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Abstract13

Climate model emulators were extensively used in the IPCC’s Sixth Assessment Report due14

to their computational efficiency and consistency with key climate metrics. The emulators15

were calibrated to historical observations and used for future climate projections without16

systematic evaluation of their robustness. Here, we develop a framework to evaluate emula-17

tor performance against global climate model (GCM) large ensembles. This is demonstrated18

by constraining a two-layer energy balance model (EBM) to historical simulations of four19

GCMs and comparing their 21st century warming projections. The EBM matches pro-20

jected warming in three of the four GCMs but exhibits substantial spread across ensemble21

members. It fails to reproduce the time-evolving global climate feedback in GCMs, with22

compensating biases between feedbacks and ocean heat uptake efficiency allowing seemingly23

accurate projections for incorrect reasons. Our results underscore the importance of evalu-24

ating the accuracy and physical realism of climate model emulators before using them for25

warming projections.26

Plain Language Summary27

Global climate models (GCMs) are essential tools for predicting the climate response to28

human-driven activities, but they are computationally expensive and known to contain29

biases. Climate model emulators use simplified representations of climate processes to repli-30

cate GCM behavior and are advantageous due to their computational efficiency and ability31

to be calibrated to match climate observations. The recent Intergovernmental Panel on Cli-32

mate Change Sixth Assessment Report (IPCC AR6) used emulators extensively, including33

for global warming projections. The emulators were calibrated to historical observations34

but were not robustly evaluated for their accuracy in simulating future warming. In this35

study, we develop a framework based on the AR6 methodology to evaluate emulator perfor-36

mance by constraining them using historical simulations from four state-of-the-art GCMs37

and comparing their 21st century warming projections. We demonstrate the framework for38

a widely used emulator and show that it captures average warming well in three of the four39

GCMs but exhibits substantial spread in future warming. Moreover, the emulator fails to40

capture key physical processes, in some cases achieving the correct average warming for41

incorrect reasons. Our results demonstrate the need to evaluate climate model emulators42

against GCMs before relying on them for warming projections in future IPCC Reports.43

1 Introduction44

The Intergovernmental Panel on Climate Change (IPCC) periodically publishes reports syn-45

thesizing the state of our scientific understanding of past climate change, projecting future46

changes, assessing potential impacts, and informing adaptation and mitigation strategies.47

While global climate models (GCMs) have historically served as the primary tool for pro-48

jecting global temperature, the IPCC Sixth Assessment Report (AR6) augmented GCM49

simulations with additional lines of evidence (Lee et al., 2021). A major innovation of AR650

was the extensive use of climate model emulators (also known as reduced-complexity cli-51

mate models; Nicholls et al., 2020) which contain simplified representations of key climate52

processes that can replicate aspects of GCM behavior and historical climate observations.53

Emulators provide two main advantages over GCMs. First, they are computationally54

efficient, allowing their use in a wide range of applications in AR6 including: attribut-55

ing warming to specific forcing agents; estimating the contribution of non-CO2 emissions56

to remaining carbon budgets; projecting global mean sea level rise; and projecting global57

warming over the 21st century and beyond (IPCC, 2021). Second, while the GCMs partic-58

ipating in Phase 6 of the Coupled Model Intercomparison Project (CMIP6; Eyring et al.,59

2016) on average have too-high climate sensitivity and global warming over recent decades60

(Meehl et al., 2020; Forster et al., 2020; Zelinka et al., 2020; Fredriksen et al., 2023; Forster61
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et al., 2021), emulators can be calibrated to match the assessed ranges of both climate sen-62

sitivity and historical temperature trends (Forster et al., 2021). Moreover, emulators have63

been shown to replicate the climate response of GCMs under idealized CO2 forcing scenarios64

(Geoffroy et al., 2013a, 2013b; Forster et al., 2021). These features provided confidence in65

the use of emulators for temperature projections in AR6 and suggest that they will play a66

key role in future IPCC Assessment Reports.67

One climate model emulator, known as the Finite Amplitude Impulse Response (FaIRv1.3)68

model (Smith et al., 2018), was used extensively throughout AR6. Its temperature response69

is based on a two-layer energy balance model (EBM) (Held et al., 2010; Millar et al., 2017)70

that approximates global mean surface warming on two timescales: a fast timescale for71

the surface components of the climate system and a slower timescale associated with the72

deep ocean response. AR6 (Forster et al., 2021) calibrated a FaIR ensemble for consistency73

with the assessed distributions of equilibrium climate sensitivity (ECS, i.e., the equilibrium74

global surface temperature change in response to CO2 doubling), as well as observed global75

warming and ocean heat uptake, and then used it for applications including global warming76

projections.77

The far-reaching implications of the use of emulators for climate projections motivate the78

need for a robust framework to evaluate their performance. As noted above, Geoffroy et79

al. (2013a, 2013b) showed that the two-layer EBM can accurately replicate the response of80

