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Abstract The observed partitioning of poleward heat transport between atmospheric and oceanic heat
transports (AHT and OHT) is compared to that in coupled climate models. Model ensemble mean poleward
OHT is biased low in both hemispheres, with the largest biases in the Southern Hemisphere extratropics.
Poleward AHT is biased high in the Northern Hemisphere, especially in the vicinity of the peak AHT near 40°
N. The significant model biases are persistent across three model generations (CMIP3, CMIP5, CMIP6) and
are insensitive to the satellite radiation and atmospheric reanalyzes products used to derive observational
estimates of AHT and OHT. Model biases in heat transport partitioning are consistent with biases in the
spatial structure of energy input to the ocean and atmosphere. Specifically, larger than observed model
evaporation in the tropics adds excess energy to the atmosphere that drives enhanced poleward AHT at the
expense of weaker OHT.

Plain Language Summary The equator‐to‐pole contrast of solar radiation entering the climate
system drives the large‐scale oceanic and atmospheric circulations that, in turn, move heat from the equator to
the poles to moderate latitudinal temperature contrasts. The ocean moves the majority of heat in the tropics
whereas the atmosphere moves the vast majority of heat in the mid‐ and polar‐latitudes. We demonstrate that, on
average, state‐of‐the‐art climate models representing both oceanic and atmospheric circulations simulate too
little oceanic heat transport and too much atmospheric heat transport relative to observational estimates. These
model biases in the atmosphere‐ocean partitioning of poleward heat transport are persistent across three
generations of climate model ensembles spanning 20 years of progress in climate modeling and are insensitive
to the choice of datasets used to calculate observed heat transports. The model biases are consistent with
stronger than observed surface evaporation in the tropics which enhances atmospheric heat transport at the
expense of oceanic heat transport.

1. Introduction
The combined meridional heat transport (MHT) by the ocean and atmosphere moderates spatial gradients in
temperature on Earth. In the absence of MHT, the equator‐to‐pole temperature gradient would be approximately
three times larger than observed based on radiative considerations alone (Pierrehumbert, 2010), rendering the
tropics uninhabitably warm and the high latitudes uninhabitably cold. Observational estimates of the partitioning
of MHT between poleward atmospheric heat transport (AHT) and poleward oceanic heat transport (OHT) show
that OHT exceeds AHT in the deep tropics (equatorward of 10°) while AHT dominates in the mid‐ and high‐
latitudes of both hemispheres (Mayer et al., 2021; Oort & Haar, 1976; Trenberth & Caron, 2001; Vonder Haar
& Oort, 1973).

The partitioning of MHT between AHT and OHT impacts climate and its changes. For example, the convergence
of OHT in the extratropics is inherently linked to the surface energy budget and thus demands a surface tem-
perature response, whereas the convergence of the same quantity of AHT in the atmosphere can be radiated to
space with less impact on surface climate (Cardinale et al., 2020). Indeed, previous work by Enderton and
Marshall (2009) has shown that aquaplanets with nearly identical total MHT but different AHT‐OHT partitioning
can have very different climates (e.g., different surface temperature and sea ice distributions).
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Given the dependence of climate on MHT and its partitioning between AHT and OHT, we ask here: how well do
coupled climate models represent the observations of these quantities? This question was briefly addressed in
Chapter 9 of the Intergovernmental Panel on Climate Change fifth assessment report (Flato et al., 2013) which
concluded that model OHT was within the wide range of observational OHT estimates. Comparison of obser-
vational and model AHT‐OHT partitioning is difficult because the standard methodology for partitioning MHT
between AHT and OHT differs between observations and models due to the contrasting reliability and availability
of the climate fields used to calculate AHT and OHT. Recent work (Donohoe et al., 2020) demonstrated a near
equivalence of the model and observational approaches used to calculate AHT‐OHT partitioning in a model
setting, enabling a comprehensive observational‐model comparison. In this study we apply these methods to three
generations of coupled model simulations (Phases 3, 5, and 6 of the Coupled Model Intercomparison Project,
CMIP) and to several observational radiation and atmospheric reanalysis products. Our aim is to determine
whether the models accurately capture MHT and its partitioning between AHT and OHT derived from obser-
vational datasets.

