
1.  Introduction
Equilibrium climate sensitivity (ECS) and transient climate response (TCR) are two fundamental metrics for 
evaluating climate change projections. ECS represents the equilibrium global surface warming in response to a 
doubling of atmospheric CO2 concentration relative to pre-industrial levels. Although idealized, ECS has been 
found to explain most of the spread in projected 21st century global temperature change under realistic emission 
scenarios (Grose et al., 2018; Sherwood et al., 2020). TCR represents the transient surface warming at the time 
of CO2 doubling under an idealized 1% per year CO2 increase. As a measure of transient response, TCR is better 
constrained and is also informative about the projected degree of global warming in the coming century.

In principle, ECS and TCR can be inferred from the global energy balance framework (Gregory et al., 2004):

Δ𝑁𝑁 = Δ𝐹𝐹 + 𝜆𝜆Δ𝑇𝑇 𝑇� (1)

where ΔN is the global-mean top-of-atmosphere (TOA) radiation anomaly (approximately equal to ocean heat 
uptake), ΔF is the effective radiative forcing (ERF; Myhre et al., 2013), ΔT is the global-mean surface air tem-
perature anomaly, and λ is the radiative feedback parameter (negative for a stable climate). By definition, ECS =  
−F2x/λeq, where F2x is the ERF from CO2 doubling, and λeq is the radiative feedback when a new equilibrium is 
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reached (ΔN = 0). ideally, ECS can be estimated from equilibrium states within fully-coupled atmosphere-ocean 
global climate models (AOGCM) forced by an abrupt CO2 doubling (abrupt-2xCO2) or CO2 quadrupling (abrupt-
4xCO2), after sufficiently long integration (Rugenstein et al., 2020). In practice, ECS is often extrapolated from a 
linear regression of ΔN against ΔT for the first 150 years of abrupt-4xCO2 simulations (Gregory et al., 2004). this 
extrapolation generally underestimates the true ECS due to changes in radiative feedbacks as climate equilibrates 
(Dunne et al., 2020; Rugenstein et al., 2020), owing to time-evolving surface warming patterns (e.g., Andrews 
et al., 2015; Armour et al., 2013; Dong et al., 2020), and nonlinear state dependence of radiative feedbacks (e.g., 
Bloch-Johnson et  al.,  2015,  2021; Caballero & Huber,  2013). Therefore, we refer the ECS values estimated 
from these non-equilibrium states to as an effective climate sensitivity (EffCS; Andrews et al., 2015; Sherwood 
et al., 2020):

EffCS = −𝐹𝐹2x

𝜆𝜆eff
,� (2)

assuming the effective radiative feedback (λeff) at a transient state would remain constant to equilibrium. We use 
EffCS4xCO2 to refer to ECS estimates from abrupt-4xCO2 simulations (through regressions of annual-mean ΔN 
against ΔT for the first 150 years; data from Zelinka et al., 2020), and use EffCShis to refer to ECS estimates from 
historical energy budget constraints (see more details in Section 3).

TCR is commonly calculated as the global-mean surface air temperature change averaged over a 20-year period 
centered on year 70 of the 1pctCO2 simulations where CO2 concentration is doubled (referred to as TCR1pct here). 
The values of TCR can also be estimated from historical energy budget constraints (see more details in Section 4), 
in which case we refer to it as TCRhis.

