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ABSTRACT

Expressions are derived for the Brunt-Viisild frequency N, in a saturated atmosphere, which are anal-
ogous to commonly-used formulas for the dry Brunt-Viisild frequency. These formulas are compared with
others which have appeared in the literature, and the derivation by Lalas and Einaudi (1974) is found to
be correct. The simplifying assumptions, implicit in derivations by Dudis (1972) and Fraser et al. (1973) are
clarified. Numerical examples are presented which suggest that these incomplete formulations for N,, are
reasonably accurate approximations, except when the saturated static stability is small. A new formula
expressing N, in terms of moist conservative variables is presented, and an accurate approximation is also

given which may be useful when evaluating N,,.

1. Introduction

The Brunt-Viisdld frequency is one of the most
widely used parameters in dynamic meteorology.
According to its conceptual definition, it is the fre-
quency at which an air parcel will oscillate when sub-
jected to an infinitesimal perturbation in a stably
stratified atmosphere. As a measure of the strength
of the buoyancy force, it also appears in various non-
dimensional numbers in fluid mechanics, including
the Richardson number, the Rayleigh number and
the Froude number. In unsaturated air the Brunt-
Viisdld frequency N may be calculated either from
the expression

N2=§,‘(%§+ rd), (1a)
. d nf
ni

N =T, (1b)

where T and ¢ arc the sensible and potential tem-
peratures of the atmosphere, T, is the dry adiabatic
lapse rate, and g is the gravitational acceleration.
When the atmosphere is saturated, the effective
Brunt-Viisild frequency N,, changes. If a parcel of
air is displaced slightly upward in an unsaturated at-
mosphere, it will cool by adiabatic expansion. If the
atmosphere is saturated, upward displacements are
also accompanied by condensation and latent heat-
ing. This heating partially compensates for the cool-
ing produced by adiabatic expansion, so the density
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difference between the parcel and the surrounding air
is less than in the dry case, and the buoyancy restoring
force is decreased. The absorption of latent heat due
to evaporation in downward displaced parcels pro-
duces a similar reduction in the buoyancy restoring
force. Thus the effective Brunt-Viisila frequency is
lower when the atmosphere is saturated than when
it is dry. Indeed, it is not uncommon for the atmo-
sphere to be stable when dry, and unstable when sat-
urated (conditional instability). This stability reduc-
tion can be quantified by deriving an expression for
the saturated Brunt-V4isild frequency. Dudis (1972),
Fraser et al. (1973) and Lalas and Einaudi (1974)
have presented different expressions for N,,. The dif-
ferences among their results do not seem to be widely
recognized and, perhaps as a result, there are no
widely accepted equivalents to (1) which define the
saturated Brunt-Viisald frequency.

One might be tempted to estimate N, by replacing
6, in (1b), with a moist-conservative variable such as
the equivalent potential temperature 4., to obtain

dIné,
> @)

N, =g——=.

& dz
One might also expect to obtain the correct expres-
sion by replacing the dry adiabatic lapse rate in (1a),
with the saturated adiabatic lapse rate T',,, in which

case

However, as noted by Fraser et al. (1973), (2)-and
(3) are not equivalent, Fraser et al. accept (3) as the
correct expression for the moist Brunt-Vaiisild fre-
quency. Dudis (1972) has suggested that an additional
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factor is required, so that
g (dT Lg
N2 =2 ( )(1 + =
™ T\dz RT
where ¢; is the saturation mixing ratio, L is the latent
heat of vaporization and R is the ideal gas constant

for dry air. In fact, the correct formulation, given by
Lalas and Einaudi (1974), contains an additional

term,
v en)10 )
T \d. RT

where ¢, the total water mixing ratio, is the sum of
g, and the liquid water mixing ratio g;. Fraser et al.
did not obtain the extra terms because they did not
include virtual temperature effects in the buoyancy
term of the vertical momentum equation. Dudis
overlooked the térm involving the total water mixing
ratio by assuming that any increase in water vapor
would be accompanied by an equal decrease in liquid
water, i.e., ¢, = 0. While this is true following a parcel
trajectory, it does not apply to equations written in
an Eulerian coordinate system, for which the correct
linearized equation for the conservation of total water

1S :
g, | dq,
S g
o  Yax "W 4z

Perturbation and mean state variables are denoted by
primes and overbars, respectively.

