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ABSTRACT: We analyze observations and develop a hierarchy of models to understand heat waves—long-lived, high
temperature anomalies—and extremely high daily temperatures during summertime in the continental extratropics.
Throughout the extratropics, the number of extremely hot days found in the three hottest months is much greater than
expected from a random, single-process model. Furthermore, in many locations the temperature skewness switches from
negative on daily time scales to positive on monthly time scales (or shifts from positive on daily time scales to higher posi-
tive values on monthly time scales) in ways that cannot be explained by averaging alone. These observations motivate a
hierarchy of models of the surface energy and moisture budgets that we use to illuminate the physics responsible for daily
and monthly averaged temperature variability. Shortwave radiation fluctuations drive much of the variance and the nega-
tive skewness found in daily temperature observations. On longer time scales, precipitation-induced soil moisture anoma-
lies are important for temperature variability and account for the shift toward positive skewness in monthly averaged
temperature. Our results demonstrate that long-lived heat waves are due to (i) the residence time of soil moisture anoma-
lies and (ii) a nonlinear feedback between temperature and evapotranspiration via the impact of temperature on vapor
pressure deficit. For most climates, these two processes give rise to infrequent, long-lived heat waves in response to ran-
domly distributed precipitation forcing. Combined with our results concerning high-frequency variability, extremely hot
days are seen to be state-independent filigree driven by shortwave variability acting on top of longer-lived, moisture-driven
heat waves.
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1. Introduction et al. 2018; Wehrli et al. 2019). Given these varying explana-
tions for different time scales of summertime temperature
variability and the societal importance of extremely high tem-
peratures, we examine the physical processes responsible for
the variance and skewness of temperature on daily and
monthly time scales and seek in particular to illuminate how
different time scales of variability contribute to the events con-
ventionally referred to as heat waves and extremely hot days
(see the AMS Glossary of Meteorology definition at https:/
glossary.ametsoc.org/wiki/Heat_wave; Perkins and Alexander
2013).

We define an extremely hot day as one in which the daily
maximum temperature exceeds the local 95th temperature
percentile for the summer months in the Northern Hemi-
sphere [June, July, and August (JJA)]. To probe the connec-
tion between daily and monthly temperature variability,
Fig. 1a shows the “extreme concentration” N, defined as the
total number of extremely hot days that occurred during the
three hottest summer months at each extratropical grid box
(north of 25°N) during the period 1985-2014 (see section 2 for
details on the data used in this study). Typically, N, ~ 30
across the extratropics (10 = N, = 55). To understand
whether observed N, can be explained by random variations
in daily temperature, we examine numerical experiments with
autoregressive models of order one (AR1), where the noise
applied to the model is independent of the model state. By
varying the autocorrelation coefficient r in the AR1 models,

Corresponding author: Lucas R. Vargas Zeppetello, lvz7@ We derived an empirical relationship for N, as a function of r.
uw.edu We then calculated r for each grid box in Fig. 1a (typically

Extremely high near-surface air temperatures can have del-
eterious consequences for human health, agriculture, and eco-
systems. Recent work on daily temperature fluctuations in
extratropical continental regions during summertime has
focused on (i) the local insolation incident at the surface
associated with stochastic variability in cloudiness (Meehl
and Tebaldi 2004; Van Weverberg et al. 2018) and (ii) warm
and cold air advection associated with synoptic motions
(Schneider et al. 2015; Tamarin-Brodsky et al. 2020).
Extremely hot days have been attributed to sunny skies acting
in concert with site-specific synoptic circulation anomalies
(e.g., warm air advection, subsidence associated with down-
slope winds, or a local high pressure system) that enhances
warming driven by excess insolation (Bumbaco et al. 2013;
Loikith et al. 2018; Linz et al. 2018). On time scales longer
than one day, fluctuations in summertime temperature have
been attributed to stochastic variations in (i) insolation inci-
dent at the surface and (ii) soil moisture associated with pre-
cipitation events (Koster et al. 2015; Vargas Zeppetello et al.
2020a). Many studies have pointed out that in continental
regions, there is a strong relationship between meteorological
droughts (i.e., extended periods of precipitation deficit) and
high temperature anomalies that persist for weeks or months
at a time during summer (e.g., Fischer et al. 2007; Miralles
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FIG. 1. (a) The “extreme concentration” N, defined as the number of extremely hot days in
the hottest three summer (JJA) months of the historical record (see section 2a for details on
datasets). (b) The ratio of observed N, to N, expected from an AR1 process with the observed
one-day autocorrelation coefficient in temperature from each grid box. The inset in (b) shows an
area-weighted histogram summarizing the ratio across the extratropics.

0.5 = r = 0.7) and used our empirical N,(r) relationship to
compute the extreme concentration expected across the extra-
tropics if daily temperatures were an AR1 process with the
observed (local) autocorrelation coefficient. The ratio of N,
found in observations to N,(r) expected from our AR1 numer-
ical experiments is shown in Fig. 1b; a value of one indicates
that observed N, can be explained by an AR1 process.
Observed N, is 50% greater on average than expected from an
ART1 process (see histogram inset in Fig. 1b for a summary of
this ratio across the extratropics). The finding that extremely
hot days are inordinately highly clustered in the three hottest
months of the historical record throughout the extratropics
suggests that understanding low-frequency temperature vari-
ability is the foundation for understanding extremely hot days.

To explain why N, is higher than expected from a simple
autoregressive process, we need to understand the shape of
the probability distribution of summertime temperatures. Fig-
ure 2 shows the variance and skewness of daily maximum
(Figs. 2a,b) and monthly average (Figs. 2c,d) observed 2-m air
temperature distributions. The contours in Figs. 2b and 2d
show places where the skewness is statistically distinguishable
from zero. Methods for removing the seasonal cycle and the
robustness of the statistics presented in Fig. 2 are discussed in
section 2a. Throughout this study, we will use the statistics of
daily maximum and monthly average temperatures as proxies
for high- and low-frequency variability, respectively.
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The amplitude of the monthly average temperature vari-
ance is reduced by a factor of 10 on average compared to the
daily maximum temperature variance (cf. Figs. 2a,c and note
the different color bars). This ratio of daily to monthly tem-
perature variance is similar to what is expected from the AR1
experiments with decay time scales set by the observed one-
day autocorrelation coefficient. Furthermore, the spatial pat-
tern of daily maximum temperature variance is very similar to
that of monthly average temperature variance (the pattern
correlation of Figs. 2a and 2c is r = 0.70). In our numerical
experiments with randomly distributed daily temperatures,
we found that daily and monthly average variance were well
correlated and that the ratio of daily to monthly average tem-
perature variance was close to 10:1 for autocorrelation coeffi-
cients similar to those found across the extratropics.

As a demonstration of the applicability of an AR1 model to
describe observed temperature probability density functions
(PDFs), Fig. 2e shows temperature PDFs for a location in
eastern Europe (blue star in Figs. 2a—d): the observed daily
maximum PDF is shown by a solid blue line and a PDF gener-
ated by an AR1 model with the same autocorrelation coeffi-
cient as the eastern European daily observations and noise
amplitude tuned to match the daily temperature variance is
shown by a dashed blue line. The dashed orange line shows
the PDF generated by taking monthly averages of output
from the AR1 model, the solid orange line shows the PDF
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FIG. 2. (a),(b) Daily and (c),(d) monthly temperature (left) variance and (right) skewness for JJA 1985-2014. Contour lines in (b) and
(d) show regions where the skewness is statistically distinguishable from zero (see section 2a). Stars show places with increasingly positive
temperature skewness on longer averaging time scales that will be investigated in this paper. (e) Probability density functions (PDFs) of
observed daily (blue) and monthly average (orange) temperatures in eastern Europe [blue star in (a)-(d)] in solid lines; dashed lines show
daily (blue) and monthly average (orange) temperature PDFs generated from numerical experiments with an AR1 process tuned to match
the daily variance from the eastern European observations; 10000 synthetic “summers” contribute to the dashed PDFs to eliminate the

effects of sampling.

generated by taking monthly averages of the daily
observations.

