperature.

Single-pattern method (pattern scaling) The single pattern is 
estimated as a multi-model average based on Eq. (2). Instead 
of using a specific model as in the multi-pattern method, 
we estimate the local average temperature, global average 
temperature and patterns by averaging over all the 35 CMIP 
5 models. Our estimate is as follows:

where

and

(3)ãt,i ∶=

∑72∗144

s=1
cos(lats)ỹt,s,i

∑72∗144

s=1
cos(lats)

.

(4)
ỹ2080∶2099,s,i ∶=

ỹ2080,s,i +⋯ + ỹ2099,s,i

20
,

ỹ1980∶1999,s,i ∶=
ỹ1980,s,i +⋯ + ỹ1999,s,i

20

(5)
ã2080∶2099,i ∶=

ã2080,i +⋯ + ã2099,i

20
,

ã1980∶1999,i ∶=
ã1980,i +⋯ + ã1999,i

20

(6)b̂s,i =
ỹ2080∶2099,s,i − ỹ1980∶1999,s,i

ã2080∶2099,i − ã1980∶1999,i
,

(7)b̂s =
ỹ2080∶2099,s − ỹ1980∶1999,s

ã2080∶2099 − ã1980∶1999
,

(8)
ỹ2080∶2099,s ∶=

∑35

i=1

∑2099

t=2080
ỹt,s,i

35 ∗ 20
,

ỹ1980∶1999,s ∶=

∑35

i=1

∑1999

t=1980
ỹt,s,i

35 ∗ 20
,

(9)
ã2080∶2099 ∶=

ã2080 +⋯ + ã2099

20
,

ã1980∶1999 ∶=
ã1980 +⋯ + ã1999

20
,
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Estimation of natural variability The model error term �t,s 
refers to the natural variability related to both time and 
space and it includes the prediction error naturally. Since 
models often have large biases in their natural variability 
(see,e.g., Hawkins and Sutton 2012; McKinnon et al. 2017; 
Chan et al. 2020; Zeppetello et al. 2020), we use the obser-
vations, i.e., the ERA5 reanalysis data to estimate it. The 
data include historical local temperature from 1979 to 2015 
and are denoted by (y1979,s,… , y2015,s) for each grid box s. 
We subtract a linear trend from (y1979,s,… , y2015,s) to get the 
residuals and denote them by (�̂1979,s,… , �̂2015,s) . Figure 2 
gives an illustration of the historical temperatures and linear 
trend for one grid box.

The linear trend is approximate, but not exact. To assess 
sensitivity to this methodological choice, we also carried out 
the analyses using a local polynomial (and thus nonlinear) 
trend rather than a linear trend for each grid bax. However, 
the results were almost indistinguishable, and so we chose to 
use the simpler linear trend approach.

For each grid box s, the histograms of the first- and second-
order autocorrelations of the residuals, as well as the second-
order partial autocorrelations, are close to zero. We assume 
that �t,s ∼ N(0, �2

s
) , and we estimate �s by the sample standard 

deviation, namely

For probabilistic projection of the future, we sample 
�̂2016,s,… , �̂2100,s independently from the normal distribu-
tion N(0, �̂2

s
).

(10)ãt ∶=

∑35

i=1

∑72∗144

s=1
cos(lats)ỹt,s,i

35
∑72∗144

s=1
cos(lats)

.

(11)�̂s =

√

√

√

√
1

36

2015
∑

t=1979

(

�̂t,s −
1

37

2015
∑

t=1979

�̂t,s

)2

.

Estimation of  �yt0,s We take t0 = 2015 and estimate �yt0,s by

where yt0,s is the historical local temperature from the ERA5 
reanalysis data and 𝜀̂t0,s is the residual defined in the above 
paragraph. Specifically, we use the temperature TB (Fig. 2) 
as the estimate of �yt0,s.