The significance of the various terms which com-
prise expression (5) are not generally understood,
perhaps because the derivations are complicated and
sometimes hard to follow. In Section 2, we attempt
to explain the origin of these terms by rederiving (5)
via a simple parcel theory argument. In a dry flow
it is often useful to express N in terms of the conser-
vative variable 6. However, no corresponding form
exists which expresses N,, correctly, in terms of moist
conservative variables. Therefore, in Section 3, we
derive an expression for N,, which is analogous to the
form (1b). Finally, in Section 4, we compare the var-
ious formulations for N,, in two numerical examples,
and suggest an approximate expression for N,, which
is accurate and easier to compute.

C))

g dq,

Tvaydz> ©

%4 =0 ©)

2. Parcel theory

As noted by Lalas and Einaudi (1974), the effect
of latent heat release on a disturbance in a saturated
atmosphere depends on the ratio of the characteristic
time scale of the disturbance to the time scale of the
condensation processes. In the following, we will as-
sume that this ratio is large, so that the atmosphere
is always just at saturation. We consider only satu-
rated moist adiabatic flow, assuming that the liquid
water concentration in the environment is low, so
that the water is distributed in very small droplets
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which do not precipitate and do not exert an inertial
drag on the air motions. This assumption is appro-
priate for small amplitude motions which produce
correspondingly small amounts of condensation. Pre-
cipitation will also be absent in larger amplitude per-
turbations if the time scale for flow through the wave
is less than the time required for the growth of large
water droplets.

The acceleration, due to buoyancy forces, experi-
enced by a parcel displaced an infinitesimal distance
6 from its equilibrium level is

Pp — Pe
Pe

where p is the total density and the subscripts p and
e denoté values for the parcel and the environment.
The densities may be expanded in a Taylor series
about their equilibrium values at § = 0, where p,(0)
= p(0). Retaining the terms through O(8) we obtain

(7

a = N,2,
where
dlnp) (d m,,) } dnpl|?
2 = = —_ = B
Non g{( dz /, dz /, & dz |, ®)

The equation of state for saturated air can be written
as
[1 + (g5/9)]

p = pRT
(1+aq.)

, ©)
where ¢ = R/R,; R, is the gas constant for water vapor.
Substituting for p in (8) from (9), and assuming that
the pressure in the parcel adjusts instantly to that in
the environment, one obtains

_ {1dT+ 1 dg, 1
gsz e+ g, dz

d_q_w}e
1+gq, dz

(10)

Note that if virtual temperature effects had been ig-
nored, (10) would be identical to (3). Assuming in-
stantaneous adjustment to moist equilibrium, g; can
be evaluated via the Clausius-Clapeyron equation

1 deg, €L

e, dT RT?*’

)

where ¢, is the partial pressure of water vapor at sat-
uration. Thus

d_d( )
dz dz\p—e,

eLq,dT_gf@)
(2 z-2E) o

p dz
We then substitute from (12) for g, in (10), and again
invoke the assumption that the pressure in the parcel
adjusts to that in the environment. Since the total
water mixing ratio is constant inside the parcel, and
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dT/dz), =
daT Lq g dg

N, = ( +T )(1+ s)—————"’.
T d RT 1+ 4w dZ

Thus the saturated Brunt-Viisdld frequency is given

correctly by (5). The expression (4) would be obtained

by ignoring the gradient of the total water mixing

ratio in the environment. Note that this result is in-

dependent of the details of the thermodynamics since

the derivation did not require any use of the moist
thermodynamic equation. .

-T',,, one obtains

(13)

3. Conservative variable form for N,

When calculating the dry Brunt-Vdiisdld fre-
quency, the potential temperature formulation (1b)
is usually more useful than the expression (la), in-
volving the difference between the dry adiabatic and
environmental lapse rates. In the following, we will
derive a corresponding expression for N,, using moist-
conservative variables.

The classical reversible saturation adiabat may be

written
L
d(Inby) + — dg,
T
+ (cpvqs+ cwqgr  Lygs
[ c,T
Here, ¢,, ¢, and c,, are the heat capacities of dry air,

water vapor and liquid water and 6, is the dry po-
tential temperature, defined by

3 &)-—R/cp
6,=T ( P, ,

)d(l T)=0. (14)

where P, is the partial pressure of dry air and P,
= 1000 mb. The form (14) can be derived from the
standard expression for the reversible saturation adi-
abat (see Iribarne and Godson, 1973), using the re-

lation
: = (Cp — cw)dT. (15)

A moist-conservative variable associated with (14) is

T Cwqw/Cp
0,=196
)

where T, is a reference temperature and 6, is the
equivalent potential temperature given by

3 qu)
4. =48, exp(cpT .