The AR1 model of daily temperature variance in eastern
Europe captures the variance in monthly average tempera-
ture, but not the skewness, which is indistinguishable from
zero in daily observations (and by definition in the white-
noise-forced AR1 models) but positively skewed in the
monthly averaged observations. This result is inconsistent
with an AR1 model that assumes low-frequency variability
is due to the same physical processes that are responsible
for high-frequency variability (one memory time scale and
additive noise). The increasing skewness at longer averaging
time scales apparent in eastern Europe is not unique to this
region. Over more than half of the extratropical land sur-
face, the temperature skewness on monthly time scales
either switches from negative on daily time scales to positive
on monthly time scales (38% of land area) or increases from
a positive value on daily time scales to a higher positive
value on monthly time scales (14% of land area). Further, in
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62% of the land area where daily temperature skewness is
statistically distinguishable from zero, the distribution is
negatively skewed (this corresponds to 51% of total land
area), while in 79% of the land area where the monthly
average temperature skewness is statistically distinguishable
from zero, the distribution is positively skewed (this corre-
sponds to 13% of total land area). In section 3, we show that
stochastic variations in solar radiation play an important
role in the negative skewness of daily average temperature
distributions. The preponderance of positively skewed
monthly average temperature distributions is even more
surprising when the negatively skewed radiation forcing on
the land surface is considered. Proistosescu et al. (2016)
found that the skewness of an AR1 process driven by
skewed additive noise decays toward zero as the averaging
time scale increases; this also follows directly from the cen-
tral limit theorem. The distinctions between this result and
observed summertime temperature distributions on daily
and monthly time scales suggest that the processes
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responsible for low-frequency variability are different from
those that are responsible for high-frequency variability.

In section 2 (after summarizing the datasets used in this
study), we develop a 1D model of surface temperature and
soil moisture starting from the surface energy and moisture
budgets, the Surface Energy and Moisture Budget Model
(SEMB), then use locations in the central United States and
eastern Europe (denoted by the green and blue stars, respec-
tively, in Figs. 2a—d) as case studies to evaluate the model.
Both of these case study regions exhibit a transition toward
positive skewness at longer averaging time scales (see stars in
Figs. 2a—d). In section 3, we examine the statistics of observed
shortwave radiation variability and use the SEMB to demon-
strate that variability in the flux of shortwave radiation
(i.e., cloudiness or surface albedo; Van Weverberg et al. 2018)
plays an important role in determining observed patterns of
temperature variance and predominantly negative tempera-
ture skewness on daily time scales. In section 4, we apply the
governing equations of the SEMB in steady state to show
how the nonlinear relationship between evapotranspiration,
soil moisture, and temperature impacts monthly average tem-
perature skewness. In section 5, we apply the results of section 4
to formulate an even simpler “random precipitation” model to
illuminate how summertime temperature variability is influ-
enced by the average frequency of (random) precipitation
events and other climate parameters. In section 6, we show how
the moments of precipitation-induced variability of soil moisture
and temperature depend on the background climate state. In
section 7, we return to the observations of N, and show that our
theoretical framework for monthly temperature variability
driven by randomly distributed precipitation events is extremely
relevant for understanding individual extremely hot days across
the extratropics. Conclusions about the clustering of extremely
hot days in the hottest months of the historical record and the
time scale dependence of temperature skewness are presented
in section 8.

2. Methods
a. Data and reanalysis

We use daily maximum 2-m air temperature and total daily
precipitation data from the Climate Prediction Center (CPC)
for the years 1985-2014 and monthly average 2-m air temper-
ature from Willmott and Matsuura (2018). In this study we
focus on the extratropics, as these are the regions for which
the most accurate data are available for the historical period,
particularly for the United States and Europe. For tempera-
ture and all other quantities where anomalies are calculated,
the seasonal cycle is removed. In monthly data, this process
involves subtracting the respective monthly climatology from
the particular month in question; in daily data, the same pro-
cedure was used to remove the seasonal cycle at each day
except that the observed average seasonal cycle was
smoothed with a low-pass filter. Similar results for skewness
of daily maximum temperatures are found in Cavanaugh and
Shen (2014) and McKinnon et al. (2016) using different meth-
ods to remove the seasonal cycle. Since only 90 (30 years
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times 3 months per year) monthly values appear in our analy-
sis, we examined three additional datasets to ensure the vari-
ance and skewness were insensitive to our choice of dataset:
monthly averages of the daily CPC data, the monthly average
2-m air temperature data from the Berkeley Earth dataset
(Rohde et al. 2013), and the monthly average temperature
from the ERAS reanalysis (Hersbach et al. 2020). The vari-
ance and skewness found in these datasets were in good
agreement with those shown in Figs. 2c and 2d. We conducted
1000 resampling trials with 90% of the total data values each
to generate the skewness maps shown in Figs. 2b and 2d. The
standard deviation of skewness calculated from the samples
was used to determine whether the local temperature skew-
ness is statistically distinguishable from zero at the p < 0.05
confidence level and we followed Wilks (2016) to control for
the false detection rate of spatially correlated data. Regions
where skewness is significantly different from zero at this cri-
terion are denoted by black contours in Figs. 2b and 2d.

Daily average surface absorbed shortwave radiation data
are from the AVHRR satellite (Karlsson et al. 2012) and
cover JJA 1995-2009. Monthly average absorbed shortwave
radiation data are from the CERES satellite (Loeb et al.
2018) and cover 2000-17. To check for consistency in the
datasets (as we did for the temperature data), we averaged
daily observations from the AVHRR dataset for each month
in the record and compared the resultant variance and skew-
ness statistics to the CERES dataset. We found that statistics
calculated from the AVHRR monthly averaged data agree
well with those calculated from CERES over their common
2000-09 period. Finally, we used monthly mean near-surface
specific humidity g and surface soil moisture m output from
the ERAS reanalysis spanning JJA 1985-2014.

b. The Surface Energy and Moisture Budget Model

Over land, the surface energy budget is

C%:FSW—FLW—LE—HV—G. (1)

In Eq. (1), T is the land surface temperature, Fsw is the

absorbed shortwave radiation, F} y is the net upward surface

longwave radiation, E is the evapotranspiration, H; is the sur-

face sensible heat flux, and G is the ground heat flux. The var-

iable L is the latent enthalpy of vaporization [J (kg H,0) ']
and C is the surface heat capacity defined as

C = cppsh, (2)

where ¢, is the specific heat of the soil, p;, is the soil density,
and 4 is the soil depth. The units for all terms in Eq. (1) are
watts per square meter (W m™~?).

The moisture budget for the surface soil layer is

dm
“—=P-E-R-1I, 3
o ©)
where m measures the fraction of available soil pore space
occupied by liquid water (m varies between zero and one);
P is the precipitation rate, R is the runoff, and / is the infiltration



1 APRIL 2022

VARGAS ZEPPETELLO ET AL.

2235

TABLE 1. Climatological values of absorbed shortwave radiation Fsw, event average precipitation P, dewpoint temperature T,
and near-surface specific humidity g as well as the dry response parameter « and surface resistance r, for the two case study regions

(see stars in Fig. 2).

Region Fsw (Wm™2) P (mm) Tp (°C) 7 [g H,O (kg air)™'] a(Wm2K™h re (s m™")
United States 215 41 17 12 17 150
Europe 187 3.6 13 9 16 75

rate. The water holding capacity of the soil layer u in Eq. (3) is
given by
p = phbmax, 4)

where p; is the density of liquid water and 6,,.y is the fraction
of the soil matrix that is accessible to liquid water. The units
for all terms in Eq. (3) are kg H,O m ?s ..

Net longwave radiation, surface sensible heat flux, and the
ground heat flux all respond to changes in surface tempera-
ture 7. Linear regressions of surface temperature on these
three energy fluxes explain most of their monthly variability
despite the T* behavior of longwave radiation and the influ-
ence of other variables like atmospheric humidity and tem-
perature or wind speed (see Vargas Zeppetello et al. 2020b).
We assume that

Fiw + Hy + G = o(T — Tp), (%)

where T}, is the local dewpoint temperature and o (W m™ 2 K1),
the “dry response parameter,” controls how effectively the
longwave, sensible, and ground heat fluxes damp temperature
anomalies in the absence of evapotranspiration. Our use of
Tp as the model’s reference temperature in Eq. (5) ensures
that only positive evapotranspiration values are output from
the model and that we simulate no condensation of dew.
We parameterize evapotranspiration as

E = vym|q,(T) - q|, (6)

where the parameter v, = p,/r,, where p, is the density of
near-surface air and r, (s m™!) is the effective surface resis-
tance. The saturation specific humidity ¢,(7) is given by the
Clausius-Clapeyron relationship and g is the climatological
near-surface specific humidity. We neglect variations in g,
which have been shown to be much smaller than variations in
qs(T) that are due to fluctuations in surface temperature (van
Heerwaarden et al. 2010). The linear dependence of E on m
in Eq. (6) has been used since the earliest climate models
(Manabe 1969) and captures the basic hydrological connec-
tion between soil moisture and evapotranspiration (Delworth
and Manabe 1988). In previous work (Vargas Zeppetello et al.
2019), we have shown that Eq. (6) can accurately model the
observed transition in evapotranspiration behavior across wet
and dry soil moisture “regimes” provided that the surface
energy budget equation [Eq. (1)] is coupled to the surface
moisture budget [Eq. (3)].