Estimates of EffCShis and TCRhis from observed energy budget constraints (e.g., Lewis & Curry, 2015, 2018; Otto 
et al., 2013) have been found to be lower than values of ECS and TCR inferred from other lines of observational 
and proxy evidence (e.g., Forster et al., 2021; Sherwood et al., 2020). However, AOGCMs have also been found to 
produce values of EffCShis and TCRhis that are lower than their corresponding values of EffCS4xCO2 and TCR1pct, 
at least within the few models tested (Winton et al., 2020 for GFDL-CM4; Andrews et al., 2019 for HadGEM3-
GC3.1-LL; Dessler et al., 2018 for MPI-ESM1.1). The limited number of model studies reflects the fact that 
the time-varying historical ERF (ΔF in Equation 1) is not often diagnosed, precluding accurate calculation of 
radiative feedback and thus EffCShis and TCRhis. Some other studies have instead used abrupt-4xCO2 or 1pctCO2 
simulations as a surrogate for historical warming (Armour, 2017; Armour et al., 2013; Dong et al., 2020; Lewis 
& Curry, 2018; Proistosescu & Huybers, 2017), or used a rough estimate of historical ERF taken from IPCC AR5 
(Myhre et al., 2013) for CMIP5 AOGCMs (Gregory et al., 2020; Marvel et al., 2018). These approaches generally 
find that EffCS4xCO2 is larger than EffCShis, but it is unclear how accurate their estimates are given that they do 
not use model-specific estimates of historical ERF.

This work is thus motivated by two key questions: (a) how robust is the finding that values of EffCS4xCO2 and 
TCR1pct are higher than values of EffCShis and TCRhis estimated using historical energy budget constraints? (b) 
How do the estimates of EffCShis and TCRhis from models compare to those from observations? The answers to 
these questions have major implications for how the historical record informs future climate projections. Here, we 
employ simulations of the Radiative Forcing Model Intercomparison Project (RFMIP; Pincus et al., 2016), which 
provide the time series of historical ERF for eight CMIP6 AOGCMs (Section 2). With ERF in hand, we assess 
EffCShis and TCRhis values within historical simulations, and compare to the corresponding values of EffCS4xCO2 
and TCR1pct within models and the estimates from observations.

2.  Data
2.1.  Historical Effective Radiative Forcing From RFMIP Simulations

The ERF includes rapid adjustments from the atmosphere in response to changes in CO2 or other forcing agents 
(Myhre et al., 2013). It can be quantified from the TOA radiation changes within atmosphere-only GCM (AGCM) 
simulations wherein forcing agents are changed while SST and sea-ice concentration (SIC) fields are fixed at 
pre-industrial values (Forster et al., 2016). Here we make use of the fixed-SST simulations of RFMIP that are cur-
rently available for eight CMIP6 models (CanESM5, CNRM-CM6-1, GFDL-CM4, GISS-E2-1-G, HadGEM3-
GC31-LL, IPSL-CM6A-LR, MIROC6, and NorESM2-LM). The timeseries of historical ERF is calculated as the 
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difference of net TOA radiative flux between a 30-year control run (piClim-control), where all forcing agents are 
fixed to pre-industrial levels, and a forcing run (piClim-histall), where time-varying atmospheric concentrations 
of all historical forcing agents are imposed. ERF from a single group of forcing agents (e.g., greenhouse gases, 
anthropogenic aerosols, natural forcings including volcanoes and solar variability) can also be estimated using 
single-forcing runs of RFMIP (piClim-histghg, piClim-histaer, and piClim-histnat, respectively). We also esti-
mate ERF of CO2 doubling, F2x, from RFMIP piClim-4xCO2 simulations, where CO2 is abruptly quadrupled and 
held constant for 30 years while SST and SIC fields are fixed. F2x is computed from the TOA radiation changes of 
the 30years-average (scaled by 1/2 to account for CO2 doubling). For all RFMIP simulations, the ensemble mean 
is used when more than one member of the simulation exist.

Note that the TOA radiation flux changes derived from the fixed-SST simulations includes the effect of tempera-
ture changes over land and sea ice, which should be considered as part of the radiative response rather than ERF. 
We remove this portion of radiative effects by subtracting off the global-mean surface air temperature change 
scaled by each model's radiative feedback parameter from its abrupt-4xCO2 simulation–the method proposed in 
Hansen et al. (2005). Recent studies find advantages in several new correction methods, such as fixing both SST 
and land-surface temperatures in AGCM (Andrews et al., 2021), or using surface temperature radiative kernels 
(Smith et al., 2020). We choose to apply the Hansen et al. (2005) method here because it is a widely used method 
and readily improves ERF estimates using the available output of the RFMIP simulations. All the historical ERFs 
are calculated as global and annual means, spanning the period 1850–2014 (the same interval of fully-coupled 
historical simulations).