Projections of local temperature We make projections of 
local temperature using both the multi-pattern method and 
the single-pattern method. The multi-pattern method is 
based on Eq. (1) and the single-pattern method is based on 
Eq. (2). For the multi-pattern method, we draw 200 trajecto-
ries from the posterior distribution of (a2016,i,… , a2100,i) for 
each CMIP 5 model i (Liu and Raftery 2021). Given grid 
box s, we sample (𝜀̂2016,s,… , 𝜀̂2100,s) independently from the 
distribution N(0, 𝜎̂2

s
) and use (12) and (6) to estimate �̂y2015,s 

and b̂s,i respectively. We then get the forecast of local tem-
perature (ŷ2016,s,… , ŷ2100,s) by equation (1).

This procedure is implemented for each trajectory, and 
finally we obtain 200 trajectories of local temperature projec-
tions for each CMIP 5 model and each grid box s. We com-
bine the 35 CMIP 5 models and get a total of 7000 trajecto-
ries of the local temperature projections (ŷ2016,s,… , ŷ2100,s) 
in the last step. These 7000 trajectories are a sample from 
the predictive distribution of local average temperature over 
time in grid box s.

For the single-pattern method, we obtain 7000 trajectories 
of global averaged temperature projections (a2016,… , a2100) 
by first combining all the 35 CMIP 5 models together, and 
then using (2) to derive the 7000 trajectories of local tem-
perature projections (ŷ2016,s,… , ŷ2100,s).

2.3 � Out‑of‑sample predictive validation

Out-of-sample predictive validation is a way to assess our 
statistical model. We fit the model using only data prior to 
2000, make predictions for 2001–2019, and compare them 

(12)�̂yt0,s = yt0,s − 𝜀̂t0,s
,

Fig. 2   Historical temperature values and linear trend for one grid 
box. The black line shows the historical values form 1979-2015 and 
the red line is the linear trend. The temperature at TB is the expected 
value in 2015 ( ̂�yt0,s ) from the linear regression model Fig. 3   World map. Red dots are the cities we plot
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with what actually happened. Table 1 gives the empirical 
coverage of the 90% and 95% prediction intervals for both 
multi-pattern and single-pattern methods for all gridboxes. 
We compute the empirical coverage by calculating the pro-
portion of the actual values of 2001–2019 that lie in the 
prediction interval. The coverage for multi-pattern method 
is slightly larger than that for the single-pattern method since 
the former incorporates more variability, but they are both 
close to the nominal coverage. Figure 3 shows that almost 
all the black dots lie within the shaded regions for 12 cit-
ies (shown in Fig. 4), selected to illustrate the results for 
the regional end-of-century temperature projections over a 

wide range of environments (e.g. tropical, midlatitude, polar, 
maritime and continental locations). These results indicate 
that the model is reasonably well calibrated.

Fig. 4   Out-of-sample predictive validation of model for temperature 
anomaly (in ◦C). Model estimated from data prior to 2000, predic-
tions for 2001–2019. The red line is the median projection under 
the single-pattern method and the blue line is the median projec-
tion under the multi-pattern method. The two lines overlap since the 
median projections are very close. The red shaded region is the 90% 

prediction range for the single-pattern method and the blue shaded 
region is the 90% prediction range for the multi-pattern method. The 
black line is the historical temperature anomaly from 1979–2019 and 
the black dots are the historical values for the years 2000–2019. The 
percentage of dots outside the blue shaded region is marked after the 
city name

Table 1   Out-of-sample predictive validation: empirical coverage 
(%) of prediction intervals from probabilistic local temperature 
forecasting method for all gridboxes. Model trained using data prior 
to 2000, and tested using data for 2001–2019

Single-pattern method Multi-pattern method

90% 86.8 87.5
95% 92.5 93.1
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3 � Results

3.1 � Estimation results

Figure 5a shows the pattern of temperature change bs using 
the single-pattern scaling method on the output of the CMIP 
5 simulations using historical data and forcing to 2100, and 
the RCP 8.5 emission scenario for the 21st century. Since 
the pattern is essentially scenario-independent (Tebaldi and 
Arblaster 2014), it is reasonable to just use the simulations 
of RCP 8.5 to estimate the common pattern, and the pattern 
of change for each model b̂s,i . Consistent with many studies 
dating back to Manabe et al. (1991), we find that high lati-
tudes warm more than low latitudes, continents warm more 
than oceans and the Northern Hemisphere warms more than 
the Southern Hemisphere. These results are similar to those 
of Tebaldi and Arblaster (2014).