Using Egs. (5) and (6) and assuming that runoff and infil-
tration act only to impose an upper limit on surface soil mois-
ture, we arrive at the following equations for the evolution of
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temperature and soil moisture that constitute the Surface

Energy and Moisture Budget Model (SEMB):
dT

C T Fsw(t) — (T — Tp) — LVLm[qS(T) - q]v (7
dm _
W W = P(l) - VLm[CIs(T) - q] (8)

In the SEMB [Egs. (7) and (8)], shortwave radiation Fsw and
precipitation P are written as functions of time to denote that
we use observations of these quantities as forcings on the land
surface and assume that they are independent of the state varia-
bles T and m. While this assumption does not hold everywhere
(Koster et al. 2004), it allows us to use daily shortwave radiation
and precipitation data as inputs to the model and investigate the
temperature response. The daily average downward shortwave
radiation observations are multiplied by the climatological mean
albedo to account for local variations in surface reflectance. The
SEMB relies on three parameters: the soil column depth, set to
be h = 10 cm; the surface resistance, which is governed by both
surface properties and plant physiology; and the dry response
parameter a« (W m~> K1), which is a function of regional mean
temperature and soil moisture because it controls the magnitude
of the net longwave and sensible heat fluxes.

¢. Model evaluation: The SEMB control simulations

To verify the efficacy of the SEMB, we use the observed
daily time series of shortwave radiation Fsw and precipitation
P for 15 summers (JJA 1995-2009) from the two regions
highlighted by stars in Fig. 2 as model forcings in Egs. (7) and
(8); these represent our control simulations for both regions.
Values for « are taken from previous work that calculated lin-
ear regressions between the fluxes in Eq. (5) and surface tem-
perature (Vargas Zeppetello et al. 2020b); these monthly
regressions explicitly eliminate high-frequency variability in
the longwave, sensible, and ground energy fluxes. The r
parameter is tuned so that the mean temperature simulated
by the SEMB matches that of the study region in question.
The Tp values are calculated by using the Clausius—Clapeyron
relationship to match the average specific humidity in the
ERAS5 reanalysis. The model is initialized with values of T
and m, at each time step the fluxes are calculated, and then a
finite-difference algorithm integrates the state variables for-
ward in time. For all results presented here we used 60 time
steps per day, but our results were not sensitive to this choice.
Relevant climatological values and model parameters for
both regions are shown in Table 1. We use the climatological
averaged m and T from ERAS reanalysis for the initial condi-
tions in all simulations; statistics from the are not sensitive to
the choice of initial conditions.
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FIG. 3. Observations and model output for daily temperature anomalies over (left) the central United States and
(right) eastern Europe (see stars in Fig. 2). (a),(b) Frequency distributions for anomalies in CPC observations (blue
bars) and temperature output from the SEMB (green bars). Temperature (c),(d) variance and (e),(f) skewness are
shown as a function of averaging time scale. Blue dots/lines show observed values from the CPC data. Green dots/lines
show results from the SEMB control simulations. The differences between the observations and the SEMB control

simulations are shown in the red dots/lines.

Before we present model results, we note two important
caveats. First, we compare surface temperature from the to
daily maximum 2-m air temperature observations. The corre-
lation between existing gridded estimates of land surface and
2-m air temperature is generally greater than 0.9 outside the
tropics (Good et al. 2017), suggesting that the variability in
surface temperature output by the SEMB can be directly
compared to the variability in observed maximum 2-m air
temperature. Second, the SEMB is forced with daily average
values of shortwave radiation and the resulting temperature is
compared to observed daily maximum 2-m air temperature.
Despite these inconsistencies between the model and the
observations we compare it to, Figs. 3a and 3b show that the
surface temperature variability simulated by the SEMB is
similar to the variability in observed maximum 2-m air
temperatures.

In Figs. 3cf, the temperature variance (Figs. 3c,d) and
skewness (Figs. 3e,f) are shown as functions of averaging time
scale for the SEMB (green dots/lines) and the observations
(blue dots/lines). The differences between observed and
SEMB statistics are shown by red dots/lines. To create these
plots, we sampled random continuous segments of varying
lengths; each dot in Figs. 3c—f shows the average variance or
skewness averaged across 5000 trials.
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There is good agreement between the SEMB and observa-
tions, particularly on monthly time scales. When forced with
observed daily radiation and precipitation, the SEMB features
(i) a decrease in variance as the averaging time scale increases
from one day to one month and (ii) an increasingly positive
skewness at longer averaging time scales. The SEMB underes-
timates the high-frequency temperature variance in both study
regions (see Figs. 3c,d); this is expected because thermal
advection contributes to daily temperature variance and is not
included as a forcing in our model. However, the SEMB more
accurately simulates the variance on longer time scales; this
suggests that advection is not a significant source of monthly
average temperature variability in either region, consistent
with the findings of Holmes et al. (2016) and Chan et al.
(2020). Simplified versions of Egs. (7) and (8) have been used
to understand the monthly temperature variance across the
extratropics in Vargas Zeppetello et al. (2020a).

At both sites, skewness increases as the averaging time
scale increases in both the SEMB and the observations. Simi-
lar to the variance results, the skewness in the output from
the SEMB agrees better with the skewness in the observations
at longer averaging time scales. The differences between sim-
ulated and observed skewness in the shorter averaging time
scales are likely due to variability driven by stochastic
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FIG. 4. (left) Variance and (right) skewness of absorbed surface shortwave radiation distributions in JJA. The (a),(b) daily data are from
Karlsson et al. (2012) and are for 1995-2009, while the (c),(d) monthly data are from Loeb et al. (2018) and are for 2000-17.

variations in temperature advection that are not included in
our model but may contribute to the negative skewness in
temperature on daily time scales in these regions (Tamarin-
Brodsky et al. 2020).

In the four sections that follow, we illuminate the impact of
shortwave radiation and precipitation on land surface temper-
ature variability to understand the processes responsible for
the dependence of summertime temperature statistics on
averaging time scale seen in the observations and simulated
by the SEMB.

3. Radiation, precipitation, and temperature variability

a. Observations of radiation-induced temperature
variability

Figure 4 shows the daily and monthly average absorbed
shortwave radiation variance and skewness across the extra-
tropics (note again the different color bars on the variance
plots). On daily time scales, the skewness of surface short-
wave radiation is strongly negative nearly everywhere, proba-
bly because insolation has an upper (clear sky) limit and
clouds can only decrease the absorbed shortwave flux at the
surface.

To quantify the contribution of shortwave radiation fluctua-
tions to summertime temperature variability, we modify the
SEMB to exclude the influence of soil moisture anomalies on
the surface energy budget by prescribing a constant mean
value of soil moisture 7 in Eq. (7). We expand shortwave
radiation and temperature into a climatological mean value
(barred terms) and anomalies about the climatology (primed
terms); for temperature, 7 =T + T’. Assuming that the cli-
matology is in equilibrium, Eq. (7) becomes

a1’

€= = Fay = o' = LuymyT". )
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The value of y = dq,(T)/dT is calculated from the Clausius—
Clapeyron relationship using observed local climatological
surface temperature. While the temperature tendency term is
important for understanding the diurnal cycle of surface tem-
perature (Kleidon and Renner 2018), scale analysis shows
that on time scales longer than one day, the time tendency
term in Eq. (9) is small compared to terms on the right-hand
side and can be ignored. Equation (9) then simplifies to

FI
T =_ "SW 10
a+ Lvymy (10)

Equation (10) is similar to the model presented in Vargas
Zeppetello et al. (2020a), but here soil moisture anomalies
have been completely neglected. The diagnostic model [Eq.
(10)] predicts that temperature anomalies are inversely pro-
portional to mean soil moisture because a higher fraction of
incoming energy is used to evaporate liquid water over wet
soils than over dry soils; this effect has been noted in several
previous studies (e.g., Seneviratne et al. 2010; Koster et al.
2015). Analysis of Eq. (10) shows that in regions with high cli-
matological soil moisture (772 = 1), temperature anomalies are
damped roughly twice as much as in regions where there is no
soil moisture (772 = 0).