This expression differs slightly from the wet equiva-
lent potential temperature

P \ ~R/(cptcwgw) L
6% = T(—‘f) expl——2—
PO (Cp + Cw qw)T

o 3qcp/(cp+cw qw)

(16)

(17)
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(see Paluch, 1979). Since g, is conserved following
a parcel, both 6, and 8} are conserved during revers-
ible saturated adiabatic motion, i.e., by Eq. (14); how-
ever, the use of 4, leads to a simpler expression for
N,2. Note also that both 8, and 97 differ from 6, by
a small O(g,,) term.

“The moist adiabatic lapse rate, I',, = —d7T/dz, can
now be determined from (14). If the air motions are
confined to vertical displacements,
dndy L dg,

dz ¢, T dz

_ [ s + cwqr L‘Is)
( ¢ oT) T =0. (8)

Eliminating dqs/dz using (12), and vertical pressure
gradients via the hydrostatic equation, one obtains
the following expression for the moist adiabatic lapse
rate

Lq)
L, = I‘d(l + qw)(l + RT

Colls + Cuqr | €L ( qs)}"
+ — 1+=) . (19
[ ¢, RT? € ( ‘)
The dry ’aidiabatic lapse rate may be written

& _ _RT[1+(g/9]dlnp
Cp Cp (1 + qw) dZ

X{l+

(20)

We substitute the expressibhs forT,, and T'; [(19) and
(20)] into (5), and obtain the desired expression for
N, by using (12) and the definition of 6, (16). Then

g {F_@ dinf, @}
1 +¢g, (Il dz dz) -~

N,? = (21
If, in the thermodynamic equation, the heat absorbed
by the water had been neglected, (14) would require
the exact conservation of the equivalent potential
temperature (17), and 6, would replace 8, in (21).

As is the case with the dry equations of motion,
the use of conservative variables in the thermody-
namic equation and Brunt-Viisild frequency can
greatly simplify the mechanics of many derivations
involving the linearized equations of saturated-adi-
abatic motion. As an example, consider thé problem
of rescaling the linearized equations of motion to re-
move the effects of the decrease in mean density with
height. In the dry case, all the mean state variables
in the resulting system can be expressed in terms of
N and ¢, where cis the speed of sound (see for example
Bretherton, 1966). An identical system can be ob-
tained by a similar scaling of the saturated equations,
as demonstrated below.

The linearized equations of motion, continuity and

" thermodynamics for a saturated atmosphere may be
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written:
Du’ Z_zzzwr %%— v' =0, (22)
Dv' ZZ 1(391;, (23)
IL—':+5_‘3- %?ﬂ)’ (24)

where u, v and w are the velocity components in the
Cartesian x, y and z directions, respectively, primes
denote perturbation variables, and

D 9

+
Dt & “

Together with (6), (9) and (11), these equatlons form
a closed system. )
We now introduce new variables such that

-1/2
W', v', w,d =(ﬂ) @ o, W,5), (27a)

Po
‘—) 172
p'= (—) D, (27b)
20
where
— Fm 0} gpr gpl
d=—-|"1- ’W)=——-—~— 2
I +qw(1‘¢a )= s B
~ 1
2= cX2Z(1 + g &(1 + qu)} ,
v v I‘d RT (29)
c2=22RT
Co
In addition, define
o _—8& ldlnp
H it 2 dz (30)
Then Egs. (22) to (26) become
Du di P 1 ap -
ot Pt o 1
dz" po dx fo=0, @D
Dv dav 1 6p .
\ —w+——+ fii=0, 32
dZ po 9y fa (32)
Dw 1 {0 1
TR F ) ST
|\ Dp o 8b (a 1)~
== —+ — —_ — =
oD Tax Tttty =0 9
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Da -

Dt N0 = 0.
Egs. (31) to (35) are identical to Bretherton’s Egs.
(36) to (40), except that N,, and c,, have replaced N
and ¢ (Bretherton also neglects the Coriolis terms).
Thus, two dynamical systems, with identical values
of N and N,,, ¢ and c,,, will have an identical linear
behavior. As observed by Lalas and Einaudi (1973),
the familiar analyses which produced expressions
such as the wave dispersion relation or the critical
Richardson number may be trivially modified for
application to saturated conditions by replacing N
with N,,, and ¢ with ¢,,. A detailed discussion.of the
effects of saturation on gravity wave propagation is
given in Einaudi and Lalas (1973), and a thorough
treatment of the effect of moisture on the critical
Richardson number appears in Lalas and Einaudi
(1973).