In Section 2 we provide an overview of the observational and model methodologies for partitioning MHT into
AHT and OHT and demonstrate the near equivalence of these two approaches. In Section 3, we compare the
observational and model MHT partitioning across the three different model generations (CMIP3, CMIP5, and
CMIP6) and examine the sensitivity of our findings to the choice of observational data sets used to partitionMHT.
In Section 4 we consider an alternative method for comparing AHT‐OHT partitioning in models and observations
from the processes that contribute to spatial gradients in energy input to the atmosphere and ocean. A summary
and discussion follows.

2. Methods for Partitioning MHT Into AHT and OHT in Observations and Coupled
Models
The methodology used to partition MHT into AHT and OHT in coupled climate models and observations is
described in detail in Donohoe et al. (2020). Here we summarize the conceptual approach. In climate models,
AHT and OHT are diagnosed from the transport required to balance the energy input into the atmosphere and
ocean respectfully. Specifically,

MHT(Θ) = 2πa2∫
90

Θ
− F∗ cos θ dθ, (1)

where a is the radius of the Earth, Θ is the latitude (with θ a latitude variable of integration), and F is the net energy
input to the atmosphere, ocean, or combined atmosphere‐ocean system. The total MHT can be found by taking F
to be the radiative flux at the TOA (RADTOA), OHT by taking F to be the net surface heat flux (SHF = radiative
plus turbulent flux into the ocean), and AHT by setting F to be the net energy input to the atmosphere (RADTOA ‐
SHF). The * denotes that the global mean of each energy flux term has been removed to ensure heat transport goes
to zero at both poles. This adjustment is necessary because climate models do not conserve energy globally (up to
1 W m− 2 imbalances) in both the atmosphere and ocean (Lucarini & Ragone, 2011).

In contrast to models, the observed surface energy budget is not closed (Stephens et al., 2012; Trenberth
et al., 2009). Thus, observational OHT cannot be estimated from SHF in Equation 1. Instead, we use an approach
following Trenberth and Caron (2001) and Vonder Haar and Oort (1973): observational MHT is calculated using
Equation 1 with satellite RADTOA (Loeb et al., 2018); observational AHT is calculated from high frequency
atmospheric reanalysis as the vertically and zonally integrated meridional energy flux; and observational OHT is
calculated as the residual of satellite derived MHT and reanalysis derived AHT. In the AHT calculation, the
vertically averaged moist static energy is removed before integrating (Cardinale et al., 2020; Donohoe & Bat-
tisti, 2013; Donohoe et al., 2020), effectively applying a mass correction needed to make the AHT calculation
physically meaningful (Liang et al., 2018; Trenberth & Stepaniak, 2003).

Donohoe et al. (2020) demonstrated that the “observational” and “model” approaches calculated nearly identical
AHTwhen applied to a NCARCESM1 coupled simulation.We extend this result to show that the two approaches
give nearly identical partitioning ofMHT into AHT and OHT (cf. the dashed and solid red and blue lines in Figure
S1 in Supporting Information S1) with a root mean squared difference AHT (and OHT) between the two methods
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of 0.07 PW. We use this result to justify the examination of potential model biases in MHT partitioning using
these two methodologies.

3. Results: Model Biases in MHT Partitioning
Climate model biases in MHT partitioning are analyzed using pre‐industrial control simulations from three
different CMIP generations (Eyring et al., 2016; Meehl et al., 2007; Taylor et al., 2012) and several different sets
of observational products (see Supporting Information for details). We focus on pre‐industrial simulations in
order to compare results between CMIP generations (which have different years of simulation and forcing for
historical simulations) and evaluate the potential differences between historical and pre‐industrial climate in
Section 3.2. The presentation of our results is organized as follows. Section 3.1 presents the observational es-
timate of MHT partitioning using the most contemporary and high resolution data available, which is compared
against the MHT partitioning in the three CMIP ensembles. Section 3.2 analyzes the sensitivity of our results to
the observational data used by comparing eight different observational estimates of MHT partitioning against the
multi‐generation CMIP ensemble mean. The results show that the sign and spatial structure of model biases in
MHT partitioning are consistent across model generation and observational data sets used.