GCMs to abrupt CO2 quadrupling (abrupt4xCO2) when its parameters are calibrated cor-81

rectly. However, Jackson et al. (2022) found that calibration to an abrupt4xCO2 simulation82

does not guarantee an accurate emulation of GCM warming under historical forcing. Given83

that the two-layer EBM was designed to emulate the temperature response to CO2 forcing84

alone, these results raise concerns about its use in emulating the response to historical and85

future forcing, which is strongly influenced by non-CO2 greenhouse gases, aerosols, and nat-86

ural forcing agents. This raises a key question about the use of emulators in general: How87

reliable are their future projections when calibrated to the observational record, which is88

strongly influenced by non-CO2 forcings?89

We propose a framework for rigorously evaluating climate emulators against GCM simula-90

tions. We use the two-layer EBM as an example because of its ability to capture essential91

features of the climate system despite its structural simplicity and because it comprises the92

physical climate component of FaIR, which was extensively used in AR6. However, this93

framework is relevant for other emulators as well. We constrain a two-layer EBM ensemble94

to match historical simulations of each of four CMIP6 GCM large ensembles — analogously95

to the AR6 approach of constraining it to the observational record — and compare the96

future warming projection of the EBM to that of the GCM it is calibrated to.97

2 Data and Methods98

2.1 CMIP6 Output99

We evaluate the two-layer EBM using the following CMIP6 GCMs (number of ensemble100

members in parentheses): CanESM5 (25), HadGEM3-GC31-LL (5), IPSL-CM6A-LR (11),101

and MIROC6 (50). These models are chosen because each provides multiple historical and102

Shared Socioeconomic Pathway (SSP) forcing ensemble members, enabling calculation of103

the forced response over the period 1850-2100, and the output needed to calculate effec-104

tive radiative forcing (ERF) through their participation in the Radiative Forcing Model105

Intercomparison Project (RFMIP; Pincus et al., 2016). We use the CMIP monthly-mean106

variables tas (near-surface air temperature), rsut, rsdt rlut, (top-of-the-atmosphere (TOA)107

shortwave upwelling, shortwave downwelling, and longwave upwelling fluxes, respectively)108

from historical (1850-2014) and SSP2-4.5 (2015-2100) simulations. We calculate radiative109

imbalance at the TOA as rsdt - rsut - rlut and calculate globally and annually averaged110

anomalies relative to the mean over 1850-1900.111
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The ERF quantifies the impact of forcing agents on the TOA energy budget, including the112

radiative response to rapid atmospheric adjustments but excluding the response to changes113

in surface temperature (Myhre et al., 2014). In the RFMIP protocol, each model has a114

piClim-histall simulation wherein the atmosphere component of the GCM is run with sea-115

surface temperatures (SST) and sea-ice concentrations (SIC) fixed to pre-industrial values,116

while all radiative forcing agents are prescribed to vary following the CMIP6 historical (1850-117

2014) and SSP2-4.5 (2015-2100) simulations. The availability of piClim-histall simulations118

extending to 2100 limited our analysis to the four GCMs listed above. For each GCM, we119

calculate the ERF as the difference in the annual and global TOA radiation anomaly between120

the piClim-histall simulation and an average over a 30-year piClim-control simulation in121

which SSTs, SICs, and forcing agents are fixed to pre-industrial values. Following Hansen122

et al. (2005), we apply a correction to the ERF by subtracting the TOA radiative response123

to warming over land and sea ice, which is considered part of the feedback rather than part124

of the forcing. The Supporting Information provides further details and shows the ERF125

time series diagnosed from the four GCMs (Text S1; Fig. S1).126

2.2 Two-layer Energy Balance Model (EBM): Structure and Calibration to127

GCMs128

The version of the FaIR emulator used in AR6 (v1.6.2) simulates the global temperature129

response to forcing using a two-layer energy balance model (Held et al., 2010):130

C
dT

dt
= F + λeqT − εγ(T − T0), (1)

131

C0
dT0

dt
= γ(T − T0), (2)

where T is the temperature anomaly of the upper layer, which represents the quickly-132

responding surface components of the climate system including the atmosphere, land, sea133

ice and the ocean mixed layer; T0 is the temperature anomaly of the lower layer, which134

represents the slowly-responding components of the climate system including the deep ocean;135

C and C0 are, respectively, the heat capacities of the upper and lower layers; F is the ERF;136

λeq is the equilibrium radiative feedback parameter; γ is the heat exchange coefficient,137

representing the strength of coupling between the two layers; and ε is the ocean heat uptake138

efficacy, which captures the evolution of the global radiative feedback with changing ocean139

heat uptake (Winton et al., 2010; Held et al., 2010; Geoffroy et al., 2013b).140

For AR6, a FaIR ensemble was formed using prior probability distributions of model pa-141

rameters based on best estimates of the ERF, climate response parameters, and carbon142

cycle parameters (Smith et al., 2021). Ensemble members were then selected based on143

their agreement with observed global warming, ocean heat uptake, and atmospheric CO2144

concentrations. In this study, we follow a similar approach by constraining a 1000-member145

ensemble of the two-layer EBM using individual GCM ensemble members, treating each146

GCM realization as an analogue to the observational record used to constrain the AR6147

FaIR ensemble.148

Following Dvorak et al. (2022), we randomly draw EBM parameter values (C, C0, γ, ε)149

for the prior ensemble from probability distributions centered on estimates obtained by150

calibrating the EBM to abrupt4xCOx simulations of CMIP5 models (Geoffroy et al., 2013a,151

2013b), with standard deviations for all prior parameter distributions expanded by 50%152