2.2.  Historical Simulations of AOGCMs and AGCMs

Within historical simulations of AOGCMs, we compute global mean N and T from the mean of all available en-
semble members (Table S2 in Supporting Information S1), in attempt to reduce noises from internal variability. 
The annual mean changes of N and T relative to pre-industrial levels are calculated by subtracting a linear fit of 
the annual global-mean piControl values to remove model drift. Note that ΔN, ΔF, and ΔT in the energy budget 
framework (Equation 1) can also be defined as differences between two specific historical states. We will elab-
orate the periods over which we compute the historical energy balance in the following two sections. In order to 
examine the contributions of individual forcing agents to historical climate change, we also employ single-forcing 
historical simulations (hist-GHG, hist-aer, and hist-nat), described by the Detection and Attribution Model Inter-
comparison Project (DAMIP; Gillett et al., 2016), where only one type of forcing agent is changed while all other 
forcing agents are fixed at preindustrial levels.

Results from the coupled AOGCMs are compared to two sets of AGCM simulations performed as part of the 
Atmospheric Model Intercomparison Project (AMIP) protocol. One is called “amip,” where AGCMs are forced 
by time-evolving observed SST and SIC fields and by time-varying historical forcing agents. While amip sim-
ulations are available for all eight CMIP6 models assessed here, they are performed only over 1979–2015. The 
other one is called “amip-piForcing,” described by the Cloud Feedback Model Intercomparison Project (CFMIP; 
Webb et al., 2017), where AGCMs are forced by the same observed SST and SIC fields over 1870–2014, except 
all radiative forcing agents are fixed at pre-industrial levels. The use of AMIP simulations to study feedbacks is 
based on the expectation that a given SST pattern will result in a unique radiative response whether that pattern 
is prescribed or internally produced within a model (Haugstad et al., 2017). In Section 3, we show that EffCS 
estimates from amip and amip-piForcing runs are indeed generally consistent with each other. A caveat is that 
only six out of eight models used have amip-piForcing experiments available. For both sets of AGCM simulations 
we only use the first realization of each model, given that most of the variability in TOA radiative fluxes comes 
about through variations in SSTs, which are the same in these simulations.

3.  Historical Energy Budget Constraints on Radiative Feedbacks and EffCS
In the energy budget framework, EffCShis can be written as:

EffCShis = −𝐹𝐹2x

𝜆𝜆his
,� (3)

where the historical effective radiative feedback parameter (λhis) is given by:
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𝜆𝜆his =
Δ𝑁𝑁 − Δ𝐹𝐹

Δ𝑇𝑇
.� (4)

For the historical and amip simulations, we calculate λhis and EffCShis using ΔN and ΔT taken from those simula-
tions combined with ΔF from each model's RFMIP simulation. For the amip-piForcing simulations, which have 
constant forcing, we calculate λhis and EffCShis only using ΔN and ΔT taken from those simulations (i.e., ΔF = 0).

We first show historical variations in λhis, calculated by a linear regression form of Equation 4 in a sliding 30-
year window. We find remarkable differences in decadal-scale radiative feedbacks between historical simulations 
(black line in Figure 1a) and amip-piForcing simulations (blue line in Figure 1a). While natural variability may 