3.1. Consistent Model Biases in AHT‐OHT Partitioning Across Three CMIP Generations

In this section, we use CERES Energy Balanced and Filled (EBAF) TOA radiation (Loeb et al., 2009) and the
ERA5 atmospheric reanalysis (Hersbach et al., 2020) to calculate an observational estimate of MHT and its
partitioning over the period 2001–2020. This observational estimate (solid line) is compared against each of the
three CMIP ensembles (in each row of Figure 1; with dashed lines showing individual models and the thick
dashed lines showing CMIP ensemble averages). We focus here on robust differences between the model
ensemble mean in each CMIP generation and the observational estimate which are defined by biases greater than
two standard errors of the ensemble mean (the ensemble standard deviation divided by the square root of the
ensemble members, corresponding to roughly a 95% confidence interval, see Figure S6 in Supporting Infor-
mation S1). Observational errors on AHT due to inter‐annual variability are less than 0.1 PW (see Figure S9 in
Supporting Information S1) whereas it remains unclear how structural errors in satellite radiation project onto
MHT uncertainty (Wunsch, 2005).

Poleward MHT peaks near 35° in both hemispheres in both models and observations (Figure 1), due to Earth‐Sun
geometry constraints (Stone, 1978). However, across all three CMIP generations, the amplitude of the ensemble
mean poleward MHT in models is biased low in the mid‐latitudes of the Southern Hemisphere (SH) whereas the
model bias in peak MHT in the Northern Hemisphere is only significantly low in CMIP5. The inter‐model spread
in peak MHT (2 standard deviations) is as large as 23% of the ensemble mean in the SH and about half as large in
the NH. Donohoe and Battisti (2011) demonstrated that the inter‐model spread and bias in MHT in CMIP3 results
from biases and spread in the albedo of clouds which impact the equator‐to‐pole gradient of absorbed solar
radiation.

We next analyze the partitioning of MHT between OHT and AHT. In the NH, the model ensemble mean is
significantly biased toward too little poleward OHT and too much poleward AHT in all three CMIP generations.
The model bias toward smaller than observed OHT extends poleward to the Arctic where OHT has been
demonstrated to have large impacts on sea ice extent (Docquier & Koenigk, 2021; Holland et al., 2006; Seager
et al., 2002).

In the SH, poleward OHT in the models is biased low relative to the observational estimate in all three CMIP
generations. The largest biases in OHT are found the vicinity of 40°S. The observational estimate of poleward
OHT is only exceeded in three model simulations (two in CMIP3 and one in CMIP5). In contrast, the poleward
AHT in the SH is not significantly different between the model ensemble means and observational estimates. We
note that while a minority of individual models have poleward OHT as strong as the observed estimate, these
models are biased toward too much total poleward MHT; no single model matches the observed MHT, AHT and
OHT simultaneously (Figure S8 in Supporting Information S1) despite the model ensemble spreads overlapping
the observational estimates for either MHT, AHT or OHT independently.

These results suggest that in the SH, the majority of the model biases in MHT are a result of biases in OHT,
whereas in the NH the models generally simulate too much poleward AHT and too little poleward OHT.
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Alternatively, the fractional contribution of AHT‐OHT to total MHT (i.e., normalizing each model by the model
specific MHT) is biased toward too much poleward AHT and too little poleward OHT with biases that are nearly
hemispherically symmetric between the two hemispheres (not shown). Importantly, the sign and spatial structure
of model biases in MHT and AHT‐OHT partitioning are remarkably consistent across the three CMIP generations
spanning over 20 years of progress in climate modeling.

3.2. Sensitivity of Results to Observational Data Sets Used

We next consider whether the identified model biases in AHT‐OHT partitioning are sensitive to the choice of
observational data sets (TOA radiation and atmospheric reanalysis) used to partitionMHT.We use the mean of all
ensemble members across all three CMIP generations, referred to as the CMIP‐mean, as a reference for all an-
alyses in this subsection.