(Text S2; Fig. S2). We use a uniform prior distribution of ECS from 1◦C to 10◦C and153

global radiative feedback values at equilibrium are taken to be λeq = −F2×/ECS, where154

F2× = 3.71 Wm−2 is the radiative forcing under doubling of CO2 from pre-industrial levels155

(Myhre et al., 1998; Smith et al., 2020), which is similar to the value of F2× in each GCM156

considered here (Armour et al., 2024).157
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For each GCM, we generate a prior EBM ensemble with a size equal to 1000 times the number158

of GCM ensemble members. We then force each EBM ensemble member by the ERF time159

series diagnosed from that GCM over the period 1850-2020. Figure 1a uses MIROC6 as160

an example to illustrate the procedure for generating the prior EBM ensemble’s historical161

warming. The ensemble mean temperature anomaly of the EBM only agrees with that of162

the GCM during the first few decades and increasingly overestimates warming over the 20th163

century. The increasing spread and deviation of the EBM ensemble from the GCM arise164

from combinations of prior parameter values that produce global mean warming and ocean165

heat uptake changes that are inconsistent with those of the GCM.166

We then produce a constrained EBM ensemble for each GCM (illustrated for MIROC6 in167

Fig. 1b) by retaining ensemble members that satisfy the condition168

√
(
δT

σT
)2 + (

δN

σN
)2 < 1.65, (3)

where δT and δN are calculated as mean differences in global surface temperature and169

ocean heat uptake, respectively, between each EBM member and the corresponding GCM170

member over 2000-2020 relative to 1850-1900; and σT and σN are the standard deviations of171

the annual mean global surface temperature and ocean heat uptake, respectively, calculated172

across each GCM’s ensemble members (using anomalies over 2000-2020 relative to 1850-173

1900), thus representing uncorrelated internal variability across ensemble members. The174

value of 1.65 corresponds to a confidence level of 90%. The period 2000-2020 is similar175

to that used for the constraint in AR6, chosen because it captures the climate response176

to greenhouse gas forcing while minimizing the influence of internal variability, volcanic177

eruptions, and large changes in tropospheric aerosol forcing. For comparison (black dashed178

lines in Figs. 1a,b), we also run the EBM with parameter values obtained by calibrating the179

EBM to abrupt4xCO2 simulations of the GCMs (Armour et al., 2024).180

Table S1 and Fig. S2 provide the posterior parameter values for all GCM calibrations. Across181

the four GCMs, the posterior distributions for λeq and γ become more tightly constrained182

relative to their priors, while posterior distributions for ε, C and C0, remain similar to their183

priors (Fig. S2; see Section 4 for a discussion). The posterior values of λeq obtained from the184

historical simulation constraint (Eq. (3)) are consistently more negative than those obtained185

from calibrating the EBM to the abrupt4xCO2 simulations, while values of γ, ε, and C0 are186

generally larger (with the exception of MIROC6).187

Figure 1b illustrates that the ensemble-mean temperature evolution of the constrained EBM188

(with posterior parameter values) accurately matches that of MIROC6 up to the year 2020,189

with a substantially reduced spread compared to the prior ensemble (Fig. 1a). The histori-190

cal temperature anomaly from the EBM simulation run with parameters calibrated to the191

abrupt4xCO2 simulation also agrees with the GCM ensemble mean throughout 1850-2020192

(Fig. 1a), despite discrepancies in parameter estimates (Table S1). These features are true193

of the EBM constrained by the historical simulations of each of the other three GCMs as194

well. We are now in a position to answer the question we posed above about whether con-195

straining the EBM to replicate global warming and ocean heat uptake over the historical196

period guarantees accurate projections of global temperature over the 21st century.197

3 Results198

3.1 Temperature projections in the constrained EBM ensemble199

Having obtained EBM ensembles constrained to match each GCM’s historical global warm-200

ing and ocean heat uptake, we seek to evaluate whether their warming projections remain201

consistent with those of the corresponding GCMs through 2100 under SSP2-4.5 forcing. We202

use posterior parameter sets obtained in Section 2.2 to perform EBM simulations using each203
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ERF time series over 1850-2100 (Figs. 1c-f). We find that EBM ensemble mean warming is204

close to (within two standard deviations of) GCM ensemble mean warming for three of the205

four GCMs, with the exception being IPSL-CM6A-LR for which the EBM underestimates206

mean end-of-century warming roughly 0.4◦C. The GCM standard deviation is a measure207

of the spread across the ensemble members (Fig. 1). Importantly, the spread of warming208

projected by each EBM ensemble spans the warming projected by its corresponding GCM.209

We also use the parameter sets from calibration to the abrupt4xCO2 simulations for EBM210

simulations driven by each ERF time series over 1850-2100. The projected warming sub-211

stantially overestimates that found in the GCMs beyond the early 21st century, with the212

exception of MIROC6 (Fig. 1c-f). This is in line with expectations as the EBM calibration213

to the abrupt4xCO2 simulation produced higher values of ECS compared to the posterior214

mean values obtained from the EBM constrained over the historical period (Table S1). That215

the EBM calibrated to abrupt4xCO2 simulations produces a good match to GCM warming216

over the historical period but biased projections of 21st century warming is in broad agree-217

ment with the results of Jackson et al. (2022). This illustrates the importance of evaluating218

climate model emulators using realistic historical and future forcing simulations of GCMs.219