Figure 5b shows the amplitude of natural variability �s 
that refers to the variations in annual averaged temperature 
caused by non-human forces. Natural variability is generally 
large in the polar regions and small in the tropical regions, 
except for the eastern tropical Pacific Ocean which experi-
ences large variability due to the El Niño–Southern Oscilla-
tion (ENSO) phenomenon (Rasmusson and Carpenter 1982).

3.2 � Projection results

Projections for the average of 2081–2100 Figures 6, 7 and 
8 show our projections of the average temperature anomaly 
for 2081–2100. The temperature anomaly is defined as the 
change in temperature compared to the 1979-1998 mean. 
Figures 10 and 11 show the results for a single (arbitrary) 
year at the end of this century (2100). We show only the 
projection results of the multi-pattern method because they 
incorporate the variability of patterns from different CIMP5 
models. In fact, the results from the multi-pattern and single-
pattern methods are very close (see, e.g., Fig. 13).

Figure 6 shows the median projections of the temperature 
anomaly for the average of 2081–2100 relative to the tem-
perature at the end of the last century. The median tempera-
ture change exceeds 3 ◦ C over almost all Northern Hemi-
sphere land regions, and the median temperature increase is 
close to 9.5 ◦ C in much of the Arctic.

Figures 7 and 8 show the lower and upper bounds of the 
likely range, or 90% prediction interval for the change in 
the 20-year average temperature. In the lower bound case 
shown in Fig. 7a, almost all regions will experience a tem-
perature increase in the late twenty-first century compared 
to the late twentieth century. The only exceptions are the 
oceans near Antarctica and a small region in the North 
Atlantic. In this lower bound situation, the increase for the 
continents will be in the range 1–3 ◦ C. In this optimistic 
but unlikely case, the temperature increases by more than 
2 ◦ C in the southwestern United States, Eastern and North-
ern Canada, West Asia, Northern Russia, Northern China, 
most of Europe, and North Africa. Figure 7b shows the 
upper bound (95th percentile) case. The increase over land 
is in the range 3–8 ◦ C. The 95th percentile change exceeds 

Fig. 5   a Map of the spatial pattern bs . b Map of the location-specific standard deviation, �s . Units are ◦C

Fig. 6   Median projections of the change in annual-averaged tempera-
ture for 2081–2100 compared to 1979–1998. Projections are based on 
the multi-pattern method. Units are ◦C
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4 ◦ C over most land areas in the Northern Hemisphere. 
The temperature increase for the Arctic could reach 16 ◦ C 
in some regions.

Figure 8 shows the width of the 90% prediction inter-
val, which characterizes the overall uncertainty including 
internal variation, model uncertainty, scenario uncertainty 
and also the prediction error variation (Hawkins and Sutton 
2009). Generally, temperature projections in the higher lati-
tudes are less certain than at low latitudes, and temperature 
projections over land are less certain than over oceans. For 
land regions, the width of the 90% prediction interval is 2–4 
◦ C, while over oceans this difference is much smaller, at 
1–2 ◦C.

Figure 9 gives a measure of the signal-to-noise ratio for 
the change in the 20-year averaged temperature relative to 
the natural year-to-year variability. Generally, the tropical 
area has a large signal-to-noise ratio due to its small natural 
variability. The ratios for most of the land regions exceed 3 
which means the temperature at the end of this century will 
exceed that of natural variability by at least a factor of 3.