We begin by analyzing the MHT and AHT/OHT partitioning estimated using two additional satellite‐derived
observational estimates of TOA radiation (see Supporting Information S1 for details): the unadjusted CERES
single scanner footprint (SSF) data and the ERBE satellite data (Barkstrom & Hall, 1982) which spans the 1984–
1990 (left panels of Figure 2 bordered by the black box). In these three panels, the choice of TOA radiation

Figure 1. Observational and model (left panels) total meridional heat transport (MHT) and (right panels) its partitioning
between the atmosphere (AHT, red) and ocean (OHT, blue). Results from the CMIP3, CMIP5, and CMIP6 models are shown
in the top, middle and bottom panels respectively. The observational estimates are shown by the heavy solid line, individual
coupled models are shown by the dotted lines and the model ensemble mean is shown by the heavy dashed line.
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product alters the calculated observational MHT (solid black line) whereas the AHT is unchanged between panels
(ERA5 is used in each). Because the observational OHT is calculated from the difference of MHT and AHT, the
observational OHT estimate (solid blue line) also varies between panels. Observational MHT calculated from the
three different TOA radiation products is consistently larger than the CMIP‐mean in both hemispheres. Model
biases in MHT are largest when the CERES SSF product is used (Figure 2e) and smallest when the ERBE product
is used (Figure 2c). The CMIP‐mean OHT is biased low compared to that derived from all three TOA radiation
datasets with largest magnitude biases when CERES SSF is used, especially in the SH. Model biases in AHT/

Figure 2. Comparison of MHT, OHT and AHT in models and observations using eight different observational estimates of
MHT (black solid), AHT (red), and OHT (blue). The left panels show the sensitivity of the transports to TOA radiation
product used with CERES EBAF on the top panel, ERBE in the second panel, and the unadjusted CERES SSF on the bottom
and with the ERA5 AHT estimate across all panels. The right panels show the observational transports calculated using
CERES EBAF TOA radiation in all panels but using different atmospheric reanalysis products in each panel: (b) ERA
Interim; (d) NCEP; (f) MERRA2 and; (h) JRA. Panel (g) shows the impact of observed spatial patterns in ocean heat storage
on implied OHT using EN4 ocean heat content changes over 2000–2018. The model mean is the average over all models in
CMIP3, CMIP5, and CMIP6 (CMIP‐mean).
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OHT partitioning are insensitive to observational TOA radiation data set used which give a consistent estimate of
MHT despite their substantial (≈5 W m− 2 = 2.5 PW globally integrated) differences in global mean TOA
radiative balance associated with absolute calibration uncertainty (Loeb et al., 2009).

We next analyze the sensitivity of our results to the choice of atmospheric reanalysis used to calculate the AHT
(Figure 2 panels (a), (b), (d), (f) and (h)). In these five panels, the MHT is identical (calculated using the CERES
EBAF product) whereas the AHT is calculated from the ERA5, ERA‐interim (Dee et al., 2011), NCEP (Kalnay
et al., 1996), MERRA2 (Gelaro et al., 2017), and JRA‐55 (Kobayashi et al., 2015) reanalyzes. Since OHT is
calculated from the residual of MHT and AHT, the OHT difference between the three panels are equal and
opposite to the inter‐panel differences in AHT. The CMIP‐mean bias toward too much poleward AHT and too
little poleward OHT is apparent using all five observational estimates of AHT. Poleward AHT is largest when
using ERA5 followed closely by JRA‐55, MERRA2 and then ERA interim, whereas using NCEP produces the
smallest poleward AHT with the most notable difference near the peak in the SH at 40°S. Therefore, model biases
in the AHT‐OHT partitioning are smallest using ERA5 and largest using NCEP. These results suggest that the
sign and spatial structure of model biases in MHT partitioning are consistent across atmospheric reanalysis
datasets, whereas the magnitude of the bias depends on the reanalyses product used. Differences in AHT
calculated between the different reanalyses are not impacted by differences in the spatial resolution (see analysis
and Figure S2 in Supporting Information S1) as even the coarsest product (NCEP) resolves the spatial scales
responsible for the vast majority of AHT. The similarity of the AHT derived from different reanalysis is consistent
with the conclusions of Liu et al. (2020).