Figure 1.  (a) Time series of the estimated λhis. Thick lines denote multi-model means, shadings denote one standard deviation across models. The box plot on the 
right denotes the interquartile range (box) and the mean value (red line) of λ4xCO2 across 8 models. (b and c) EffCS estimated from the energy budget of (b) full 
historical record (1870–2014) and (c) recent decades (1979–2014). The outlined colored bars on the right in (b), (c) denote the multi-model mean values of EffCS from 
corresponding simulations, with error bars indicating one standard deviation across models. The white hatched bar in (b) denotes the median EffCShis value of 2.5 K 
reported in AR6 (Forster et al., 2021) based on observed energy budget changes, with the error bars denoting 5%–95% range of 1.6–4.8 (k) Models listed (from the left 
to right) are: CanESM5, CNRM-CM6-1, GFDL-CM4, GISS-E2-1-G, HadGEM3-GC31-LL, IPSL-CM6A-LR, MIROC6, and NorESM2-LM.
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have played a dominant role in the first half of the twentieth century, where net ERF was relatively small (Figure 
S1 in Supporting Information S1), the discrepancy between AOGCMs and AGCMs persists throughout the full 
historical period toward early 21st century. Notably, λhis in the amip-piForcing simulations of AGCMs trends to-
ward more-negative values since 1970s to present, consistent with earlier studies using CMIP5 models (Andrews 
et al., 2018; Dong et al., 2019; Gregory et al., 2020; Silvers et al., 2018); whereas in the historical simulations of 
AOGCMs, λhis trends slightly toward more-positive values, and at the end of the century becomes comparable to 
the values of λ4xCO2 from abrupt-4xCO2 runs. During the second half of the century, λhis values from AOGCMs 
track those in hist-GHG simulations (red line), suggesting the simulated feedbacks are primarily driven by GHG 
forcing, which has dominated global net ERF over this period (Figure S1 in Supporting Information S1).

We next assess EffCShis from energy budget constraints within the historical simulations of the AOGCMs and 
the AGCMs. To compute the energy budget in Equations 3 and 4, the time interval over which anomalies (Δ) are 
calculated needs to be carefully chosen to avoid short-term variability and effects of volcanic eruptions (Forst-
er, 2016; Lewis & Curry, 2015). Previous studies have often used two methods: (a) taking finite differences be-
tween a base period and a final period (Lewis & Curry, 2015, 2018; Sherwood et al., 2020; Winton et al., 2020); 
or (b) using regression over the full period of interest (Andrews et al., 2019; Gregory et al., 2020). Since we 
are comparing EffCS between AOGCMs and AGCMs (including amip simulations which are only available 
from 1979 onwards), we choose to use the regression method here. That is, the λhis used to compute EffCShis 
(Equation 3) is calculated via ordinary least squares regression of Equation 4, over two periods of interest: the 
full historical period 1870–2014 (Figure 1b), and the recent decades of the Satellite Era 1979–2014 (Figure 1c).

3.1.  EffCShis From Long-Term Historical Energy Budget (1870–2014)

The values of EffCShis inferred from long-term energy budget in historical simulations are generally lower than 
EffCS4xCO2 from abrupt-4xCO2 simulations (Figure 1b). As noted above, the difference between EffCShis and 
EffCS4xCO2 has been documented in a few models. For GFDL-CM4, Winton et al. (2020) found an EffCShis of 
1.8 K and an EffCS4xCO2 of 4 K (EffCS4xCO2 = 5K if using yrs 51–300 of the model's extended abrupt-4xCO2 
simulation). For HadGEM3-GC3.1-LL, Andrews et al. (2019) found an effective F2x of 3.49 Wm−2 and a his-
torical feedback of 0.86 Wm−2K−1 (average of four ensembles), implying an EffCShis of 4.1 K, in contrast to the 
model's EffCS4xCO2 of 5.5 K. Here, we show that, within six out of eight CMIP6 AOGCMs assessed, historical 
energy budget constraints underestimate EffCS4xCO2 from CO2 quadrupling. Values of EffCShis range from 4.6% 
above to 35.6% below values of EffCS4xCO2, with an average of 12.6% below across these 8 models (Table S1 
in Supporting Information S1). Averaging over all these eight AOGCMs that are currently available, EffCShis 
is 3.54 K (±1.17 K; one standard deviation across models, unless noted elsewhere) and EffCS4xCO2 is 4.05 K 
(±1.46 K), corresponding to an averaged λhis of −1.16 Wm−2K−1 (±0.37 Wm−2K−1) and λ4xCO2 (from the regres-
sion of 150 years abrupt-4xCO2 simulations) of −0.97 Wm−2K−1 (±0.34 Wm−2K−1), respectively. Lower values 
of EffCShis are found in AGCM amip-piForcing experiments over the same historical period, with a mean EffCShis  
value of 2.51 K (±0.35 K) across six available models, which is lower than the mean EffCS4xCO2 value of 4.52 K 
(±1.04 K) across the same 6 models by 44%. Using the Winton et al. (2020) method, that is, taking ΔN, ΔT, and 
ΔF as differences between 1869–1882 and 1995–2014, yields nearly the same result: the mean value of EffCShis 
is 3.42 K (±1.24 K) from historical simulations across all 8 AOGCMs and 2.54 K (±0.4 K) from amip-piForcing 
simulations across six available AGCMs.