Projections for an individual year at the end of the 21st 
century

Figures 10, 11 and 12 show the resulting projections of 
temperature anomaly for a single (nominal) year at the end of 
the 21st century (i.e. the year 2100) under the multi-pattern 
method. Figure 10 shows the upper and lower bound. Liu 
and Raftery (2021) concluded that the probability of stay-
ing below 2 ◦ C of global warming at 2100 is 5%. Figure 10a 
shows that the continents will have temperature increases in 
the range [1, 3] ◦ C at a minimum (with probability 5% of 
being lower). Compared to Fig. 7a, the 5th percentile pro-
jected temperature increases for a single (nominal) year are 
slightly cooler—a consequence of much smaller amplitude 
natural variability on decadal time scales than on annual 
time scales. For the same reason, the 95th percentile pro-
jected temperature increases for a nominal year at the end 
of the 21st century are slightly greater than those for the 
20-year average temperature projection. The range in the 
single year temperature projection at the end of the 21st 
century is shown in Fig. 11.

Fig. 7   a 5th percentile for the projections of the change in annual-
averaged temperature for 2081–2100 compared to 1979–1998. b 
95th percentile for the projections of the change in annual-averaged 

temperature for 2081–2100 compared to 1979–1998. Projections are 
based on the multi-pattern method

Fig. 8   90% prediction range for average temperature of 2081–2100 
(i.e., the difference between a and b in Fig. 7)

Fig. 9   Median change in average temperature for 2081–2100 relative 
to the amplitude of natural variability
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The impact of natural variability on the projections of 
a nominal year’s temperature at the end of the century is 
best seen by removing natural variability from the projec-
tions, which is done in Fig. 12. Removing natural variabil-
ity reduces the spread in the projections of annual average 
temperature (cf. Figs 10, 12) and makes it very similar to 
the spread in 20-year averaged temperature (cf., Figs. 7, 12), 

which is a result of the preeminence of the uncertainty in 
climate sensitivity and emissions over natural variability 
in setting the spread in the probability of century-end tem-
perature (consistent with results presented in Hawkins and 
Sutton 2009, 2012; Meehl et al. 2014).

Projections for different cities Figure 13 shows the his-
torical and projected anomalies for 12 selected cities. The 
greatest increases in median temperatures at the end of the 
century are for high latitude cities, where median temper-
ature changes exceed 3 ◦ C (see also Fig. 6). Temperature 
changes in the deep tropics are generally slightly less (see 
also Fig. 6).

The blue and red lines denote the median projected 
temperature change using the multi-pattern method and 
the single-pattern method, respectively; the blue and red 
shading denotes the 90 percentile range in the projected 
temperature change using the two methods. For all cities, 
the median and spread in the projections using the multi-
pattern method are indistinguishable from the single-
pattern method, as expected (see Tebaldi and Arblaster 
(2014)). At the beginning of the forecast period (2016), 

Fig. 10   a 5th percentile of the predictive distribution of the change for 2100 compared to 1979–1998. b 95% percentile for the projections of the 
change for 2081–2100 compared to 1979–1998. Projections are based on the multi-pattern method

Fig. 11   90% prediction range for temperature at 2100

Fig. 12   As in Fig. 10, but excluding the contribution of natural variability in the future projection
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natural variability is a moderate contributor to the over-
all uncertainty in the extratropics and high-latitudes (e.g., 
Beijing, Moscow, Seattle, Chicago, Paris, and Puerto Wil-
liams) (Hawkins and Sutton 2009; Meehl et al. 2014, show 
similar results for selected emission scenarios). However, 
its contribution to the overall uncertainty falls rapidly and 
by the end of the century it accounts for very little of the 
uncertainty in the projections. Almost all of the prediction 
uncertainty at the end of the century stems from model 
uncertainty (i.e., climate sensitivity) and uncertainty about 
future emissions. Hawkins and Sutton (2009) showed a 

similar result for the 10-year average of the global mean 
temperature using the CMIP 3 projections.

Quito is somewhat of an exception. As a result of 
ENSO, Quito experiences relatively large natural variabil-
ity for a tropical location—so much so that natural vari-
ability contributes moderately to the overall uncertainty 
in temperature throughout the century; natural variability 
still accounts for ∼ 32% of the overall uncertainty in pro-
jected temperature in 2100.