When constrained to match historical warming and ocean heat uptake, the EBM produces220

an accurate match to projected 21st century warming in three out of the four GCMs used in221

this study. However, the EBM ensemble spread increases substantially after the constraint222

window (i.e., after 2020), and the fraction of EBM ensemble members that remain within223

the GCM spread by 2100 is small (Fig. 1c-f). For example, only 35% of the EBM ensemble224

members fall within the MIROC6 range while only 10% fall within the range of HadGEM3-225

GC31-LL. The large spread in the EBM ensembles arises despite being constrained using226

exact GCM values of global warming and ocean heat uptake (to within internal variability)227

and forced with the exact ERF time series derived directly from each GCM, and thus devoid228

of any uncertainty. These results indicate that substantial uncertainty in future warming229

would persist even if we had perfect observations of historical warming, ocean heat uptake,230

and radiative forcing because the historical record is too short to fully constrain key physical231

climate parameters that are relevant for future warming (e.g., λeq and ε in the case of the232

two-layer EBM; see Section 4).233

3.2 The roles of global climate feedback and ocean heat uptake efficiency234

Since the ensemble mean warming in all EBM historical calibrations is similar to that in most235

corresponding GCMs, it is important to evaluate whether agreement in future warming is236

achieved through correct representation of the physical processes or whether it results from237

compensating biases in the EBM parameters. We examine this by considering the EBM238

within the standard energy imbalance framework (Gregory & Mitchell, 1997; Gregory et al.,239

2002):240

N = F + λT, (4)

where N is the anomalous global TOA energy imbalance; F is the ERF diagnosed from241

each GCM and applied exactly to each corresponding EBM ensemble; and λ is the global242

net radiative feedback, which may be time dependent and thus differs from the equilibrium243

feedback λeq. T is taken to be the upper layer temperature response in the EBM, and the244

global near-surface air temperature anomaly in the GCM. To a good approximation, the245

net TOA energy flux is equal to the energy absorbed by the ocean (Raper et al., 2002;246

Gregory & Mitchell, 1997). Under transient warming, ocean heat uptake is approximately247

proportional to global surface temperature change such that N = κT , where the ocean248

heat uptake efficiency κ is a measure of the rate at which heat is removed from the upper249

ocean to depth. Figure 2 shows the time series of the net radiative feedback and ocean heat250
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uptake efficiency calculated from the ensemble-mean T and N for each GCM and EBM,251

respectively, as252

λ =
N − F

T
, (5)

253

κ =
N

T
. (6)

All GCMs exhibit a decrease in the magnitude of λ over time, consistent with expectations254

that the effective climate sensitivity will increase as equilibrium is approached (e.g., Senior255

& Mitchell, 2000; Andrews et al., 2015; Armour, 2017). This weakening of λ has been256

attributed to its dependence on evolving spatial patterns of SST (Armour et al., 2013; Rose257

et al., 2014; Gregory & Andrews, 2016; Dong et al., 2019, 2020; Andrews et al., 2015),258

particularly associated with initially-delayed and later-enhanced warming of the eastern259

Pacific and Southern Oceans relative to the global mean. In contrast, λ calculated in the260

EBM does not show much variation in time. This EBM behavior can be understood by261

considering λ diagnosed from the EBM parameters: adding Eqs. (1) and (2) yields the net262

radiative imbalance at the TOA (N), which can then be substituted into Eq. (5) to derive263

λ = λeq − (ε− 1)γ(1− T0

T
). (7)

As evident from Eq. (7), the temporal variation in λ within the EBM arises due to a264

changing ratio of deep ocean to surface temperature anomalies (T0/T ). Because T0 evolves265

negligibly compared to T over 1850-2100 in the EBM simulations (Fig. S3), λ is relatively266

constant. Moreover, the factor (ε− 1) is small since ε is close to unity, further suppressing267

the time dependence of λ. Consequently, the EBM produces a nearly-constant λ that aligns268

with that of the GCM only during the constraint window (2000-2020), and is unable to269

capture the strong negative λ of the GCM earlier in the record or the changes in λ over270

the 21st century. However, the EBM is still capable of matching GCM projected warming271

because most of the GCM time variation in λ occurs before the period 2000-2020 such that272

using a nearly-constant λ over the 21st century does not substantially bias EBM warming273

projections.274

In contrast, the EBM effectively captures the time variation of κ across all GCMs, par-275

ticularly the late 20th-century increase followed by a gradual decline in the 21st century.276

The behavior in the late 20th century is consistent with observations (Cael, 2022; Watan-277

abe et al., 2013) and has been attributed to natural forcings, particularly the eruption of278