The EffCS and radiative feedback differences between historical energy budget constraints and CO2 quadrupling 
in models arise primarily from differences between historical and near-equilibrium warming patterns (Figure 2). 
Under CO2 quadrupling, AOGCMs generally project an equilibrium warming pattern featuring polar ampli-
fication and weakened tropical Pacific west-east SST gradient (Figure 2c; Andrews et  al.,  2015; Andrews & 
Webb, 2018; Ceppi & Gregory, 2017; Dong et al., 2020); whereas the SST trend patterns in ensemble-mean his-
torical simulations are more spatially uniform (Figure 2a). It has been argued that the projected enhancement of 
warming in the tropical eastern Pacific relative to the tropical western Pacific in models tends to weaken the lower 
tropospheric stability, thereby weakening the negative low-cloud feedback and lapse-rate feedback, producing a 
higher EffCS (Andrews & Webb, 2018; Ceppi & Gregory, 2017; Dong et al., 2019; Zhou et al., 2016). In contrast, 
the relatively uniform tropical warming patterns simulated in historical simulations would maintain negative 
cloud feedback and therefore lower EffCS. The fact that EffCShis estimates from amip-piForcing simulations are 
even lower can be traced to their SST patterns prescribed from observations, featuring slightly enhanced warming 
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in the Indo-Pacific Ocean and delayed warming in both the eastern Pacific Ocean and the Southern Ocean (e.g., 
Dong et al., 2020, 2019; Silvers et al., 2018; Zhou et al., 2016).

The historical pattern effect that leads to lower values of EffCShis may partially result from various non-CO2 
forcing agents that have operated in the historical period (e.g., Forster,  2016; Marvel et  al.,  2016). Gregory 
et al. (2020) suggest that volcanic forcing may bias estimate of EffCS from CO2 quadrupling by causing different 
surface warming patterns in CMIP5 models. Winton et al. (2020) find that a large portion of the EffCShis under-
estimate in GFDL-CM4 is attributable to its large efficacy of aerosol forcing. To test this possibility within other 
CMIP6 models, we make use of the DAMIP non-GHG forcing simulations, namely, hist-aer and hist-nat (Figure 
S2 in Supporting Information S1). Within all but one model, natural forcing alone produces even lower values of 
EffCShis than those from historical simulations (i.e., a larger historical pattern effect). In comparison, when forced 
by anthropogenic aerosol forcing alone, four models show a larger historical pattern effect while three models 
show a reduced pattern effect. These results suggest that non-GHG forcing may largely account for the historical 
pattern effect, though the impact of aerosol forcing is less robust across models.

Figure 2.  Historical and equilibrium SST trend patterns. Annual-mean SST linear trends over (a) 1870–2014, (b) 1979–2014, and (c) 150 years of abrupt-4xCO2 
simulations. The observed SST trend patterns in (a), (b) are calculated using AMIPII dataset (Hurrell et al., 2008). Note that the color scales in (a) and (b and c) are 
different.
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3.2.  EffCShis From Recent Energy Budget (1979–2014)

Having quantified the long-term historical energy budget constraint on EffCS, we next focus on the most recent 
decades 1979–2014 (Figure 1c), where observations of global SSTs have been improved by satellite products and 
better in-situ sampling. This is also the period where GHG forcing has increased dramatically while aerosol forc-
ing trends are relatively small (Figure S1 in Supporting Information S1). With stronger ERF having operated over 
this period, nearly all coupled AOGCMs produce higher values of EffCShis, with a multi-model mean EffCShis 
of 4.06 K (corresponding to a mean radiative feedback of −1.02 Wm−2K−1), comparable to the mean EffCS4xCO2 
of 4.05 K.