Puerto Williams is a coastal city that lies in the South-
ern Ocean; it has the smallest temperature increase (0.6 ◦ C) 
and prediction uncertainty of all the cities shown here. This 

Fig. 13   Projected annual-averaged temperature (in ◦ C) for selected 
cities (see Fig.  3 for location). The blue and red lines (which are 
nearly on top of each other) denote the median projected temperature 
change using the multi-pattern method and the single pattern method, 
respectively; the blue and red shading denotes the 90 percentile range 
in the projected temperature change using the two methods. The 

green lines are the 5% and 95% quantile of the projections using the 
multi-pattern method, but after removing the natural variability �t,s . 
The black line is the historical temperature anomaly from 1979–2019 
and the black dots are the historical values for 2015–2019. The num-
bers along the right side of each panel represent the median, 5% and 
95% quantile of projected temperature using the multi-pattern method



Long‑term probabilistic temperature projections for all locations﻿	

1 3

is because of the very high heat capacity of the Southern 
Ocean (i.e., a very deep mixed layer), which mutes the sur-
face temperature anomaly that results from natural variabil-
ity in the surface energy budget and the temperature increase 
due to increasing CO2.

Finally, we note that the predictions for the period 
2015–2019 largely lie within the 90% forecast interval 
projected temperatures only when natural variability is 
include in the projections. This underlines the importance of 
accounting for natural variability (the green lines in Fig. 13) 
when producing probabilistic forecasts for a given year.

4 � Discussion

Previous work summarized in the Working Group 1 reports 
of the Intergovernmental Panel on Climate Change (IPCC) 
(Houghton et al. 2001; Solomon et al. 2007; Stocker 2014) 
gives a projection map of temperature change at 2100 but 
it is not fully probabilistic and statistically-based. We have 
proposed a probabilistic approach to give a spatial long-
term forecast of average annual temperature. It aims to take 
account of all the major sources of uncertainty, including 
model uncertainty, scenario uncertainty and natural vari-
ability; it thus accounts for prediction error in a natural way. 
Our approach combines the pattern scaling techniques and 
the probabilistic forecast of global averaged temperature 
in Liu and Raftery (2021), and finally gives a probabilistic 
forecast of local temperature in a Bayesian framework using 
an MCMC sampling method. This yields a probability dis-
tribution for the future annual-average temperature in each 
year to 2100 and for each box in a regular latitude-longitude 
2.5◦ grid.

We also analyze the sources of variability. Natural vari-
ability takes up a large portion of overall uncertainty in the 
short term for most of the area. Its contribution falls rapidly 
over time so that by 2100 the prediction uncertainty will 
come mostly from model uncertainty and uncertainty about 
future emissions. However, for typical tropical areas like 
Kinshasa and Manaus the natural variability is small so that 
it contributes throughout the projection. However, for Quito 
which is close to the South Pacific Ocean, it still contributes 
a great deal in 2100.

One limitation of our approach is we do not account for 
spatial correlation between the noise in different grid boxes. 
This does not affect the prediction results for each individual 
grid box, which remain of high quality and well calibrated. 
However, for aggregated forecasts for regions made up of 
multiple grid boxes, ignoring spatial correlation beyond 
what is accounted for in the climate models could lead to 
underestimation of uncertainty. This is a topic of future 
research.

In assessing the relative importance of the sources of 
uncertainty (i.e., natural variability, climate model sensitiv-
ity, emission scenario) to the total projection uncertainty, our 
approach follows that of Hawkins and Sutton (2009). Here, 
we update their results using the more recent CMIP 5 model 
projections, and extend them to include probability distribu-
tions for a single year. There are two notable differences in 
our approach. First, we use observations to estimate natural 
variability, avoiding the often significant biases in the natu-
ral variability simulated by the models (see also Hawkins 
and Sutton 2012). Second, in place of three equally weighted 
emission scenarios, we use fully probabilistic projections 
of atmospheric CO2 based on country-level projections of 
population, GDP per capita, and carbon intensity.
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