Mount Pinatubo in 1991 (Shi et al., 2025). The EBM evolution of κ can be understood by279

considering280

κ =
F

T
+ λ ≈ γ(1− T0

T
), (8)

where this approximation for κ holds on timescales longer than that of upper-layer adjust-281

ment (C dT/dt ∼= 0). In the EBM, the accurate time variation of κ appears to be driven282

primarily by the F/T term in Eq. (8), implying that the common ERF causes κ diagnosed283

from the EBM to closely track that diagnosed from the GCM. Hence, offsets in κ such as284

those in IPSL-CM6A-LR (Fig. 2f) and HadGEM3-GC31-LL (Fig. 2h) likely originate from285

an offset in λ (Eq. (7)). Equation (8) also provides insight into the overall time dependence286

of κ: over the late 20th century, κ becomes larger as the ratio of deep ocean to surface287

temperature (T0/T ) decreases due to rapidly increasing forcing, while over the 21st century,288

κ becomes smaller as T0/T increases as the system equilibrates to more-constant forcing.289

We also find that λ and κ in the EBM calibrated to the GCM abrupt4xCO2 simulations290

mirror the temporal evolution of the EBM ensemble mean λ and κ from the EBM constrained291
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by the historical GCM simulations, although λ in these simulations is consistently weaker292

than the EBM mean (Fig. 2). In general, the EBM inadequately represents the temporal293

evolution of λ as seen in the GCMs, but emulates the evolution of κ reasonably well.294

3.3 Attribution of errors295

Although the EBM’s representation of λ and κ is similar across GCM calibrations, it remains296

unclear whether trade-offs between these variables affect the skill of the EBM in project-297

ing future temperatures. To understand the contributions of λ and κ to the temperature298

anomalies of each EBM ensemble, we use the 40-year running means of λ and κ diagnosed299

from each ensemble member (see Section 3.2) to reconstruct the global temperature time300

series for that member by rearranging Eqs. (5) and (6) to give301

T =
F

κ− λ
. (9)

From Eq. (9), we obtain the probability distributions of the mean warming over 2080-2100302

for both the EBM and GCM in Fig. 3 (left column). Note that, given λ and κ, Eq. (9)303

provides an exact reproduction of the warming in each EBM or GCM ensemble member by304

construction. To evaluate the contribution of λ and κ in setting the end-of-century warming305

of the EBM, we use Eq. (9) for each EBM ensemble member but replace either λ or κ306

with its corresponding value from the GCM ensemble member to which it was constrained,307

giving the probability distributions Tλ (purple) and Tκ (green), respectively (right column308

in Fig. 3).309

For MIROC6 and CanESM5 (compare Figs. 3a,b and Figs. 3c,d), the EBM values of λ and κ310

already closely match those of the corresponding GCM, and thus replacing the EBM values311

with those of the GCM does not result in a considerable difference in projected warming.312

However, for IPSL-CM6A-LR (compare Figs. 3e,f) where the EBM underestimates the GCM313

warming, we find that both Tλ and Tκ are roughly halfway (2.97◦C) between the mean314

temperature anomalies of the EBM (2.83◦C) and GCM (3.13◦C). This indicates that errors315

in both λ and κ contribute to errors in warming simulated by the EBM for this GCM.316

These errors appear to compensate for each other to provide a good EBM match to GCM317

warming over the constraint window (2000-2020), but lead to projected warming that is318

too low. However, in the case of HadGEM3-GC31-LL (Fig. 3g,h), the EBM accurately319

matches GCM warming, but Tλ shows lower warming (by 0.16◦C) while Tκ shows higher320

warming (by 0.08◦C). This indicates that providing an accurate value for either λ or κ does321

not improve the warming projection of the EBM relative to the GCM (on the contrary, it322

worsens it), and that the EBM is able to emulate GCM warming with inaccurate values323

for λ and κ because their errors compensate for each other over the 21st century. Overall,324

while the EBM simulates global warming reasonably well, our framework for evaluating it325

against GCMs reveals cases where it fails to do so due to errors in λ and κ (e.g., IPSL-326

CM6A-LR) or where it produces accurate emulations due to compensation of these errors327

(e.g., HadGEM3-GC31-LL).328

4 Discussion and Conclusions329

Climate model emulators played a key role in IPCC AR6 due to their computational effi-330

ciency and consistency with assessed ranges for key climate metrics such as ECS, historical331

global warming, and ocean heat uptake. These emulators were subsequently used to project332

future warming without a systematic evaluation of their accuracy. In this study, we develop333

a framework to assess the reliability of future warming projections from climate model em-334

ulators by evaluating them against state-of-the-art GCM ensembles.335

We demonstrate this framework using a two-layer EBM which was widely used in AR6. For336

consistency with AR6 methodology, we constrain the EBM parameters to match historical337
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simulations of four CMIP6 GCMs and compare their 21st century warming projections.338

We find that the EBM closely reproduces GCM ensemble mean warming in three out of339

four cases, with the exception being IPSL-CM6A-LR where the EBM underestimates end-340

of-century warming by nearly 0.4◦C. However, in all cases, the EBM ensemble spread is341

wide enough to span the median warming of its corresponding GCM, suggesting that the342

EBM constrained to historical observations could similarly provide a useful bound on future343

warming. The spread of the constrained EBM ensemble increases steadily after the calibra-344

tion period (2000-2020), with fewer than 40% of the EBM members within the GCM spread345

of internal variability by 2100. This suggests that irreducible uncertainty in future warming346

would remain even if the EBM could be constrained by historical observations without any347

uncertainty.348

To better understand the source of errors in warming emulation, we diagnose the net climate349

feedback parameter λ and ocean heat uptake efficiency κ from both the EBM and the GCMs.350