Using Eq. (10), the radiation-induced temperature variance
in the absence of soil moisture anomalies is

o?(Fsw)

Ol(Tsw) = m-

(1)

Equation (10) also implies that the skewness in tempera-
ture variability driven solely by radiation anomalies is exactly
equal to the skewness in observed shortwave radiation:

S(Tsw) = S(Fsw). (12)
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FIG. 5. Radiation-induced temperature variance on (a) daily and (c) monthly time scales calculated using Eq. (11). (b),(d) The ratio of
radiation-induced temperature variance on daily and monthly time scales to observed temperature variance from Figs. 2a and 2c, respec-
tively. (e) The frequency distribution of the ratios mapped in (b) and (d). A value of one in (b), (d), or (e) indicated by the dashed black
line in (e) implies that the temperature variance attributed to radiation variability in Eq. (11) perfectly matches the observations.

Substituting the observed daily and monthly absorbed
shortwave radiation variance o?(Fsy) (Figs. 4a and 4c, respec-
tively) into Eq. (11) yields the estimates of radiation-induced
temperature variance on daily and monthly time scales
(shown in Figs. Sa and Sc, respectively). Figures Sb and 5d
show the ratio of the temperature variance obtained from
Eq. (11) to the observed temperature variance on daily and
monthly average time scales, and Fig. Se shows the frequency
distribution of these ratios across the extratropics. A value of
1 in Figs. 5b, 5d, and Se implies that radiation-induced tem-
perature variance from Eq. (11) is identical to the observed
temperature variance. On average across the extratropics, our
diagnostic model of radiation-induced temperature variability
attributes 54% of the daily temperature variance to daily radi-
ation variability, and 38% of the monthly temperature vari-
ance to monthly radiation variability.

In the absence of soil moisture anomalies, the SEMB sim-
plifications derived above imply that skewness of temperature
will be identical to the skewness in shortwave radiation on all
time scales [Eq. (12)]. The spatial correlation between daily
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temperature and shortwave radiation skewness is r = 0.49
(Figs. 2b and 4b), but for monthly average data (Figs. 2d and
4d) the correlation between the two skewnesses is much
weaker (r = 0.09). This is because a higher fraction of total
temperature variance is attributable to shortwave radiation
on daily time scales than on monthly time scales (54% vs
38%).

These modeling results highlight the important role of
shortwave radiation variability in determining the shape of
daily temperature probability distributions in the extratropics.
On monthly time scales, our model attributes only one-third
of the temperature variance to shortwave radiation variability
and indicates that other mechanisms have primacy in driving
temperature skewness.

b. Modeled radiation- and precipitation-induced
temperature variability

To compare the impacts of shortwave radiation and precipi-
tation variability on the statistical moments of summertime
temperatures across averaging time scales, we return to our
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FIG. 6. As in Fig. 3, but adding results from three new experiments. The orange line shows results from the SEMB
forced with the observed radiation forcing, but with soil moisture held constant at the summertime climatological value
from the control simulations. The precipitation-induced and low-frequency covariance-induced experiments were forced
by the same observed precipitation time series from the control simulations, but in the former, radiative forcing Fgy is
held constant while in the latter it is filtered to remove variability in Fsyw on time scales shorter than two weeks.

two case studies presented in section 2. Figure 6 shows results
from the control experiments [i.e., Eqgs. (7) and (8) forced by
observed daily Fsw and P] shown in Fig. 3 along with three
new experiments. In the radiation-induced experiment (orange
dots/lines), soil moisture is held constant at the climatological
value from the control simulations and the SEMB is forced
only with the observed radiation time series for both regions;
this is similar to our diagnostic radiation-induced temperature
anomaly model [Eq. (10)]. In the precipitation-induced experi-
ment (brown dots/lines), shortwave radiation is held constant
at its climatological value and the temperature variability in
the SEMB is induced entirely by precipitation. In the low-
frequency covariance-induced experiment (purple dots/lines),
the observed precipitation forcing is applied to the SEMB
along with low-pass filtered shortwave radiation with a two-
week cutoff time scale; temperature variability in this experi-
ment includes the effects of covariance in the precipitation
and low-frequency radiation forcings.

In both study regions, removing all soil moisture variability
reduces daily average temperature variance compared to the
control simulations (cf. the orange and green dots in
Figs. 6a,b). The monthly average radiation-induced tempera-
ture variance is an extremely small fraction of the monthly
average variance found in the control simulations. The radia-
tion-induced temperature skewness is negative on daily time
scales and tends toward zero as the averaging time scale
increases in both regions considered. This is consistent with
the expectations for an AR1 process from Proistosescu et al.
(2016) and suggests that shortwave radiation acts as a ran-
domly distributed forcing on the land surface. These results
from the radiation-induced experiments are in line with our
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more general findings presented in section 3a that (i) negative
skewness in shortwave radiation contributes to the prepon-
derance of negative skewness in observed daily temperature
distributions across the extratropics (although soil moisture
variability apparently damps the influence of this negatively
skewed forcing in the SEMB control simulations) and
(ii) monthly average radiation variability alone cannot
account for skewness in monthly average temperature
distributions.

In the precipitation-induced experiments in which short-
wave radiation is held fixed (brown dots in Fig. 6), the simu-
lated temperature variance and skewness decrease only
slightly as averaging time scale increases, hinting at the
important role of slowly varying soil moisture anomalies in
the generation of low-frequency temperature variability. We
will explore the implications of this result for low frequency
temperature variability in the sections that follow. The pre-
cipitation-induced experiments also feature positive tempera-
ture skewness at all time scales, suggesting that as the
averaging time scale increases, the increasingly positive tem-
perature skewness seen in the observations in both study
regions (blue lines in Figs. 6¢,d) is driven by precipitation-
induced temperature variability. The impact of precipitation
forcing is clear even for daily variability. The temperature
skewness seen in the radiation-induced experiments is much
more negative than in the control experiments and in the
observations (cf. the orange curves with the blue and green
curves in Figs. 6c,d), demonstrating that precipitation-
induced temperature variability in the SEMB reduces the
effect of negatively skewed shortwave radiation forcing, even
on daily time scales.
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In the low-frequency covariance-induced experiments that
include forcing due to precipitation and to low-frequency
shortwave variability, daily average temperature variance is
reduced compared to the control simulations (cf. the purple
and green dots in Figs. 6a,b). However, on monthly time
scales, the combination of precipitation and low-frequency
radiation variability accounts for nearly all of the monthly
average temperature variance found in the control experi-
ments for both regions. Allowing low-frequency shortwave
radiation variability to interact with precipitation forcing in
the SEMB increases the positive monthly temperature skew-
ness over the central United States relative to the precipita-
tion-induced experiments (cf. the brown and purple dots in
Fig. 6¢). In eastern Europe however, the temperature skew-
ness driven by precipitation alone is larger than the tempera-
ture skewness induced by the covariance between low-
frequency shortwave radiation and precipitation. In separate
SEMB experiments forced by low-pass filtered radiation and
with fixed soil moisture (not shown) we found that the
monthly averaged SEMB temperature output is negatively
skewed in eastern Europe and slightly positively skewed in
the central United States. This explains the contrasting skew-
ness results in the covariance experiments in these regions but
does not change the fact that precipitation-induced tempera-
ture variability acting alone or combined with low-frequency
radiation variability creates positively skewed temperature
distributions in the SEMB simulations of both study regions.

Collectively, the SEMB experiments suggest that the vari-
ance in long-lived (e.g., monthly average) summertime tem-
perature anomalies in the central United States and eastern
Europe is induced primarily by precipitation and by the
covariance of precipitation and low-frequency solar radia-
tion variability [see also Vargas Zeppetello et al. (2020a) for
an analysis that encompasses the entire extratropics].
Results from the SEMB and the diagnostic equation for
radiation-induced temperature variance [Eq. (11)] suggest
that observed positive skewness in low-frequency tempera-
ture anomalies in both of these regions is driven by precipi-
tation variability; it cannot be explained by radiation forcing
alone. In the next two sections, we develop an analytical
model that illuminates the processes by which soil moisture
variability impacts temperature variability, and ascertain
the primacy of these processes for driving low-frequency
temperature variability and the clustering of extremely hot
days throughout the extratropics.