Finally, we evaluate whether heat storage due to the transient response to anthropogenic forcing impacts our
observational estimates of OHT. The Earth is not in equilibrium but, rather, is accumulating energy at an average
rate of 0.7 W m− 2 globally (Johnson et al., 2016). The vast majority of this energy accumulation is stored in the
ocean (Von Schuckmann et al., 2016) and it is possible that the spatial structure of this energy storage projects
onto our diagnoses of observational OHT for the following reason: observed “implied” OHT is calculated from
the spatial integral of inferred surface heat fluxes (TOA radiation plus AHT convergence) and the latter is
balanced by the sum of OHT divergence and ocean heat storage in a transient system. We diagnose the impact of
observed ocean heat storage on the implied OHT (OHTSTORAGE) from the trend in ocean heat content, derived
from UKHadley Center EN4 objective ocean analysis (Good et al., 2013) over the CERES period (see Supporting
Information for details). OHTSTORAGE is removed from the “implied” OHT to estimate the “true” OHT (solid teal
line in Figure 1f) that must be transported laterally in the ocean to close the ocean energy budget. OHTSTORAGE is
very small (<0.1 PW in magnitude) and, thus, the diagnosed “true” OHT is visually indistinguishable from the
observational “implied” OHT (solid blue line in Figure 1f). The global mean ocean heat uptake of 0.7 W m− 2

translates to 0.4 PW of global energy input to the ocean but the implied OHT of ocean heat storage is significantly
smaller in magnitudes due to ocean heat uptake being more globally uniform than regionally isolated. The
negligible impact of ocean heat storage on “implied” OHT over the historical period is consistent with the small
(<0.1 PW) differences between OHT in the ensemble mean of historical CMIP5 simulations averaged over the
2000–2018 time period as compared the pre‐industrial control simulations using the same models (Figure S3 in
Supporting Information S1).

Collectively, these results suggest that the sign of model biases in AHT‐OHT partitioning is robust to different
observational products (satellite TOA radiation and atmospheric reanalysis) used to partition MHT. Additionally,
the spatial pattern of transient heat uptake by the ocean makes a negligible impact on estimated OHT. However,
the magnitude of the model bias in AHT‐OHT partitioning does vary with observational datasets used. In this
regard, the use of CERES EBAF and ERA5 data for our primary analysis (Figure 1) is a conservative estimate of
model biases in AHT‐OHT partitioning (a smaller OHT bias is found only when using the combination of ERBE
and ERA5 products).

4. Biases in Energy Input to the Atmosphere and Ocean and Inferred AHT and OHT
Biases
Here we evaluate potential causes of the persistent model biases in AHT and OHT in terms of model biases in the
spatial structure of energy input into the ocean and atmosphere. Starting in the ocean, energy conservation de-
mands that OHT across a latitude band balances the net surface heat flux out of the ocean (‐SHF by our sign
convention) integrated over the polar cap bounded by that latitude, which from Equation 1 is represented by:
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OHT(Θ) = 2πa2∫
90

Θ
(− SHF∗) cos(θ) dθ. (2)

where we have neglected the ocean heat uptake in Equation 2 (as discussed in Section 3.2). SHF is equal to the net
downward surface radiation (RADSURF) into the ocean minus the upward turbulent energy fluxes of sensible
(SENS) and latent heat (LvE):

SHF = RADSURF − SENS − LvE. (3)

Substitution of Equation 3 into Equation 2 allows the OHT to be decomposed into the implied transports of each
term contributing to SHF:

OHT = OHTRAD,SURF + OHTSENS + OHTE, (4)

where, for example, the OHT implied by evaporation (OHTE) is:

OHT(Θ)E = 2πa2∫
90

Θ
LvE∗ cos(θ) dθ, (5)

where, as in Equations 1 and 2, the * indicates that the global (ocean domain) mean has been removed from the
term. Because SENS* is small compared to the other terms (Figure 3c) and RADSURF is dominated by solar input
to the surface (Figures S5E and S5F in Supporting Information S1), the predominant energy balance is between
solar radiation and evaporation. Most of solar radiation is absorbed in the tropics, where it is only partially
compensated by local evaporative cooling, leaving some portion of the absorbed energy to transported polewards

Figure 3. Model and observational estimates of the energy input into the atmosphere and ocean and the implied AHT and
OHT biases resulting from each input. (a) Global anomaly energy input into the atmosphere in models (dashed) and
observations (solid). See text in Section 4 for definition of terms. (b) Implied AHT bias (observations minus models) due to
each energy input. The solid black line shows the sum of all terms. The dashed black line shows the bias in total heat transport
inferred from CERES and ERA5 data as discussed in Section 3. (c) As in (a) but for the energy input to the ocean. (d) As in
(b) but for the implied OHT bias.
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by the ocean. The degree of the compensation between tropical absorption of solar radiation and tropical
evaporation determines the strength of the OHT, with weaker compensation requiring more OHT. With this
picture in mind, we can use Equations 2 and 5 to understand the role of radiation and evaporation biases in
creating model OHT biases.

