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SUMMARY

Solutions are obtained for linear hydrostatic disturbances propagating parallel to the face of an uninterrupted
topographic step in an infinitely deep, stably stratified fluid on an f-plane. These waves are vertically trapped
because their frequencies are smaller than the Coriolis parameter and the height of the topographic step is finite.
These waves are referred to as step-trapped Kelvin waves, because they are dynamically similar to internal
Kelvin waves throughout the layer of fiuid below the top of the topographic step, These waves appear {o
provide an idealized, semi-analytic model for the coastally trapped disturbances observed to propagate parallel to
mountamous coastlines in several parts of the world.

Computations are performed for a basic state with uniform static stability and for a three-layer basic
state in which the two lowest layers represent the marine boundary layer and a strong capping inversion. One
might suppose that the linear dynamics of hydrostatic disturbances in the three-layer basic state could be well
approximated by a reduced-gravity shallow-water model, but this is not the case. In particular, the reduced-gravity
shallow-water model does not provide reliable estimates for the phase speed of linear step-trapped Kelvin waves.
This defect suggests that detailed quansitarive comparisons between marine boundary-layer flows and the reduced-
gravity shallow-water system may not have any intrinsic physical significance. Nevertheless, these results do not
prechude the possibility of constructing useful qualitative analogies between marine boundary-layer flows and the
reduced-gravity shallow-water model,
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1. INTRODUCTION

Atmospheric disturbances have been observed to propagate along the flanks of
extensive topographic barriers oriented parallel to coastlines in many parts of the
world. One of the earliest dynamical theories for such disturbances was presented by
Gill (1977), who proposed that the disturbances propagating around the southern end
of Africa were essentially Kelvin waves, laterally trapped against the topography by
Coriolis effects and vertically trapped by the strong marine inversion that is typically
present along the southern African coast. Similar explanations were offered by Dorman
(1985) for disturbances travelling along the west coast of North America and by Holland
and Leslie (1986) for features propagating around the southern coast of Australia.

All of the preceding studies approximate the flow beneath an elevated inversion
using a shallow-water model in which vertical displacements of the inversion layer are
subject to a reduced gravitational restoring force g’ equal to the true gravitational accel-
eration g times the fractional reduction in density across the inversion. The fractional
decrease in density across the inversion is often evaluated in terms of the potential-
temperature profile, in which case g’ = g A8/6;, where A# is the increase in potential
temperature across the inversion and 6 is the mean potential temperature within the
inversion layer. The application of reduced-gravity shallow-water models to the study
of atmospheric motions below an elevated inversion dates back at least to Freeman
(1948), and has continued in many subsequent investigations of coastally trapped distur-
bances (CTDs) (e.g., Nguyen Ngoc Anh and Gill 1981; Bannon 1981; Reason and Steyn
1992; Rogerson and Samelson 1995: Samelson and Rogerson 1996). Reduced-gravity

shallow-water models have also been used to investigate downslope windstorms (Long
1954} and low-level flow around bends in coastal topography (Winant er al. 1988).
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This paper examines the extent to which the reduced-gravity shallow-water model
actually describes the dynamics of small-amplitude trapped waves propagating along
a rigid side boundary in a continuously stratified fluid. Some aspects of this question
were recently explored by Samelson (1999), who obtained expressions for the vertical
structure of horizontally trapped modes in a stratified fluid on an f-plane bounded by
a rigid sidewall of finite height. Samelson considered a problem in which a finite-depth
layer of continuously stratified fluid was capped by an infinitely deep region of neutral
stability. The neutral layer provides an artificial barrier to vertical energy propagation
that is not present in real atmospheric profiles. In this paper the solution methodology
presented by Samelson (1999) and Chapman (1982) is extended to problems with
arbitrary variations in the basic-state stratification throughout an infinitely deep layer.
Travelling vertically trapped waves are found to exist in an infinitely deep stratified
fluid bounded by a rigid sidewall of finite height. The vertical trapping mechanism
is discussed and is demonstrated to be independent of the presence of an elevated
inversion. Even when the basic state contains a strong elevated inversion capping a
weakly stratified marine boundary layer (MBL), the linear hydrostatic trapped waves
actually supported by this basic state are found to be in poor agreement with the
predictions of the reduced-gravity shallow-water model.