4. Soil moisture variability and positive
temperature skewness

Many studies have noted that soil moisture, because of its
relationship to evapotranspiration and the surface energy
budget, is a crucial driver of temperature variability during
summertime (e.g., Delworth and Manabe 1988; Seneviratne
et al. 2010). In this section, we modify the SEMB equations to
explore how soil moisture variability impacts the probability
distribution of summertime temperature when the land sur-
face energy budget is in steady state (relative to the soil mois-
ture budget). We begin by fixing insolation at its climatological
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average value and neglecting the time tendency term in
Eq. (7). The resulting equation eliminates shortwave radia-
tion variability as a forcing:

0 =Fsw — T — Tp) — Lvpm|q,(T) — g]. (13)

Equation (13) specifies the relationship between m and T
for constant Fsw and g. The set of all T and m values that sat-
isfy Eq. (13) for a particular set of parameters (7y, g, Fsw,
etc...) is a “steady-state set”—a curve in temperature—soil
moisture phase space that is relevant to low-frequency vari-
ability, that is, on time scales longer than the equilibration
time scale of the surface energy budget (1-2 days).

To see how these steady-state sets can be used to under-
stand the shape of the temperature distribution, Fig. 7a shows
a hypothetical linear steady-state set with a dashed line. In
this case, the temperature distribution would be an exact
reflection of the soil moisture distribution; positively skewed
soil moisture distributions (characteristic of dry regions in
ERADS5) would lead to positively skewed temperature distribu-
tions and vice versa for negatively skewed soil moisture distri-
butions (characteristic of wet regions). In contrast, the solid
curve in Fig. 7a shows the steady-state set generated by
substituting realistic values of climatological atmospheric spe-
cific humidity g, shortwave radiation Fsw, and surface resis-
tance r, into Eq. (13). The important aspect of this physically
based steady-state set is that a given negative soil moisture
anomaly —6m results in a temperature anomaly much greater
in magnitude than one that results from a positive soil mois-
ture anomaly of the same magnitude + ém. Hence, a Gaussian
soil moisture distribution (skewness = 0) results in a positive
temperature skewness, although positively skewed soil mois-
ture distributions could still result in negative temperature
skewness and will be examined below. The source of the non-
linear behavior evident in the steady-state set in Fig. 7a is the
feedback between soil moisture, evaporative cooling, and
atmospheric water vapor demand (Vargas Zeppetello et al.
2019): since the vapor pressure deficit is larger in a dry climate
(low m) than in a wet climate, a fluctuation in soil moisture in
a dry climate causes a greater evaporation perturbation and
thus a greater impact on the surface energy budget than in a
wet climate (high 777). This feedback sets an effective cap on
surface cooling via evapotranspiration that is evident from the
shape of the solid curve in Fig. 7a.

The sensitivity of the steady-state sets defined by Eq. (13)
to the climatological specific humidity g, shortwave forcing
Fsw, and resistance parameter r, is shown in Figs. 7b—d,
respectively. All realistic parameter combinations feature the
nonlinear dependence of temperature on soil moisture that
would render a positively skewed temperature distribution if
the distribution of soil moisture anomalies were Gaussian
(i.e., nonskewed). Since the nonlinearity of the steady-state
sets is tied to the feedback between temperature, evaporation,
and soil moisture, any changing climatological parameter that
reduces the climatological (mean state) evaporation will lead
to a more linear steady-state set while any environmental
modifications that increase climatological evapotranspiration
will accentuate the nonlinearity of the steady-state sets.
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FIG. 7. Steady-state sets in temperature-soil moisture phase space for various land surface and climate parameters.

(a) A physically constrained steady-state set using Eq. (13) with average parameter values of shortwave radiation, spe-
cific humidity, and surface resistance (solid line), and another hypothetical, linear steady-state set (dashed line) for
conceptual purposes. (b)—(d) Steady-state sets computed using Eq. (13) with various values of climatological specific
humidity, net shortwave radiation, and surface resistance, respectively. The curve shown in (a) using the nominal

parameters is reproduced in black in (b)—(d).

We can quantify the impact of the underlying soil moisture
probability density function on temperature variability by fur-
ther simplifying Eq. (13). A Taylor expansion of the equation
for vapor pressure deficit about the dewpoint temperature 7
gives

dqs

ﬁ(T — Tp) =y(T — Tp),

(14)

qs(T) —-q=qTp) —q +

where ¢s(Tp) —q =0 by definition and, as in Eq. (9),
v = dq,/dT. Inserting Eq. (14) into Eq. (13), we obtain

0=Fsw — T — Tp) — Lvpmy(T — Tp) or  (15)

Fsw
T-Tp=—"7"—. 16
b Lvpym (16)
The differences between steady-state sets calculated

according to Egs. (13) and (16) are small (not shown). We can
use Eq. (16) to describe temperature anomalies associated
with moisture fluctuations that last longer than the equilibra-
tion time for the surface energy budget—a day or two. Given
a probability density function for soil moisture g(m), the tem-
perature probability density f(T) is (see Papoulis 1965):
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-1
7T = 1) = g (7)

Combining the steady-state set shown in Fig. 8a with two
idealized g(m) PDFs (shown in Fig. 8b), we obtain the tem-
perature PDFs f(T — Tp) shown in Fig. 8c. One soil mois-
ture density function is normally distributed (blue; zero
skew), qualitatively consistent with the monthly soil mois-
ture distribution for a humid location (the central United
States); the other is a gamma distribution (brown; positive
skew), qualitatively consistent with that for an arid climate
(the western United States). While both soil moisture distri-
butions cause positively skewed temperature density func-
tions; temperature skewness is greater for the Gaussian soil
moisture distribution.

Collectively, the results of sections 2¢ and 3b show that pos-
itive skewness in observed monthly average temperature vari-
ability can be induced by precipitation alone, in agreement
with analyses of global climate models in fixed soil moisture
experiments (Berg et al. 2014). In this section, we have shown
that stochastic, low-frequency variations in soil moisture gen-
erate temperature distributions that are positively skewed
because of the intrinsic nonlinear relationship between tem-
perature, soil moisture, and evapotranspiration.
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5. A random precipitation model of summertime soil
moisture variability

Soil moisture is generated by precipitation events that, to
first order, are randomly distributed in time (Eagleson 1978).
In this section, we develop the random precipitation model for
summertime soil moisture that is driven by random precipita-
tion impulses and, when combined with the surface energy
budget [Eq. (7)], agrees qualitatively with the essential pat-
terns of observed monthly average temperature skewness
across the extratropics.

Soil moisture is replenished by precipitation events and
depleted over “inter-storm” periods (McColl et al. 2019).
Eagleson (1978) demonstrated that precipitation can be well
modeled as an event-based Poisson process with average
event frequency w and intensities given by a gamma distribu-
tion; we will refer to these time series as “random precipita-
tion forcing.” Building on his results, we run the SEMB for
one summer (92 days) with random precipitation forcing and
constant shortwave radiation Fsyw. Figure 9 shows the results
from the in temperature-soil moisture phase space (gray
line). Four precipitation events occurred in this 92-day simula-
tion. In Fig. 9a we have added arrows that indicate the tempo-
ral evolution of the state variables (7, m) through phase space
and added purple circles to denote 24-h increments in the con-
tinuum shown by the dashed gray line.