The latitudinal structure of CMIP‐mean LvE, SENS and SURFRAD over the ocean domain is compared to
observational estimates of the same quantities with LvE and SENS taken from the WHOI Objectively Analyzed
(OA) Air‐Sea Flux product (Yu et al., 2004) and SURFRAD estimates from the CERES EBAF surface product
(Kato et al., 2018) in Figure 3c. Evaporation is biased high in models (relative to the observational estimate) at all
latitudes except the Arctic (Figure S4 in Supporting Information S1). Evaporation biases are largest (>20Wm− 2)
in the subtropics of both hemispheres and are much smaller in the high latitudes. These evaporation biases
manifest as enhanced subtropical ocean energy loss by E* in the models (cf. the dashed and solid green lines in
Figure 3c) and an implied model bias toward too little (by approximately 0.4PW) poleward OHT due to evap-
oration in each hemisphere (OHTE, green line in Figure 3d). Thus, evaporation biases alone explain the majority
of the model bias in OHT identified in Section 3 (compare green and dashed black lines in Figure 3d).

The observational RAD∗
SURF has a stronger equator‐to‐pole gradient than that in climate models (cf. the solid and

dashed orange lines in Figure 3c) especially in the SH. Model biases in RAD∗
SURF are associated with larger than

observed downwelling solar radiation into the extratropical Southern Ocean (Figure S5E in Supporting Infor-
mation S1) due to clouds that are optically thinner than observed (Donohoe & Battisti, 2012). As a result,
observed poleward OHTRAD,SURF is larger than that in models with larger magnitude (0.4 PW) biases in the SH.
The model biases in OHTRAD,SURF mirror the impact of TOA radiation biases on MHT (left panels of Figure 1)
including the partitioning between shortwave and longwave biases within each hemisphere, suggesting that model
biases in MHT and OHT in the SH are due to biases in shortwave absorption whereas those in the NH are due to
biases in OLR and net surface longwave (Figures S5B and S5F in Supporting Information S1).

The sum of model biases in OHTE, OHTRAD,SURF and OHTSENS (solid black line in Figure 3d) finds that models
would have weaker than observed poleward OHT of 0.6 PW in the NH and 0.8 PW in the SH based on biases in
energy input to the ocean. This overall inferred OHT bias is primarily due to a nearly hemispherically mirror‐
imaged bias in OHTE which is enhanced by poleward OHTRAD,SURF in the SH. The bias in OHT inferred
from surface flux biases matches the spatial structure but exceeds in magnitude the OHT biases calculated in
Section 3 from TOA radiation and atmospheric reanalysis (dashed black line in Figure 3d). These two calculations
of model OHT biases do not have to match as they use different conceptual approaches and rely on completely
independent observational climate fields. Nonetheless, the consistency of the sign, spatial pattern, and magnitude
of the OHT biases calculated using the two different approaches suggest that the model biases in surface energy
fluxes are large enough to account for the AHT‐OHT partitioning biases inferred from the residual TOA radiation
and AHT estimates.

We use a similar calculation of the model biases in implied AHT from the spatial structure of energy input to the
atmosphere to compute an alternative estimate of AHT biases to those calculated in Section 3. The AHT analog to
Equation 4 is:

AHT = AHTRAD,ATMOS + AHTSENS + AHTE, (6)

where the atmospheric analog to Equation 5 for the AHT due to evaporation (AHTE) is:

AHT(Θ)E = − 2πa2∫
90

Θ
LvE∗ cos(θ)dθ. (7)

The spatial integral is over a global (land plus ocean) domain. Here RADATMOS is the net radiative heating of the
atmospheric column which is equivalent to the net radiation at TOA minus RADSURF. Fajber et al. (2023)
demonstrated that poleward AHT is primarily determined by evaporation (AHT ≈ AHTE) because LvE* dom-
inates the spatial structure of energy input to the atmosphere. We note that LvE* spatially integrated over the
ocean domain has opposing impacts on AHTE versus OHTE (and likewise for SENS* and AHTSENS vs. OHT-
SENS). This arises because excess evaporation over the low latitudes (E* > 0) adds energy to the atmosphere to
enhance the demand for poleward AHT at the expense of removing energy from the low‐latitude ocean to reduce
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the demand for poleward OHT. This mechanism (OHTE = − AHTE) is the foundation of the compensation be-
tween changes in AHT and OHT proposed by Bjerknes (1964).