Unlike the GCMs, the EBM simulates a nearly-constant λ because it depends only on the351

ratio of deep ocean to surface temperature change (the ratio T0/T ) which remains small.352

This exposes a structural limitation of the EBM: it was designed to replicate λ changes353

under a slow evolution of changing global ocean heat uptake within GCMs equilibrating to354

constant CO2 forcing through the use of the heat uptake efficacy ε (Winton et al., 2010);355

it is unable to represent decadal-scale variations in λ associated with more-rapid changes356

in SST patterns (i.e., those driven by non-CO2 forcings or internal variability, which likely357

dominate changes in λ over the historical period). Non-CO2 forcing agents are known to358

generate unique radiative feedbacks due to their differing spatial distributions (Hansen et359

al., 2005; Marvel et al., 2016; Zhou et al., 2023). Assigning unique efficacy parameters to360

individual forcing agents could improve the emulation of λ and projected warming in the361

two-layer EBM, but this has not been tested here.362

How well the EBM can emulate GCM projected warming is also sensitive to the choice of363

constraint window used. Applying the constraint (Eq. (3)) over the period 1980-2000 results364

in a significantly poorer emulation of future warming, with a much larger spread in the EBM365

ensemble (Fig. S4). The reason for this difference is that when the EBM is constrained over366

1980-2000, λ is constrained to be more negative compared to using the period 2000-2020367

(compare Fig. S5 and Fig. 2). Since the EBM is unable to produce much time variation in368

λ, this overly negative value of λ persists over the 21st century leading to weaker projected369

warming. The 2000-2020 period is therefore a more suitable choice for constraining the370

EBM because it avoids the late 20th century period in which λ is temporarily very negative,371

which could be driven in part by factors such as large tropospheric aerosol or volcanic forcing372

(Gregory & Andrews, 2016).373

Fig. 2 shows that both λ and κ in the EBM arrive closest to their corresponding GCM374

values during the constraint window (2000-2020). Considering timescales longer than that375

of ocean mixed layer adjustment (C dT/dt ≈ 0), and considering the fact that the deep376

layer does not warm considerably through the early 21st century (T0 ≈ 0), Eqs. (1) and377

(2) give N ≈ γT . Since the EBM is constrained using T and N , γ is well constrained.378

Similarly, κ is also constrained via Eq. (6). Rearranging Eq. (1) gives T = −F/(λeq − ϵγ),379

indicating that the quantity (λeq − ϵγ) is constrained when F is specified to match that380

of the GCMs. Importantly, the historical period provides no direct constraints on λeq or ϵ381

individually, resulting in a large spread in projected 21st century warming. The constrained382

quantity (λeq − ϵγ) is equivalent to (λ− κ) (Eq. (7)), which is well constrained only during383

the constraint window (2000-2020). The parameter ε is not well constrained because the384

historical record is too short for the deep layer to warm substantially (Figs. S2 and S3).385

While constraining the EBM using the period 1980-2000 worsens its ability to emulate386

GCM projected warming (Fig. S4), extending the constraint window into the 21st century387

may provide a better constraint on ε, and thus on λeq, as deep layer warming becomes more388

apparent.389
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Finally, we assess the contribution of errors from λ and κ to the end-of-century warming in390

the EBM. We find that even when the EBM ensemble mean matches the GCM warming,391

the agreement does not necessarily reflect an accurate representation of physical processes.392

For example, in the case of IPSL-CM6A-LR, errors in both λ and κ lead to a substantial393

underestimation of end-of-century warming. In contrast, for HadGEM3-GC31-LL, compen-394

sating errors in λ and κ coincidentally result in accurate emulation of future warming. These395

findings underscore the importance of evaluating the physical basis of emulator projections396

rather than measuring accuracy solely on the basis of agreement with GCM temperature397

output. In just the four GCMs considered here, we found that the same emulator (the398

two-layer EBM) performs differently, raising important questions: what distinguishes the399

GCMs for which emulators fail to accurately reproduce future warming and can we build ad-400

ditional confidence that emulators provide accurate warming projections when constrained401

by observations? Expanding the availability of RFMIP-style simulations extending through402

2100 from more modeling groups would enable the application of this emulator evaluation403

framework using a wider range of GCMs.404

Our proposed framework offers a systematic approach to evaluate emulators against GCMs,405

closely mirroring the methodology used in the IPCC AR6. We encourage researchers to406

apply this framework to evaluate other emulators to further our understanding of their407

strengths and limitations. Evaluating emulators in this manner is imperative to ensure408

knowledge of their uncertainties and potential limitations before their application to project409

future warming.410
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Figure 1. Time series of global and annual mean surface temperature anomaly over 1850-2020

for (a) prior and (b) constrained EBM ensemble compared with MIROC6. Lines denote MIROC6

ensemble mean (blue) and EBM ensemble mean (orange), with light blue and light orange shading

representing two standard deviations around the GCM and EBM ensemble means, respectively.

(c-f) Time series of global and annual mean surface temperature anomaly over 1850-2100 for the

EBM constrained to 4 CMIP6 GCMs. The brown dashed line represents the median member (cor-

responding to the member with the median value of warming over 2080-2100) of the EBM ensemble.