Figure 9b shows a schematic of the important, generic pat-
tern found in the experiment described above. The period
immediately following an instantaneous precipitation event
(blue arrows in Fig. 9b) is characterized by a decrease in tem-
perature because more soil moisture is available for enhanced
evapotranspiration (green arrows). The surface heat capacity
is small, so the cooling occurs rapidly; we refer to this short
period as the “storm moisture cooling.” Following this rapid
cooling, a slow drying by evapotranspiration occurs and the
land surface (slowly) warms in a manner that nearly follows
the steady-state set derived in section 4, which is shown with a
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thick black line in Fig. 9a. The warming and drying trajectory
followed by the SEMB simulation (gray lines and purple
circles) is nearly coincident to the steady-state set. The close
spacing of the 24-h increments (purple circles in Fig. 9a) in
the warming and drying phase of the simulation occurs
because the drying time scale of the land surface is much lon-
ger than the cooling time scale immediately following a pre-
cipitation event.

a. Deriving the random precipitation model of
summertime soil moisture

The results of the SEMB experiment shown in Fig. 9a moti-
vate an even simpler model of soil moisture. By treating precipi-
tation events as instantaneous spikes of variable magnitude p,,,
we can write a simplified version of the surface moisture budget
[Eq. (8)] that neglects the coupling between anomalies in evap-
oration and temperature:

dm _dJ

Rar T dr (18)

VLI’}’ZT/.,
where w and v, are defined in section 2, V is the climatologi-
cal average vapor pressure deficit, and

J=p1+pr+-+pn (19)

represents a Poisson series of precipitation events with aver-
age frequency w. This model of soil moisture assumes a fixed
value of potential evapotranspiration given by v, V. A similar
version of Eq. (18) was developed to explain simulated soil
moisture in an early climate model (Delworth and Manabe
1988), but our consideration of precipitation as events with a
Poisson distribution rather than a continuous white noise time
series is more realistic. An idealized model of a similar precip-
itation-induced phenomena (cloud aerosol sinks) is found in
Baker et al. (1979). The solution to Eq. (18) subject to the
forcing J given by Eq. (19) is a sum of exponential decays
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FIG. 9. (a) The gray line shows output from the SEMB as a trajectory through soil moisture-temperature phase
space from an experiment that used constant shortwave radiation forcing and random precipitation forcing. The black
line shows the steady-state set calculated from the model parameters used in this simulation. Purple circles show the
24-h increments of the 92-day simulation; gray arrows indicate the temporal evolution of the state variables 7" and m.
(b) A schematic of this evolution, decomposed into three stages: an instantaneous precipitation event, a rapid storm
moisture cooling, and a longer interstorm warming and drying period. (c) A solution (soil moisture) of the random
precipitation model [Egs. (18)—(21)]; (d) the temperature time series that results from using the soil moisture from
(c) as a forcing for the surface energy budget [Eq. (7)]. Vertical gray lines in (c) and (d) indicate the timing of precipi-
tation events. Purple letters in all panels describe the stages of a land surface trajectory in the absence of variability in
radiation forcing; the random precipitation model treats the precipitation event and the post storm cooling as instanta-

neous, hence the combination of stages B/C in (c) and (d).

N
m(t) = > p,exp|—(t — ta)/7], (20)
n=0

where ¢ = t, and N is the total number of precipitation events
p» that occur at time ¢,,, and

>
VLV '

T

eay)

Equations (18)-(21) comprise the random precipitation
model. Equation (20) says that the moisture at time ¢ is equal
to the sum of the residual moisture from past precipitation
events that has not yet been lost to evapotranspiration. Here
7 is the characteristic e-folding time scale on which the land
surface dries by evapotranspiration in the absence of precipi-
tation. The soil moisture time series output from our random

precipitation model is an example of “shot noise” (see
Papoulis 1965). By using soil moisture output from the
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random precipitation model [Eq. (20)] as a forcing on the sur-
face energy budget [Eq. (7)] and neglecting fluctuations in
shortwave radiation, we obtain the random precipitation
model of summertime temperature variability.

There are two important distinctions between the govern-
ing equations for soil moisture in the random precipitation
model and the SEMB. First, changes in temperature do not
impact soil moisture in Eq. (18); the evapotranspiration rate
is a function of the climatological vapor pressure deficit V and
the invariant surface resistance r;. Hence, under cooler condi-
tions than climatology, the drying in the random precipitation
model will be faster than in the full SEMB and in reality (and
vice versa: under warmer conditions, drying will be slower in
the random precipitation model than in the SEMB) because
the evapotranspiration rate is not affected by surface temper-
ature anomalies. Second, the random precipitation model has
no cap on soil moisture, whereas in the SEMB, runoff and
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infiltration fluxes act to constrain m to a value between zero
and one.

An example solution to the random precipitation model is
shown in Fig. 9c; it is generated from Eq. (20) with random
precipitation forcing with an average precipitation frequency
of one event every five days. Substituting the resulting soil
moisture output from the random precipitation model
(Fig. 9c) into the surface energy budget with fixed shortwave
radiation, we obtain the temperature time series shown in
Fig. 9d. The purple letters in Figs. 9c and 9d roughly corre-
spond to the stages that we identified in the SEMB experi-
ment shown in Figs. 9a and 9b.

b. Moments of soil moisture in the random
precipitation model

The moments of the soil moisture distribution in the ran-
dom precipitation model [Eq. (18)] can be calculated analyti-
cally and expressed simply in terms of a nondimensional
number

Z = o1, (22)
where, as in Eq. (20), 7 is the characteristic time scale of land
surface drying through evapotranspiration [Eq. (21)] and o is
the average event frequency of precipitation. The appendix
details the calculations of the moments of m. For precipitation
event intensities p,, given by a gamma distribution with aver-
age event intensity p,, the first three moments of soil moisture
are

= poZ, (23)

P(m) = (p2 + po)Z, and (24)
o + 2 + 3 3/2

S(m) = 2P0 39, TP, 2 (25)

(2 + p0)3/2 N

The moments of temperature in the random precipitation
model of temperature variability cannot be calculated analyti-
cally; they must be calculated from simulations where soil
moisture output from the random precipitation model is used
as a forcing on the surface energy budget [Eq. (7)]. In the fol-
lowing section, we discuss experiments that compare output
from the random precipitation model of temperature variabil-
ity to the SEMB.

6. The Z parameter explains summertime soil moisture
and temperature variability

To compare the SEMB to the random precipitation model
of temperature variability, we simulate a range of climates
using both. To do this, 20 pairs of specific humidity g and
average precipitation frequency w were applied to both mod-
els to simulate climates that range from extremely arid (low ¢
and o) to extremely humid (high g and ). While the poten-
tial combinations of § and w are endless, we found that
observed w and climatological g from ERAS are correlated,
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effectively eliminating some combinations of § and w from
consideration. For example, it is extremely unlikely for a
region with high precipitation frequency to also have
extremely low g; this feature of continental climates helped
guide our selection of the parameter pairings. In all simula-
tions, the intensities of precipitation impulses were drawn
from a gamma distribution; all model parameters, including
the event average precipitation and climatological shortwave
radiation, come from the eastern European star in Fig. 2 and
are detailed in Table 1. For each (g,w) pair, an ensemble of
1000 simulations is performed with the SEMB and the ran-
dom precipitation model—both driven by random precipita-
tion forcing and constant Fsw. Each simulation is for 1000
days, and the last 500 days are used to calculate moments of
temperature and soil moisture for each simulation then aver-
aged across all 1000 simulations. To calculate 7 and Z, we
need the climatological vapor pressure deficit, which is calcu-
lated using the mean temperature simulated by the respective
model. For the random precipitation model, this introduces a
slight inconsistency because an a priori mean temperature
was used in the calculation of V [see Eq. (18)] that was subse-
quently used in Eq. (21) to obtain the a posteriori 7.

Figure 10 shows the first three statistical moments (mean,
variance, and skewness) of daily average soil moisture and
temperature as a function of the climatological Z parameter
from each of the twenty background climate simulations.
While we present moments of daily average data, the
moments are fairly insensitive to averaging time scale (similar
to the results from precipitation-induced experiments pre-
sented in Fig. 6). Because the analytical expression for the soil
moisture moments is continuous in Z [Eqgs. (23)-(25)]; these
solutions are plotted as dashed black lines in Figs. 10a—c. All
other moments are calculated from either the SEMB simula-
tions (blue dots), or from using the time series generated by
the random precipitation model as a forcing on Eq. (7) (black
dots in Figs. 10d-f).

a. Soil moisture moments in the SEMB and random
precipitation model

Figures 10a—c show that the moments of soil moisture from
the SEMB are in qualitative agreement with those from the
random precipitation model. The differences between the two
models illuminate the impact of temperature anomalies on
evapotranspiration and the physical limits imposed on soil
moisture by runoff and infiltration in the SEMB that are not
included in the random precipitation model. The mean soil
moisture in the random precipitation model is a linear func-
tion of Z, reflecting both the increase in average precipitation
frequency w and decrease in evaporative demand by increas-
ing g. The increase in 7 with Z is sublinear in the SEMB
experiments (Fig. 10a), likely because of the physical cap on
soil moisture in the SEMB that does not permit unphysically
high values of soil moisture (m > 1) to contribute to 7.