To more clearly see the compensation between biases in AHT‐OHT due to model biases in LvE* (and SENS*)
over the ocean domain, we take the following approach to compare models and observations of AHT via
Equations 6 and 7. First, AHTE and AHTSENS are calculated from the observational WHOI OA evaporation and
sensible heat flux data over the ocean domain only, and are compared to analogous model calculations over the
ocean domain. Then, the contribution of turbulent energy fluxes over land to the combined AHTE and AHTSENS is
estimated from the CERES EBAF net surface radiation spatially integrated over land. This approach assumes that
(via surface energy balance) surface radiative gain is balanced by turbulent loss. These calculations are compared
to analogous calculations in the models. Finally, AHTRAD,ATMOS is calculated from the CERES EBAF TOA and
surface data over the global domain and is compared to the analogous global domain calculation in models
(orange lines in Figures 3a and 3b). This strategy circumvents the lack of reliable observational estimates of
turbulent energy fluxes over land – instead inferring them from a like‐with‐like observational‐to‐model com-
parison of surface radiation over land and assuming that RADSURF is balanced by upward turbulent fluxes from
the land to the atmosphere (the latter assumption has been validated in models).

Model biases in AHTE compose the vast majority of AHT biases diagnosed from Equation 6 (cf. the green and
solid black lines in Figure 3b) and suggest that the stronger than observed poleward AHT in models is driven by
an enhanced equator‐to‐pole gradient in evaporation. Model RAD∗

ATMOS is more negative in the deep tropics as
compared to observations (due to stronger longwave cooling in the models–Figure S5 in Supporting Informa-
tion S1) which contributes to smaller AHTRAD,ATMOS export from the tropics in the models that generally opposes
the low latitude biases in AHTE (orange line in Figure 3b). Interestingly, shortwave absorption in the atmosphere
is biased low in the models, which reduces the demand for poleward AHT by nearly 0.4 PW in both hemispheres
(red line in Figure S5D in Supporting Information S1). However, this model deficit in atmospheric heating of the
tropics is nearly compensated for by weaker than observed longwave cooling of the atmosphere such that there is
almost no bias in AHTRAD,ATMOS at the equator‐to‐pole scale. Turbulent energy fluxes over the land inferred from
net surface radiation are nearly identical in models and observations and make a negligible impact on AHT biases
(cf. purple dashed and solid lines in Figures 3c and 3d).

These calculations demonstrate that the model biases in the partitioning of poleward heat transport between AHT
and OHT that were inferred in Section 3 are consistent (in sign, spatial structure, and magnitude) with the model
biases in energy input into the atmosphere and ocean by radiative fluxes and turbulent exchange between the
atmosphere and ocean. Stronger than observed evaporation in the models contributes to enhanced poleward AHT
at the expense of reduced OHT that is nearly hemispherically symmetric whereas radiative biases due to thinner
than observed clouds in the extratropical Southern Ocean results in too weak poleward MHT that is primarily
manifested in the surface energy budget and implied OHT bias.

5. Summary and Discussion
Coupled climate models have too little poleward OHT in both hemispheres and too much AHT in the NH,
compared to observational estimates. These model biases are remarkably consistent across three generations of
coupled model ensembles (CMIP3, CMIP5, and CMIP6) and across different sets of observational TOA radiation
and atmospheric reanalysis data. These conclusions are not impacted by observed transient energy accumulation
in the ocean.

We note that there are multiple different ways for computing AHT from atmospheric reanalysis, with subtle
differences depending on the method used to balance the mass budget. Our method uses the energy budget with
respect to a fixed mass of atmosphere (Donohoe & Battisti, 2013; Liang et al., 2018), and differs from that used by
Trenberth and Stepaniak (2004) and Mayer et al. (2017). We have justified our decision by calculating the heat
transport using the methods for “observational” and “model” in the context of a single model (Figure S1 in
Supporting Information S1), and showed that they are nearly equivalent. We emphasize that all choices made here
were aimed at creating a consistent way to compare observational and model MHT and AHT‐OHT partitioning
despite the different climate fields that go into each calculation.