The equivalence of the moist and dry systems de-
scribed above is strictly applicable only in the linear
case. The nonlinear behaviors differ primarily be-
cause the saturated adiabatic lapse rate T',, is not in-
dependent of height. As a parcel rises, the latent heat
released per unit mass decreases as its vertical dis-
placement increases. Thus, in a saturated gravity
wave, nonlinear effects act to increase the buoyancy
restoring force in the 'wave crests beyond. that pre-
dicted by linear theory, while decreasing it in the
troughs. The importance of this asymmetry depends
on the amplitude of the wave. As demonstrated by
Durran and Klemp (1982), the difference in the be-
havior of linearly equivalent wet and dry systems
becomes significant in moderately strong waves.

One may interpret ¢,, as the speed of sound in a
saturated atmosphere, in which the condensation pro-
cesses occur on a much shorter time scale than one
sound wave period. Clark and Hall (1979) have sug-
gested that condensation and evaporation occur on
a characteristic time scale of 1-5 s, so ¢, will not give
the correct speed of sound for frequencies in the au-
dible range. Nevertheless, it may be correct for low
frequency (<0.1 hz) infrasound disturbances.

(35)

4. Comparison of expressions for N,

How important are the differences in the various
expressions for the saturated Brunt-Viisidlid fre-
quency? Fig. la shows a plot of the square of the
saturated Brunt-Viisald frequency computed from
several different formulations versus the sensible tem-
perature lapse rate, when the atmospheric tempera-
ture is 25°C and the pressure is 1000 mb. The dry
Brunt-Viisild frequency is also plotted for reference.
In order to evaluate N,,> we must also specify the
vertical distributions of water vapor and liquid water.
The water vapor concentration is determined by the
saturation mixing ratio, but the liquid water distri-
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FIG. 1. The Brunt-Viisald frequency, corriputed from expressions (1) through (5), aé a function of the environmental lapse
rate when the atmospheric temperature and pressure are: (a) 25°C and 1000 mb; (b) 0°C and 700 mb. The correct result, (5),

is shown as a solid line.

bution depends on the history of the motion of in-
dividual air parcels. In these calculations, we arbi-
trarily specify 64,,/0z = 04,/0z, which is a reasonable
approximation in many realistic situations. .

" As expected, the actual saturated stability (5) is
always much less than the dry stability (1). Formu-
lations (3) and (4) produce reasonable approxima-
tions to the exact result, while (2) is clearly a very
poor_approximation. The large efror in (2) is prin-
cipally due to neglect of the factor I',,/T';in (21). This
factor may be as small as 0.4. A critical difference
between (5) and the approximate expressions (3) and
(4) lies in- the position of the N,,2 = O intercept. As
poted by Lalas and Einaudi (1974), a stable saturated
atmosphere might appear to be statically unstable
if the vertical gradient of the total water.is ignored.

In this example, the error encountered in predicting
the critical lapse rate at which the saturated atmo-
sphere would be neutrally stable is ~0.7°C km™'. If
there is vertical shear, so that the dynamic stability
is determined by the Richardson number, the error
produced by (3) will be even more significant.

The various expressions for N,? are compared
again in Fig. 1b when the atmospheric temperature
is 0°C and the pressure is 700 mb. The relatively
warm conditions in Fig. la allow the air to hold a
large, though not unrealistic, amount of water vapor
(20 g kg™"). In Fig. 1b the air is much colder (holding
5g kg™! of water vapor), so one might expect the
effects of latent heat release to be weaker, and indeed
the difference between N2 and N,,? is reduced. The
differences between the various formulations for N,
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FiG. 2. The moist speed of sound ¢, versus temperature at
ambient pressures between 200 and 1000 mb. The dry speed of
sound i< also plotted. The curves have been truncated to reflect the
decrease in temperature with height,

are also decreased. However, (3) and (4) still over-
estimate the lapse rate at which the saturated atmo-
sphere has neutral stability by almost 0.5°C per km.

We propose that a very good approximation for
the saturated Brunt-Viisdld frequency may be ob-
tained by simplifying (21) as follows

1 + (Lg/RT)
2 =
Ne' =8 {1 + (L2q,/c, RT?)
dInd Lézs) _ diw}
( a ¢, T dz dz)’ (36)

This approximation has also been plotted in Fig. 1,
and at the resolution shown in the figure, the result
is indistinguishable from the exact expression.