The variance in soil moisture differs significantly between
the SEMB and the random precipitation model (Fig. 10b).
The random precipitation model features a linear relationship
between Z and o*(m) [Eq. (24)], but the SEMB experiments
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FI1G. 10. The first three moments of (a)—(c) soil moisture and (d)—(f) temperature from the fully coupled SEMB (blue dots), and from
the random precipitation model (black lines and dots) for the same set of 20 different § and w pairs. The moments of soil moisture in the
random precipitation model are known analytically [Egs. (23)—(25)] and hence shown as a continuous black line.

show a saturation of ¢?(m) for Z > 5. This is likely due to
both the lack of a soil moisture constraint in the random pre-
cipitation model that allows extreme precipitation events to
overfill the soil moisture bucket, and to the negative feedback
between soil moisture, evaporative cooling, and vapor pres-
sure deficit that suppresses evapotranspiration anomalies at
high values of soil moisture in the SEMB but not in the ran-
dom precipitation model.

Despite the differences in the variance, the SEMB and the
random precipitation model broadly agree in the relationship
between soil moisture skewness and Z (Fig. 10c). For low val-
ues of Z, both models feature very large positive skewness
associated with extremely infrequent precipitation events that
induce large positive soil moisture anomalies. As the average
frequency of precipitation events increases, the skewness
tends toward zero in both the SEMB and the random precipi-
tation model. In the SEMB, the skewness dips below zero for
high Z values because the cap on soil moisture prevents a
long tail from developing on the wet side of the soil moisture
distribution. This result aligns with soil moisture output from
the ERAS reanalysis, which also shows a transition from

Brought to you by Harvard Library Information and Technical Services | Unauthenticated | Downloaded 03/21/22 07:09 PM UTC

positive skewness in dry regions to negative skewness in wet
regions (not shown).

b. Temperature moments in the SEMB and the random
precipitation model

Figures 10d-f show qualitative agreement between the
SEMB and the random precipitation model of temperature
variability in the first three moments of the temperature dis-
tribution. The mean temperature in the random precipitation
model is cooler than that in the SEMB for high Z values, con-
sistent with the higher mean soil moisture values in the ran-
dom precipitation model (Fig. 10d). However, both models
exhibit the same nonlinear relationship between Z and T that
was seen in Fig. 7 [this is expected because T o7 ! in
Eq. (16) and m « Z in Eq. (23)].

Both models show very low variance for small values of Z
(Fig. 10e). As Z increases, temperature variance quickly
increases. At intermediate Z values, the mean temperature
(and therefore vapor pressure deficit) is still relatively high,
meaning that soil moisture anomalies generate large evapora-
tive cooling anomalies that increase the temperature variance.
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As Z continues to increase, the coupling between evaporation
and vapor pressure deficit reduces the impact of soil moisture
anomalies on evapotranspiration, thereby reducing the tem-
perature variance (see Seneviratne et al. 2010; Vargas
Zeppetello et al. 2019).

Finally, the temperature distributions from both models
feature a transition from negative skewness to positive skew-
ness as Z increases. Without variability in shortwave radia-
tion, infrequent precipitation events in otherwise arid
climates (low Z) tend to produce extremely cold tempera-
tures, and hence negative temperature skewness. As Z
increases, the background climate becomes more humid and
the temperature becomes positively skewed because infre-
quent dry spells become the dominant driver of extremely
warm temperatures.

The results from the random precipitation model of tem-
perature variability have profound implications for the emer-
gence of heat waves. In this simple model of precipitation-
induced temperature variability, extreme and persistent warm
periods are the result of infrequent, long-lived dry spells in
otherwise humid climates. In both models, long-lived heat
waves emerge naturally in relatively humid climates because
of the nonlinear relationship between evapotranspiration, soil
moisture, and temperature that ensures that relatively infre-
quent dry spells generate disproportionately high tempera-
tures compared to wet spells. Next, we will discuss the
implication of these results for understanding observed tem-
perature statistics on daily and monthly time scales, and the
clustering of extremely hot days in the hottest months.

¢. Monthly average temperature skewness across the
extratropics

Using climatological temperature and precipitation from
observations and specific humidity from ERAS, we calculate
7, w, and Z across the extratropics. Maps of these three values
are shown in Fig. 11. Figure 12 shows the relationships
between climatological Z and the monthly average tempera-
ture skewness over the extratropics, within Europe (the red
box in Fig. 11c) and within the United States (red contour in
Fig. 11c). The 2D histograms (gray lines) are constructed by
counting all the grid cells that fall into each bin increment of
size 6Z, 88(T), and then dividing by the total number of grid
boxes in the domain of interest. Figures 12b, 12d, and 12f
show cumulative distribution functions of positive and nega-
tive skewness as a function of Z for grid boxes where the
monthly average temperature skewness is statistically distin-
guishable from zero (see Fig. 2d).

Across the extratropics, monthly average temperature
skewness is at its lowest average value at Z ~ 0 and increases
from there roughly linearly until Z ~ 2, above which it stays
roughly constant. This distribution is in qualitative agreement
with results from the SEMB and the random precipitation
model of temperature variability shown in Fig. 10f, where the
lowest skewness values are at Z ~ 0 and increase as Z
increases. Higher-order moments such as skewness are sensi-
tive to the data quality, to complement the results across the
extratropics, we show the pattern of skewness as a function of
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FIG. 11. (a) 7, the time scale of soil moisture depletion calculated
according to Eq. (21) using climatological mean summertime tem-
perature from Willmott and Matsuura (2018) and near-surface spe-
cific humidity from ERAS. (b) Average frequency of precipitation
derived from the CPC daily precipitation data. (c) The nondimen-
sional Z parameter, obtained by multiplying the top two panels.
The red box and contours indicate the study regions for the analy-
sis presented in section 6c.

Z over only Europe and the United States (Figs. 12c and 12e,
respectively), as these are the regions that are least likely to
suffer from the smoothing of a low-density network of obser-
vations. The cumulative distributions in Figs. 12b, 12d, and
12f show the distinct clustering of positive and negative
monthly average temperature skewness. Negative skewness is
more highly concentrated toward low Z values, in agreement
with the random precipitation model, while positive tempera-
ture skewness is more equally distributed over the Z spec-
trum. The distinct clustering of monthly average temperature
skewness is particularly evident in Europe, where 98% of the
grid boxes with negatively skewed monthly average tempera-
ture distributions have Z < 2 and 93% of grid boxes with pos-
itively skewed monthly average temperature distributions
have Z > 2 (see Fig. 12d). Over the United States 71% of the
negatively skewed monthly average temperature distributions
lie in grid boxes with Z < 1 and 80% of the grid boxes with
positive skewness have Z > 1 (see Fig. 12f).

The random precipitation model of temperature variability
captures the basic relationship between monthly average tem-
perature skewness and climatological Z in the observations
throughout the extratropics, but there is considerable spread
in the observations. We expect this spread is due to spatial
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FIG. 12. (a) 2D histograms of the observed monthly average temperature skewness plotted against climatological Z (Fig. 11c); black
dots show the averages over all grid boxes within evenly spaced Z bins of width 0.5. (b) Cumulative distributions of positive (red) and neg-
ative (blue) skewness values as a function of climatological Z in the extratropics. Only grid boxes where the monthly average temperature
skewness is statistically distinguishable from zero are shown in the cumulative distributions (see contours in Fig. 2d). (c),(d) As in (a) and
(b) but over Europe; (¢),(f) as in (a) and (b), but over the United States.

variations in ry and p that we do not consider in our calcula-
tion of climatological Z as well as from other assumptions
within our model. These regional variations in r; and u are
due to regional differences in plant physiology, root structure,
and soil properties. Also note that as Z — 0 in extremely dry
regions, the temperature variance driven by precipitation also
decreases (Fig. 10e) and the variance in temperature is pri-
marily due to shortwave radiation forcing. Hence, as Z — 0,
skewness approaches that of the shortwave forcing, typically
—0.1 + 0.3 (see Fig. 4d), rather than the extremely low values
projected by the random precipitation forcing (Fig. 10f).