The temperature anomaly for the EBM with parameters fit to the abrupt4xCO2 simulation of each

GCM is shown in the dashed black line. In all panels, EBM ensemble standard deviations are cal-

culated at each year as there is no representation of internal variability. GCM ensemble standard

deviations are calculated across the 21-year running mean time series of the annual temperature

anomaly of each member, with the values at 1860 and 2090 prescribed for the first and last ten

years, respectively. Values ∆T report the difference in ensemble mean EBM and GCM warming

averaged over 2080-2100, and “Fraction in GCM” reports the fraction of EBM ensemble members

falling within the ±2σ range of GCM ensemble members averaged over 2080-2100.

–11–



manuscript submitted to Geophysical Research Letters

2.2

2.0

1.8

1.6

1.4

 (W
 m

2  K
1 )

M
IR

OC
6

(a)

0.0

0.5

1.0

 (W
 m

2  K
1 )

(b)

1.2

1.0

0.8

0.6

0.4

 (W
 m

2  K
1 )

Ca
nE

SM
5

(c)

0.0

0.5

1.0

 (W
 m

2  K
1 )

(d)

1.6

1.4

1.2

1.0

0.8

 (W
 m

2  K
1 )

IP
SL

-C
M

6A
-L

R

(e)

0.0

0.5

1.0
 (W

 m
2  K

1 )
(f)

19
80

20
00

20
20

20
40

20
60

20
80

21
00

Year

1.4

1.2

1.0

0.8

0.6

 (W
 m

2  K
1 )

Ha
dG

EM
3-

GC
31

-L
L

(g)

1980
2000

2020
2040

2060
2080

2100

Year

0.5

0.8

1.0

1.2

1.5

 (W
 m

2  K
1 )

(h)

GCM
2-layer EBM
4xCO2 EBM

+/- 
+/- 

Figure 2. 40-year running means of (left column) radiative feedback parameter (λ) and (right

column) ocean heat uptake efficiency (κ) calculated as the ensemble mean of each GCM (blue) and

constrained EBM (orange). The blue and orange shading represent one standard deviation about

the mean for the GCM and EBM respectively, with the blue dotted lines bounding the spread in

the GCM feedbacks for clarity. The evolution of λ and κ fit to the abrupt4xCO2 simulation of each

GCM is shown in the dashed black line.
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Figure 3. Probability distributions of average temperature anomalies over the last 20 years

of the simulation period (2080-2100). (Left column) Reconstructed temperature anomalies from

the radiative feedback parameter and ocean heat uptake efficiency from each GCM (blue) and

constrained EBM (orange). (Right column) Reconstructed temperature anomalies obtained by

substituting either the radiative feedback parameter (purple) or the ocean heat uptake efficiency

(green) from the GCM, while keeping the remaining parameter from the EBM. Vertical lines indicate

the mean for each distribution (values in legend).
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The original CMIP6 model data sets used in this study are accessible at the Earth System412

Grid Federation (ESGF) portal (https://aims2.llnl.gov/search/cmip6/).413
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Introduction

This supplement provides Table S1, which presents the posterior values of the EBM pa-

rameters after constraining to each GCM considered in this study. Values from calibrating

the EBM to the abrupt4xCO2 simulations of those GCMs are also given. Text S1 provides

details on the correction factor used in the calculation of the effective radiative forcing

(ERF). Text S2 provides details on the probability distributions defined for the EBM prior

ensemble. Figs. S1-S5 support the results discussed in the main paper. The effective ra-
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diative forcing (ERF) obtained from all global climate models (GCMs) and the prior and

posterior distributions of the parameters in the two-layer energy balance model (EBM)

from each GCM calibration are shown in Figures S1 and S2. Figure S3 demonstrates the

slower deep layer temperature evolution (T0) in comparison to the upper layer (T ) for

MIROC6. Figures 2 and 3 in the main paper are reproduced in Figures S4 and S5 where

the EBM calibration to each of the GCMs is done over the period 1980-2000.

Text S1: CMIP6 output for ERF and calculation of correction factor

For each GCM, the average of three available piClim-histall simulations is taken for all

variables (tas, rsut, rsdt, rlut) prior to analysis to reduce variability. Following the cal-

culation of the ERF (see Section 2.1 in the main paper), a correction factor is subtracted

from ERF to account for the radiative response to surface warming in the fixed sea-surface

temperature simulations. The correction factor is calculated as λeqT , where T is the global

temperature anomaly and λeq is the equilibrium climate feedback, which is estimated by

calibrating the two-layer EBM to the abrupt4xCO2 simulation of each model (Armour et

al., 2024). We calculate T as the difference between the annual and global mean near-

surface air temperatures in the piClim-histall and piClim-control simulations. The ERF

time series for all four GCMs is shown in Fig. S1.