This simplified expression for N, is obtained by
using a simplified thermodynamic equation in the
derivation of (21). Note that the reversible saturation
adiabat (14) is expressed in terms of the potential
temperature of the dry air, whereas (36) is written in
terms of the usual potential temperature. Eq. (14)
may be rewritten in terms of 6 as

-1
d(Ind) + ( 1+ g—‘) {—I—“— dg;
€ c,T

1
(Cﬂ - —)qs]d(lnT)} =0. (37)
¢ €
This form is identical to Eq. (8) derived by Lipps and

Hemler (1980). Since the mixing ratios of water vapor
and liquid water are always much less than one in

¢
+ [—w ar +
CIJ
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atmospheric applications, one might expect to obtain
a good approximation to (37) by neglecting all terms
of O(g,) and O(q,,). Then the approximate equation
for a saturation adiabat becomes
L
d(Inf) + c,,quS 0. (38)
Expression (36), for N, is obtained by replacing (14)
with (38), again omitting O(q,, g,,) terms as described
above.
It is instructive to compare (38) with the equation
for conservation of equivalent potential temperature,
as defined by the widely accepted formula

7 qu
S
€Xp CPT

‘Note that 8, is defined in terms of 6, in (17), but 8,
is defined in terms of 6 in (39). If we ignore the weak
temperature dependence of L, 8, is conserved when

L Ly
d(Inf) + — dg, —
(Inf) c,,Tq c,T

(39)

d(InT) = 0. (40)

In comparing these approximate expressions, notice
that (40) differs from (37) by terms which are O(L/
¢,T) larger than the error terms in (38). Since L/c,T
is O(10), (40) produces a poorer approximation to
N,,, and, at least for shallow convection, a poorer
approximation to the saturation adiabat than (38).
The reader is referred to Lipps and Hemler (1980)
for a discussion of the importance of the distinction
between 6 and 6, in various approximations to the
thermodynamic equation for deep convection.

The effect of saturation on the speed of sound is
shown in Fig. 2, in which ¢, is plotted as a function
of temperature at five pressure levels. The dry speed
of sound is also plotted. As previously mentioned, ¢,
may be interpreted as the speed of sound in an at-
mosphere in which condensation processes occur on
a much shorter time scale than one sound wave pe-
riod. In the atmosphere, this criterion is only satisfied
by low frequency infrasound waves.. Inspection of Fig.
2 shows that the speed of these waves can be reduced
by ~10% when they propagate through saturated re-
gions at temperatures and pressures which support
large saturation water vapor mixing ratios.

The significance of ¢, is not limited to sound
waves; it also characterizes the effects of compressi-
bility on gravity waves. For instance, differentiating
the equation of state (9), we find that the vertical
gradient of the mean density in a hydrostatic atmo-
sphere satisfies

dinp _ N,
dz g

g
Cr?

(41)

Thus, variations in ¢, also affect the density scale
height of gravity waves. Since the last term in (41)
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dominates, the mean perturbation amplitude of a lin-
ear disturbance (see Eq. 27) will increase more rapidly
with height (by as much as 10%) when the atrnosphere
is saturated than when it is dry.

5. Conclusions

Three different expressions for the saturated Brunt-
Vaisild frequency have appeared in the literature. We
have compared these expressions and found the result
of Lalas and Einaudi (1974) to be correct. Eq. (5)
should be accepted as the saturated analog to (la).
Although correct, the alternative forms given by Lalas
and Einaudi for the calculation of N,, are cumber-
some to evaluate. We have derived an equivalent
expression in terms of moist-conservative variables,
and proposed (21) as the saturated analog of the dry
form (1b). We have also presented a simpler approx-
imation (36) which may be useful when actually com-
puting N,,. The accuracy of the various expressions
for N,, has been compared in two numerical exam-

- ples. The approximation (36) appears to be very ac-
curate. The other expressions in the literature, (3) and
(4), produce reasonably accurate numerical results,
but may cause significant error when the saturated
static stability is small.
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On the effects of moisture on the Brunt-Vaiisila frequency

Equation (21) should read

g F7n d ln 9q Fnz, Cy T dq’w
N2 = —_ Y — 1 I 1 —
1+ qu { Lq dz T, ¢ \Tp)] dz