7. Meteorological droughts and extremely hot days

In the sections above, we have used simple models to illu-
minate the processes that give rise to positively skewed tem-
perature variability on monthly time scales. Months in the
long, warm tail of the random precipitation-induced temper-
ature variability distributions are the very heat waves during
which there is an inordinately large number of extremely
hot days throughout the extratropics (see Fig. 1). As con-
crete examples, we show in Fig. 13 the summertime temper-
ature anomalies (the seasonal cycle has been removed;
see section 2a) and daily precipitation over Dallas, Texas
(Z ~ 2), and Moscow, Russia (Z ~ 6), for the two summers
in each city that had the greatest number of days during
which the 95th temperature percentile was exceeded in the
years 1985-2014: the summers of 1999 and 2010 in Russia
and the summers of 1996 and 2011 in Texas (see Miralles
et al. 2014; Fernando et al. 2016). Days with the highest tem-
peratures occur during periods of extended meteorological
drought. The summer of 2011 in Dallas (Fig. 13a) is the best
example of this behavior; there were only four above-aver-
age precipitation events in the entire summer, while 37 days
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registered temperature anomalies that were above the local
95th percentile for that location over a 30-yr period (repre-
senting more than one-quarter of the total local 95th tem-
perature percentile exceedances). A similar situation
prevailed for June and July of 1996 in Dallas, for the end of
June through the beginning of August of 2010 in Moscow,
and for June of 1999 in Moscow.

While not all dry spells lead to heat waves, and nonlocal
effects have been shown to contribute to extremely high
daily temperatures (Miralles et al. 2014; Linz et al. 2018;
Tamarin-Brodsky et al. 2020), our results demonstrate that
extremely hot monthly average temperatures are expected
due to relatively infrequent meteorological droughts in
regions where Z, the product of average precipitation fre-
quency (w) and the soil moisture drying time scale (7), is
moderate or high. Figure 13e shows the percentage of cumu-
lative summertime rainfall over a 30-yr period (1985-2014)
that fell during the three hottest months of the historical
record; if rainfall and temperature were completely inde-
pendent from one another, this value would be 3% every-
where (shown in the green contour). Across the
extratropics, we see reduced rainfall in connection with the
hottest months of the historical record. Across the extra-
tropics, 1% of total 1985-2014 JJA precipitation fell during
the three hottest months on average. Combined with the
inordinate number of extremely hot days during the hottest
months (Fig. 1a) these findings suggest that meteorological
drought is the primary forcing agent of extremely hot
months across the extratropics, as predicted by the random
precipitation model. These results provide observational
evidence for our conclusion that across the extratropics
long-lived extremely high temperatures (i.e., heat waves)
are due to infrequent extended dry spells. These are the
very heat waves during which there is an inordinately large
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FIG. 13. Two summers of daily maximum temperature anomalies (thick black lines) and precipitation (blue bars; log
scale) in (a),(b) Dallas and (c),(d) Moscow. Dashed black lines show the low-pass filtered temperature time series with
a two-week cutoff time scale; gray shading shows the 5th-95th percentile range for the 1985-2015 period. The horizon-
tal blue line shows the event average daily precipitation for the 30-yr period. (e) Percentage of cumulative JJA rainfall
that fell during the three hottest months from 1985-2014; green line shows the 3% value that we would obtain if pre-

cipitation and temperature were completely unrelated.

number of extremely hot days throughout the extratropics
(see Fig. 1).

8. Conclusions

We began this study by documenting the number of
extremely high daily temperatures recorded in the three
hottest months of the historical record and the moments of
summertime daily and monthly temperature distributions.
Over most of the extratropics, the number of extremely hot
days in the three hottest months of the historical record
(N,) is 50% greater than expected from simple statistical
models. We also show that temperature skewness either
changes from negative on daily time scales to positive on
monthly time scales or shifts to a greater positive value at
longer time scales over more than half of the land area in
the extratropics, both of which are in stark contrast with the
central limit theorem’s prediction for a simple AR1 process
driven by a (negatively) skewed daily forcing, implying that
the processes that govern temperature variability are time
scale dependent. In this study, we develop a model of the
surface energy and moisture budgets (the SEMB) that,
when forced by the observed net absorbed shortwave radia-
tion and precipitation, reproduces the observed shift from
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negative to positive skewness as the averaging time scale is
increased from one day to one month in two case study
regions (the central United States and eastern Europe).

We perform a series of experiments with the SEMB that
confirm that shortwave radiation variability is a principal
driver of variance and skewness of daily summertime temper-
atures. Without soil moisture variability, the simplified SEMB
equations attribute roughly half of the variance in daily maxi-
mum temperatures found in the observations to shortwave
radiation variability. Daily radiation variability is negatively
skewed almost everywhere in the extratropics, and the daily
shortwave radiation skewness is much better correlated with
daily temperature skewness (r = 0.49) than monthly radiation
skewness is with monthly temperature skewness (r = 0.09).
Our results suggest that solar radiation variability driven by
clouds plays an important role in the daily variability of sum-
mertime temperatures, but a fairly limited role in monthly
temperature variability (section 3).

We next demonstrate that positive skewness in low-fre-
quency temperature variability stems from (i) the long life-
time of soil moisture anomalies 7 and (ii) a nonlinear
relationship between soil moisture, evapotranspiration, and
temperature, which ensures that a much greater temperature
anomaly results from a negative soil moisture anomaly than
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from an equivalent positive soil moisture anomaly (section 4). In
the absence of shortwave radiation fluctuations, temperature var-
iability is positively skewed in humid climates with infrequent
dry spells and negatively skewed in dry climates with relatively
infrequent precipitation (sections 5 and 6). We have shown that
Z, the product of the average frequency of precipitation events
and the drying time scale of the land surface 7, accounts for the
observed time dependence in the statistical moments of tempera-
ture throughout much of the extratropics. In future work, we will
examine to what extent the projected changes in heat waves due
to climate change can be understood in terms of changes in these
key characteristics of summertime climate.

The results of this study lead to the following hypothesis for
observed extremely high summertime temperatures in the extra-
tropics: In all but the most arid climates, irregular and infrequent
dry spells have long-lived high temperatures referred to as heat
waves that are due to the combination of (i) long soil moisture
memory and (ii) a nonlinear feedback between temperature and
evapotranspiration via the vapor pressure deficit. Individual
extremely hot days are shown to be filigree superimposed on these
heat waves that are driven by state-independent high-frequency
variability in solar radiation or thermal advection. Extremely hot
days are routine, high-frequency fluctuations that occur during
moisture-driven, low-frequency heat waves. While this view of
heat waves and extremely hot days may not be surprising, our
analysis illuminates the essential feedback and physics responsi-
ble for heat waves and low-frequency summertime temperature
variability, and shows that the clustering of extremely hot days in
heat waves is ubiquitous in the extratropics.
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APPENDIX

Statistical Moments of Shot Noise
The solution to Eq. (20) is

m(t) = > \pah(t — 1), (A1)
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where A(¢) is the impulse response function, and ¢, are the
times of precipitation events with intensities p,. This is
conventionally referred to as “shot noise” (see Papoulis
1965).

The characteristic function ®()) is the Fourier transform
of the density function; for shot noise,

d(A) = eXp[j:dpf(p)J:w(eiphh(t’) _ 1)dt’], (A2)

where o is the average rainfall frequency and f(p) is the
probability density function for the precipitation intensities
P»- The moment theorem relates the derivatives of the char-
acteristic function to the central moments m™:

wi = C2
X" li=o

(A3)

Setting A(r) = e /7 where 7 is defined in Eq. (21), the
first three derivatives of the characteristic function are

|
m = la o - wgh (A4)
= =2 (g + @), and (AS)
8/\2 =0 2 1)
— AL
m= ity = (0t + 30204, + 8 (A6)
where
&= i”f dpf(p)p”J dr h()", (A7)
0 0
in o T
gn =rp n' (AS)

We assume that the intensities of precipitation events are
gamma distributed; the first three moments of the gamma
distribution are given by

D = Do, (A9)
p? =p? + p,,and (A10)
PP =2p, + 3p2 + pl, (A11)

where p, is the average precipitation intensity value. The
shape parameter of the gamma distribution is set equal to
one for simplicity. These moments allow us to evaluate the
¢, values in Eq. (A8). As ®(A = 0) = 1, the first three cen-
tral moments of this shot noise process are
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