Text S2: Parameter distributions for EBM prior ensemble

The EBM parameter values are randomly drawn from probability distributions centered

on estimates from Geoffroy et al. (2013a, 2013b), with standard deviations expanded

by 50%. Normal distributions are defined for C (mean = 8.2 Wyrm−2 °C−1, σ = 1.35

Wyrm−2 °C−1), C0 (mean = 109 Wyrm−2 °C−1, σ = 78 Wyrm−2 °C−1), and γ (mean =

July 31, 2025, 1:04am
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0.67 Wm−2 °C−1, σ = 0.225 Wm−2 °C−1), while a lognormal distribution is defined for

ε (mean = 1.28, σ = 0.375) to ensure that values are larger than 1, consistent with the

expectation that radiative feedbacks will weaken as equilibrium is approached (Armour,

2017; Andrews et al., 2015; Dong et al., 2019, 2020). The distribution of γ is truncated

to exclude values less than 0.1 Wm−2 °C−1, while C0 is truncated to exclude values less

than 10 Wyrm−2 °C−1.
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Table S1. Posterior parameter estimates for each GCM.

C C0 λeq ECS γ ε

Wyrm−2 °C−1 Wyrm−2 °C−1 Wm−2 °C−1 °C Wm−2 °C−1 unitless

MIROC6

8.3 139 -1.46 2.58 0.76 1.30

7.0, 9.6 77, 200 -1.30, -1.61 2.31, 2.85 0.61, 0.91 1.19, 1.40

8.9 175 -1.38 2.60 0.65 1.32

CanESM5

7.9 105 -0.70 5.42 0.55 1.30

6.8, 9.2 39, 171 -0.61, -0.77 4.77, 6.06 0.41, 0.69 1.19, 1.42

8.0 80 -0.65 5.64 0.52 1.07

IPSL-CM6A-LR

8.2 117 -1.11 3.40 0.65 1.28

6.9, 9.5 56, 178 -0.97, -1.25 2.96, 3.84 0.48, 0.82 1.18, 1.39

8.2 63 -0.75 4.56 0.41 1.33

HadGEM3-GC31-LL

8.2 127 -0.67 5.68 0.75 1.30

6.9, 9.5 63, 190 -0.55, -0.79 4.64, 6.72 0.54, 0.95 1.20, 1.40

8.0 77 -0.63 5.55 0.51 1.22

Note. For each GCM, ensemble means of posterior parameter estimates are shown

in the first row. The second row provides values for one standard deviation above

and below the mean. The third row shows parameter values derived from the

abrupt4xCO2 simulations (Armour et al., 2024) in italics.
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Figure S1. Time series of effective radiative forcing (ERF) estimated from RFMIP piClim-

histall simulations for each model.
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Figure S2. Prior (blue) and posterior (orange) distributions of (a-d) equilibrium climate

sensitivity, (e-h) equilibrium radiative feedback parameter λeq (i-l) coefficient of vertical heat

exchange γ and (m-p) heat uptake efficacy ϵ for the models MIROC6, CanESM5, IPSL-CM6A-LR

and HadGEM3-GC31-LL. The mean estimate is shown by the solid black line and one standard

deviation on either side of the mean is given by the dashed black lines. Note that λeq is skewed

towards lower magnitude values as it depends inversely on ECS.
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Figure S3. Time series of the deep layer temperature anomaly T0 (dashed orange line) in

comparison with the top layer (solid orange line) in the calibrated EBM, and the near-surface

air temperature anomaly in the GCM (solid blue line) for MIROC6. All time series are ensemble

means.
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Figure S4. Similar to Figure 1, global and annual mean temperature anomaly time series

for the EBM constrained to 4 CMIP6 GCMs, except the constraint is applied during the period

1980-2000. EBM ensemble mean (orange line) is shown in comparison to the corresponding

GCM ensemble mean (blue line) with two standard deviations across the ensemble members

shaded around the ensemble mean in light orange and blue, respectively. The brown dashed line

represents the median member of the EBM ensemble.

July 31, 2025, 1:04am



X - 10 :

2.2

2.0

1.8

1.6

1.4

 (W
 m

2  K
1 )

M
IR

OC
6

(a)

0.0

0.5

1.0

 (W
 m

2  K
1 )

(b)

1.2

1.0

0.8

0.6

0.4

 (W
 m

2  K
1 )

Ca
nE

SM
5

(c)

0.0

0.5

1.0

 (W
 m

2  K
1 )

(d)

1.6

1.4

1.2

1.0

0.8

 (W
 m

2  K
1 )

IP
SL

-C
M

6A
-L

R

(e)

0.0

0.5

1.0
 (W

 m
2  K

1 )

(f)

19
80

20
00

20
20

20
40

20
60

20
80

21
00

Year

1.4

1.2

1.0

0.8

0.6

 (W
 m

2  K
1 )

Ha
dG

EM
3-

GC
31

-L
L (g)

1980
2000

2020
2040

2060
2080

2100

Year

0.5

0.8

1.0

1.2

1.5

 (W
 m

2  K
1 )

(h)

GCM
2-layer EBM
4xCO2 EBM

+/- 
+/- 

Figure S5. Similar to Figure 2, 40-year running means of (a-d) radiative feedback parameter

λ and (e-h) ocean heat uptake efficiency κ calculated as the ensemble mean of each GCM (blue)

and calibrated EBM (orange), except the calibration is done during the period 1980-2000. The

blue and orange shading represent one standard deviation about the mean for the GCM and

EBM respectively, with the blue dotted lines bounding the spread in the GCM feedbacks for

clarity. The evolution of λ and κ fit to the abrupt4xCO2 simulation of each GCM is shown in the

dashed black line.
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