2. VERTICAL ENERGY PROPAGATION IN CONTINUOUSLY STRATIFIED FLUIDS

In order to develop a conceptual understanding of the processes by which CTDs
are vertically trapped, we will briefly review the conditions under which internal waves
propagate energy vertically in an incompressible rotating fluid. Let an overbar denote
a horizontally uniform basic-state quantity; let pp be a constant reference density, and

define 5(2) _ -
£0 P0 po 9z
where p is the pressure and p is the density. Then the Boussinesq equations, linearized

about a basic-state at rest on an f-plane, may be writien

P=

uy — fut Py=0 (1)
1};+fu+P};:0 (2)
wy + P, —b=0 (3)

by + N2w =0 (4)
ty + vy +w, =0, (5)

or, equivalently, as

(Wxx + Wyy + Wep)s + fzwzz + Nz(wxx + wy}r) = {) (6)

(Gill 1982, p. 258), where the subscripts denote partial differentiation and u, v and
w are the components of the wind in the x, y and z directions. Assuming that the
domain is unbounded or periodic in the horizontal, wavelike solutions of the form

w = 0(z) elFFHY =28 exist provided that
d*% n NZ — w2
dz2 e — fz

Suppose that N assumes a constant value of Vi above z; and that Ny > f. Then, if either
w > N, or @ < f,solutions to (7) decay exponentially with height for all z > z;.

) (k2 + 5w = 0. (N
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Now consider the behaviour of disturbances in the subdomain x < 0 when a rigid
infinitely high vertical wall is located at x = 0. Classical internal Kelvin waves are
solutions to this problem; their structure may be easily determined by by setting u = 0
in (1)~(5) to yield the reduced system

(Wyy + Wypdse + Nowy, =0 (8)
Wy + fwy, = 0.

This system is satisfied by modes of the form w = %W (z) e/#%/% ¢llty—91) provided that

2 2 2
dw+(N w)ezﬁ:(). 9)

dzz wl

Again assuming that N = N; for z > z;, solutions to (9) will decay exponentially for
Z > zy provided that w > N;. However, in contrast to the behaviour of internal gravity
waves 1n a horizontally unbounded domain, there is no low-frequency threshold below
which the vertical structure of the Kelvin wave transitions from sinusoidal oscillations
to exponential decay with height. In particular, sub-inertial Kelvin waves (i.e. waves for
which @ < f) have a sinusoidal vertical structure.

These equations will be applied to the atmosphere, in which case the lower boundary
condition on  is that there be no flow normal to the rigid lower boundary of the fluid.
The atmosphere has no distinct upper boundary, so the upper boundary condition is
imposed in the limit z ~> oo. In order to assure the physical relevance of mathematical
solutions to (7) in the infinitely deep atmosphere, those solutions must satisfy one
of two possible conditions: either (i) the perturbation energy density must approach
zero as z —» 0o, or (1i) if the perturbation energy density is finite as z — oc, then
the perturbation energy flux associated with each individual vertically propagating
mode must be upward. The second condition allows the representation of disturbances
generated within the domain that propagate energy upward to arbitrarily great heights,
but it prohibits downward propagating modes from radiating energy into the domain
from infinity. Vertical standing waves that do not decay as z — oo are prohibited by
the second condition because standing waves have zero energy flux. Such waves are not
physically realizable solutions in an infinitely deep domain because vertical standing
waves are the sum of equal-amplitude modes propagating upward from within the
domain and downward from infinity, and the downward radiating component of the
standing wave is not physically realizable.

Now consider the circumstances under which non-trivial trapped waves can exist
above a flat lower boundary in the presence of an infinitely high vertical sidewall. The
lower boundary condition is simply @(0) = 0. Kelvin-wave modes can be vertically
trapped if there is a sufficient decrease in N with height. As a simple example, suppose
that the atmosphere has a two-layer structure with Brunt-Viisili frequencies Ny and
Ny, 1n the upper and lower layers respectively, and that the depth of the lower layer
is d. Trapped Kelvin waves having a sinusoidal vertical structure in the lower layer and
exponential decay aloft exist in the two-layer system provided that w and £ satisfy the

dispersion relation
1/2 1/2
'd NI% ! W — N% /
cot Z}E | = — NE P . (10)

which may be obtained by requiring the solutions to (8) and their vertical derivatives
(and thereby the pressure) to match at the interface (Scorer 1949; Nance and Durran
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1997). Real values of @ and £ satisfy (10) only when Ny < @ < Np. Internal Kelvin
waves are not vertically trapped unless Ny < w. This criterion generalizes to multi-layer
atmospheric structures with constant Brunt—Viiséld frequency and no mean flow in each
layer, for which a necessary condition for vertical trapping is that the wave frequency
must exceed the Bruni—Viisild frequency in the topmost layer.