Does this imply that the historical pattern effect is weak in recent decades? In fact, the EffCShis values over 
this period from all eight AOGCMs are substantially higher than the values from their AGCM counterparts 
driven by observed warming patterns within amip and amip-piForcing simulations (Figure 1c). Averaging over 
all these AGCMs, the mean EffCShis and the corresponding λhis from amip simulations is 2.07 K (±0.57 K) and 
−1.92 Wm−2K−1 (±0.58 Wm−2K−1), respectively. Note that EffCShis estimates from amip runs are slightly higher 
than those from amip-piForcing runs, potentially due to minor biases in the estimates of ERF from RFMIP fixed-
SST simulations (Andrews et al., 2021), but the difference between these two AGCM simulations is much smaller 
than the difference between AOGCM historical simulations and AGCM simulations.

The EffCShis difference between AOGCMs and their counterpart AGCMs can be traced to the difference between 
modeled and observed SST patterns over recent decades. The ensemble-mean SST trend pattern in historical 
simulations of AOGCMs fails to capture many key features in observations (Figure 2b), including the pronounced 
cooling trends over the eastern Pacific and Southern Ocean. The enhanced tropical Pacific zonal SST gradient has 
been linked to the observed increase in low clouds over the stratocumulus deck, which contributes to a more-neg-
ative radiative feedback and lower EffCS (Ceppi & Gregory, 2017; Dong et al., 2019; Fueglistaler, 2019; Zhou 
et al., 2016). The Southern Ocean SSTs have also been found to have large impacts on low-cloud feedbacks over 
the Southern Ocean and therefore EffCS (Dong et al., 2020; Gjermundsen et al., 2021). Moreover, potential tel-
econnections from the Southern Ocean to the tropical Pacific may also contribute to the observed changes in the 
tropical cloud feedback and lower EffCS over this period (e.g., Hwang et al., 2017; Kang et al., 2020).

A few studies have argued that the observed tropical Pacific SST pattern may be driven by aerosol forcing (Taka-
hashi & Watanabe, 2016) or volcanic forcings (Gregory et al., 2020). Using the DAMIP simulations, we found 
that the SST trend patterns driven by anthropogenic aerosol forcing and natural forcing are indeed more spatially 
heterogeneous, with some models showing weak cooling in the tropical eastern Pacific (Figure S3 in Support-
ing Information S1). However, the cooling trends produced in these non-GHG simulations are much weaker than 
that observed, and are generally overwhelmed by the warming trends produced by GHG forcing (Figure S3a in 
Supporting Information S1). It is also possible that the observed warming pattern in part results from natural 
variability. For example, Watanabe et al. (2021) found that the observed equatorial Pacific west-east SST gradient 
over a longer period (1951–2010) lies within the range of large ensembles of model simulations. However, such 
regional analyses may be insufficient to explain the observed SST trend pattern beyond the equatorial Pacific, 
and their results may be sensitive to the time interval selected. We have examined EffCShis and the equatorial 
Pacific zonal SST gradient for all individual members of historical simulations. We define the zonal SST gradient 
following Watanabe et al. (2021): the difference between the eastern Pacific (180–80W, 5S–5N) and the western 
Pacific (110E−180, 5S–5N). But we calculate SST linear trends over 1979–2014 instead of 1951–2010. Over 
these recent decades, nearly all of the 201 ensemble members fail to capture the low EffCShis values from the 
corresponding amip simulations and the observed zonal SST gradient (Figure S4 in Supporting Information S1), 
suggesting a significant discrepancy in the pattern effect between AOGCMs and observations.