This work focused on model biases in the vertical zonal and time integral of atmospheric moist static energy
fluxes that comprise AHT without regard for biases in the underlying atmospheric circulations and associated
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temperature and humidity structures of the atmosphere. Donohoe et al. (2020) demonstrated that model biases in
poleward AHT primarily result from larger than observed dry (sensible) heat transport by transient eddies in the
mid‐latitudes of both hemisphere (their Figure 4D in Supporting Information S1) and in the NH smaller than
observed dry heat transport by stationary eddies; the moisture (latent heat) transport has negligible biases. Model
biases in evaporation are expected to be manifested as biases in both moist and dry AHT because dry AHT is set
by the spatial pattern of condensational heating of the atmosphere which represents the portion of AHTE that is not
transported poleward as latent heat (Fajber et al., 2023); while spatial patterns of evaporation directly demand
poleward moist AHT, the energy input to the atmosphere via evaporation is handed off to dry AHT where
precipitation forms and the atmosphere is heated condensationally. Therefore, our finding that model biases
toward too much AHT result from stronger than observed evaporation is consistent with the finding that excess
poleward AHT in the models is expressed as a bias toward too much dry heat transport.

Remarkably, the model OHT bias inferred from observational estimates from satellite TOA radiation and at-
mospheric reanalyzes is in decent agreement with model biases in the energy exchange between the ocean and
atmosphere calculated from independent observational estimates of surface heat fluxes. The latter bias is due
primarily to stronger than observed low‐latitude evaporation in the models. We note that the community has been
reluctant to diagnoseOHT from the observed surface energy balance because of uncertainty in the turbulent energy
fluxes. Yet, our analysis paints a consistent picture of the model biases in turbulent energy fluxes – whether these
are inferred from the residual of TOA radiation and AHT or from bulk formula. We also note that observational
estimates of global mean evaporation and its equator‐to‐pole gradient vary substantially (Stephens et al., 2012)
with reanalysis products generally having more evaporation than the bulk formula based estimates such as WHOI
OA flux (Yu et al., 2004) and SEAFLUX (Curry et al., 2004). We chose to use WHOI OA flux for the analysis in
Section 4 because the bulk formula in this product are optimized to match buoy observations – making it the most
observationally constrained estimate of evaporation. Additionally, the global constraint of evaporation balancing
precipitation is nearly satisfied from the combination of the WHOI OA FLUX evaporation over the ocean
(62.8 W m− 2 contribution to global mean) plus the ERA5 reanalysis evaporation over land (12.9 W m− 2 for a
global total evaporation of 75.7 W m− 2) nearly balancing the best observational estimate of global mean pre-
cipitation (77.9 W m− 2) from the NOAA GPCP (Adler et al., 2018). The lack of closure of the observed global
mean surface energy budget suggests that observational surface radiation and/or turbulent energy fluxes are poorly
constrained and one hypothesized solution is that both global mean evaporation and precipitation are substantially
underestimated (Stephens et al., 2012). Our analysis circumvents this debate by removing global mean quantities,
showing that the equator‐to‐pole gradient of surface energy fluxes is consistent with that inferred from TOA
radiation and AHT divergence. This suggests that the meridional structure of surface energy fluxes constrained by
TOA radiation andAHT could be used in conjunctionwith global mean imbalances to give an additional constraint
for reconciling which terms in the observed surface energy budget are most uncertain and/or biased.

Data Availability Statement
All underlying observational data sets are publicly available. The CMIP data analyzed in this study can be found
in the Earth System Grid392 Federation (ESGF) repository at https://esgf‐node.llnl.gov/projects/esgf‐llnl. The
CMIPmodels used in this study are listed in Table S1 in Supporting Information S1. Observational calculations of
AHT from the vertical integral of 6 hourly MERRA, ERA5, ERA‐Interim, NCEP and JRA reanalysis data are
available for download at Zenodo (Donohoe & Cox, 2024).
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