A representative value for the upper-tropospheric stability during CTD events off

the west coast of the United States is 0.01 s™!, which we will take as an estimate
for Ny. Ignoring energy leakage into the stratosphere (which would require an even
larger lower bound on w), the frequencies of vertically trapped linear Kelvin waves

must, therefore, exceed 0.01 s~!. CTDs observed off the west coast of the United
States typically propagate at a mean phase speed ¢, of roughly 7-8 m s™! (Bond
et al. 1996). Thus, if these CTDs behave like linear vertically trapped internal Kelvin
waves propagating along an infinitely high vertical sidewall, they must satisfy o =
cpf > 0.01 or, equivalently, their north-south horizontal wavelength A must be less
than approximately 5 km. There is no completely obvious choice for the north—south
horizontal wavelength characteristic of actual west-coast CTDs, because CTDs usually
do not contain periodically alternating regions of southerly and northerly flow. Bond
et al. (1996) report that the average duration of the southerly flow at a given point is
30 hours, from which a rough estimate of the half-wavelength of the disturbance can be

computed as the northward phase speed x 30 hours. Once again using the 7-8 ms!
estimate of the phase speed by Bond ef al. (1996), the total north-south wavelength
of observed CTD is approximately 1600 km. Even allowing for the considerable
uncertainty in the precise value of A, it is obvious that the wavelength of observed
CTDs is far in excess of the 5 km threshold above which internal Kelvin waves cease
to be vertically trapped by the decrease in Brunt—Viisild frequency above the marine
inversion.

Using the preceding values for the typical phase speed and wavelength of west-coast
CTDs, the typical frequency of these disturbances may be estimated as weeg = 0.3 X

104 s—1. Although this estimate for weg does not come close to satisfying the vertical
trapping criterion wgg > N, it does satisfy the vertical trapping criterion wgg < f for
internal gravity waves in a horizontally unbounded atmosphere. The coastally trapped
disturbance presented in Fig. 1 of Gill (1977) is also sub-inertial; it has a period of

approximately four days or, equivalently, a frequency of approximately 0.2 x 104 s~ 1,

The crucial factors that appear to vertically trap small-amplitude CTDs are simply
that (i) they are sub-inertial and (ii) they propagate along a topographic barrier of finite
height. The vertical trapping of sub-inertial disturbances propagating around seamounts
was demonstrated in numerical calculations by Brink (1989), but the importance of this
trapping mechanism does not seem to have been identified in atmospheric problems.
As will be detailed in the following section, small-amplitude vertically trapped waves
may exist, propagating along the face of a vertical step of finite het ght in the topography
underlying an infinitely deep, continuously stratified fluid. At elevations below the top
of the step, small-amplitude disturbances with sub-inertial frequencies and oscillatory
vertical structures similar to internal Kelvin waves are supported by the rigid sidewall.
At elevations above the top of the step these disturbances are governed by (6), and since
they are sub-inertial, they must decay as z —> 00.

A conceptual model comparing the mechanisms that vertically trap internal Kelvin
waves against an infinitely high sidewall, and against a sidewall of finite height, is
shown in Fig. 1. In the case of an infinitely high sidewall, the vertical velocity varies
sinusoidally throughout the depth of the lower layer and decays exponentially aloft.
Only high-frequency modes for which @ > Ny are trapped; non-hydrostatic effects play
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Figure 1. Schematic Hlustration of the vertical structure function ¥ as a function of z. Left: non-hydrostatic
Kelvin waves propagating along a infinitely high vertical sidewall trapped by the decrease in Brunt-Viisili
frequency with height in a two-layer atmosphere of depth . Right: hydrostatic vertically trapped sub-inertial
waves propagating along a vertical sidewall of height A in an atmosphere with uniform Brunt-Viisili frequency.

a crucial role in trapping these waves. Now consider the case where the sidewall has
finite height; then low-frequency modes with @ < f will be vertically trapped in the
region above the step, but these modes, which will be referred to as step-trapped Kelvin
waves, can have a non-trivial vertical structure similar to that of a conventional internal
Kelvin wave in the region below the height of the topographic barrier. In contrast to
the high-frequency Kelvin waves represented by the left profile in Fig. 1, the pressure
perturbations in step-trapped Kelvin waves are essentially hydrostatic. A more detailed
analysis of the step-trapped Kelvin wave is presented in the next two sections. As
will become evident, the vertical and cross-barrier structures of these waves are non-
separable, so the profile shown on the right in Fig. 1 actually represents the vertical
structure of w at a specific location xq.