Identifying the causes of the recent observed SST trend pattern is beyond the scope of this study. Our results 
on the historical energy budget constraints suggest that EffCShis estimates from historical simulations generally 
underestimate EffCS4xCO2 due to the pattern effect. However, the historical pattern effect is relatively small over 
recent decades in AOGCMs, owing to the bias of their historical warming patterns.
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4.  Historical Energy Budget Constraints on TCR
In the energy budget framework, TCR can be inferred from sufficiently long-term historical record where ΔT 
increases approximately proportional to ΔF:

TCRhis = Δ𝑇𝑇 𝐹𝐹2x

Δ𝐹𝐹
.� (5)

Under the global energy framework (Equation 1), TCRhis is governed by both historical radiative feedback (λhis) 
and ocean heat uptake (OHU) efficiency (κhis), with the relationship between these approximated as (Gregory 
et al., 2015; Gregory & Forster, 2008; Gregory & Mitchell, 1997; Raper et al., 2002):

TCRℎ𝑖𝑖𝑖𝑖 =
𝐹𝐹2x

𝜅𝜅his − 𝜆𝜆his
,� (6)

where κhis is defined as:

𝜅𝜅his =
Δ𝑁𝑁
Δ𝑇𝑇

.� (7)

Here, we calculate TCRhis from historical simulations using Equation 5, where anomalies (Δ) are averaged over 
1995–2014 relative to 1869–1882. This period is chosen to cover a sufficiently long time of historical record, 
and also to be largely consistent with several recent studies (Lewis & Curry, 2018; Winton et al., 2020). As noted 
above, Winton et al. (2020) found a TCRhis of 1.27 K for GFDL-CM4, lower than the model's TCR1pct of 2.05 K. 
Here we find that seven out eight AOGCMs assessed are consistent with GFDL-CM4—the historical energy 
budget constraint underestimates TCR values from 1pctCO2 simulations. Values of TCRhis range from 9.7% 
above to 32.2% below values of TCR1pct, with an average of 13% below across all eight models. The mean TCRhis 
value across 8 AOGCMs is 1.81 K (±0.51 K), lower than the mean TCR1pct value of 2.08 K (±0.43 K).

As shown in Equation 6, the difference between TCRhis and TCR1pct could arise from changes in radiative feed-
backs and/or changes in OHU efficiency over time (Gregory et  al.,  2015). To separate these two factors, we 
estimate λ and κ from historical and 1pctCO2 simulations, following Equation 4 and Equation 7, respectively. 
For historical estimates, ΔN, ΔT and ΔF are taken as finite differences between 1995–2014 and 1869–1882. For 
1pctCO2 estimates, ΔN and ΔT are from the 20-year period centered on year 70 of the simulation when CO2 is 
doubled; ΔF at the time of CO2 doubling is approximated by F2x, with a caveat that the true F2x in 1pctCO2 sim-
ulations was found slightly non-logarithmic (Gregory et al., 2015, 2020).

In all models, κhis is larger than κ1pct, which could contribute to the lower values of TCRhis relative to TCR1pct (Fig-
ure3b). The difference between κ1pct and κhis could be associated with ocean stratification response on different 
time scales, or could arise from changes in Atlantic meridional overturning circulation or Southern Ocean merid-
ional overturning circulation driven by historical non-CO2 forcings. On the other hand, the difference between λhis 
and λ1pct varies by models (Figure 3c). Two models show λhis more negative than λ1pct, along with their large κhis, 
suggesting that the lower values of TCRhis in these models are owing to changes in both radiative feedbacks and 
OHU efficiency. The rest of the models show λhis either very close to or slightly less negative than λ1pct, suggesting 
a dominant role of changes in κ.

In summary, we find an overall underestimate of TCR of about 0.2 K using historical energy budget constraints 
within AOGCMs, owing to the combination of more-negative radiative feedback and/or larger OHU efficiency 
during the historical period. The differences in λ and κ between historical and 1pctCO2 are largely ameliorated 
when using hist-GHG simulations (Figure S5 in Supporting Information S1), suggesting that the underestimate 
of TCRhis is mostly driven by historical non-GHG forcings. These results suggest that as time evolves and CO2 
forcing increases, the weakening of both λ and κ could lead to higher values of TCR than those inferred from 
historical energy budget constraints.
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5.  Discussions and Conclusions
In the previous two sections, we have compared estimates of EffCS and TCR between different simulations of 
coupled and atmosphere-only GCMs. How do the model results compare to values of EffCShis and TCRhis from 
observations, and what implications do the results have for our interpretation of the observed energy budget 
constraints?

In Figures 1 and 3 we show that the reported values of EffCShis and TCRhis from observations are lower than the 
values of EffCS4xCO2 and TCR1pct from CMIP6 models. For an observation-based estimate of EffCShis, we use 
values reported in IPCC AR6 (Forster et al., 2021): a median value of 2.5 K and 5%–95% range of 1.6–4.8 K 
based on observed energy budget changes from 1850–1900 to 2006–2019 (Figure 1b). For TCR, we use values 
reported by Lewis and Curry (2018): a median value of 1.32 K and a 17%–83% range of 1.1–1.65 K based on 
observed energy budget changes over 1869–1882 to 1995–2016 (Figure 3). Values of EffCShis from AGCM sim-
ulations forced by observed SST patterns are well in line with observation-based values of EffCShis, despite the 
fact that the values of EffCShis and EffCS4xCO2 from their counterpart AOGCMs are both higher. The difference 

Figure 3.  (a) TCR estimates from fully-coupled historical simulations (TCRhis; black bars) and 1pctCO2 simulations (TCR1pct; red bars). The white hatched bar denotes 
the best estimate of TCRhis of 1.32 K inferred by Lewis and Curry (2018) based on estimates of observed energy budget changes, with a 17%–83% range of 1.1–1.65 K. 
(b) Ocean heat uptake efficiency and (c) radiative feedback from historical and 1pctCO2 simulations of all eight AOGCMs.
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between estimates of EffCS4xCO2 from abrupt-4xCO2 simulations and estimates of EffCShis from AGCM sim-
ulations with observed surface warming is thus owing to changes in SST patterns with time. It implies that if 
nature evolves toward equilibrium in the way that AOGCMs project, we should expect higher values of EffCS 
and TCR (i.e., evolving toward EffCS4xCO2 and TCR1pct) in the future than those inferred from observed energy 
budget constraints.

Our findings are broadly consistent with earlier studies focusing on two individual CMIP6 models (Andrews 
et al., 2019; Winton et al., 2020): historical energy budget constraints generally (within 6 out of 8 AOGCMs) 
underestimate the values of EffCS from CO2 quadrupling and TCR from CO2 ramping. The underestimate of 
EffCShis is owing to differences in radiative feedbacks induced by the pattern effect; the underestimate of TCRhis 
is owing to a combination of differences in both radiative feedbacks and OHU efficiency. Accounting the pattern 
effect and assuming the observed SST pattern will evolve toward the projected equilibrium warming pattern, the 
observed historical energy budget may provide a biased-low constraint on EffCS and TCR.

That said, the projections by GCMs are confronted by not only uncertainties associated with atmospheric physics, 
for example, cloud feedback response to a given SST pattern, but also an open question: how reliable are model 
projections of future SST patterns? AOGCMs generally fail to reproduce the observed historical SST pattern, 
which led to an inconsistency between EffCS estimates from coupled historical runs and those from amip runs 
and observations. If the observed SST trend pattern is caused by natural variability, which will reverse sign in the 
coming decades according to AOGCM projections (Watanabe et al., 2021), then the higher values of EffCS and 
TCR found within AOGCMs may be more informative about near-future climate change under continued CO2 
forcing. If the recently observed SST trend pattern is a result of model biases in the response to GHG forcing (e.g., 
Coats & Karnauskas, 2017; Seager et al., 2019), the lower values of EffCShis and TCRhis from observations may 
persist over the coming decades, in which Case 21st century warming may be lower than that projected even by 
GCMs with realistic ECS values. This work suggests that both understanding the causes of the recent observed 
warming pattern and making accurate projections of future warming patterns are important for constraining tran-
sient and near-equilibrium climate change.

Data Availability Statement
The CMIP6 simulations used in this study and their DOIs are listed in Table S2 in Supporting Information S1. 
The processed data are available at http://hdl.handle.net/1773/48133.
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