3. SOLUTION PROCEDURE

The procedure for evaluating the structure and speed of linear step-trapped Kelvin
waves is an extension of that presented in an oceanic context by Chapman (1982) and

applied to the atmosphere by Samelson (1999). These extensions permit the computation
of step-trapped Kelvin waves when the Brunt-Viisili frequency has an arbitrary vertical
structure below the height of the step topography.

After invoking the hydrostatic approximation, (1)~(5) may be reduced to the single

equation

3 [a?P 8°P (@2 N3 [ 1 3P

at [axﬂ + dy? +(arz / ) az (N2 8:-:)] {h
Let x be the horizontal coordinate perpendicular to the face of the step topography, then
waves propagating parallel to the face of the topographic step may be expressed in the
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Figure 2. Cross-section of the domain normal to the face of the topographic step throughout which Pix, 7) s
computed. The vertical distribution of the Brunt-Viisilé frequency is schematically indicated on the left.

functional form P = P(x, z) et =1 which, upon substitution into (11), yields
s o 2P\ _ 3
£

Solutions for P are sought in the domain shown in Fig. 2, in which a horizontal
lower boundary abruptly rises in a vertical wall of height / at x = 0 and then remains
horizontal for x > 0. An upper boundary is imposed for computational purposes at
7 = Hh. The Brunt—Viisili frequency is arbitrary for 0 < z < h and is a uniform value
of Ng forz > h.* R

Let P~ and P be defined as those subsets of the solution P in the subdomains
x < 0and x > 0, respectively. P~ and P are required to satisfy (12) and the following
boundary conditions

P90 as x— -0, PT—0 as x-> 00, (13)
P7 =0 a z=0, PT=0 at z=h, (14)
P =0 at z=Hh, Pt=0 a z=Hh. (15)

The condition (14) is obtained by requiring the normal velocity to vanish at the lower
boundary; (15) is a proxy for P — 0 as z — oo. The sensitivity of the solution to this

upper boundary condition will be discussed at the end of this section.
The pressure and horizontal velocities must also match at the interface, which yields

the conditions that at x =0

pt=pP° for h<z< Hh (16)
o o pF— Pt forh<z<Hh
_EP;WP“= I (I7)
! 0 for0 <z < h.

Define a non-dimensional frequency o = w /f. a non-dimensional Brunt—V#isild
frequency N = N/Np, the Rossby radius of deformation L, = Nph/f, and the par-
ameter

h=LL (1 — P V2 (18)

* The solution procedure can be trivially generalized to account for arbitrary profiles of N throughout the depth
of the domain, but this modestly complicates the evaluation of £ and is not necessary for the present siudy.
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Transforming coordinates such that

X . Z
== — 1 — - }'flzy mm =
the governing equation (12) becomes
£

and the matching condition (17) is

o
— P —PT forl<t<H
TP P ={1 " (20)
A 0 forQ < ¢ <« 1.

Solutions to (19) and the boundary conditions (13)-(15) exist in the form

N N
P™=) ay,e™¢,(0), PT=) bre P cosfua(¢ — )]. @1
n=0 n={)
Here /2
(n + 7T
Vp = -1 no- (Vﬁ + ;\»E)Hza

and o, and ¢, are eigenvalues and eigenvectors for the Sturm—Liouville problem

d I d¢ 5 .2

i (deg)-&(a: )¢ (22)

subject to the boundary conditions d¢/d¢ =0at{ =0and ¢ =0 at ¢ = H. In order to
simplify the subsequent analysis, each ¢, is normalized such that

H
fﬂ P2y dr =1. (23)

In the previous studies by Chapman (1982) and Samelson (1999), N was constant

and (22) was solved analytically. In the present case N will be allowed to vary in the
vertical in a manner representative of the marine boundary layer and capping inversion
off the west coast of North America; (22) is therefore solved numerically using the
finite-difference approximation

1 €r 1 — € ey — €1 .9
> = + (0" — A%)eg = 0,
2 2 3
(AL 3 Nk+% Nk—r-% 3

in which e; approximates ¢(kAZ), and N b+ is the non-dimensional Brunt—Viisili

frequency at ¢ = (k + -‘é—)&;. The zero gradient condition at ¢{ = 0 is approximated
using a second-order one-sided derivative such that

3Jeg — deq 4 e = 0.
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The expansion coefficients a, and b, in (21) are evaluated using the matching
conditions at & = 0 as follows. According to the pressure matching condition (16),

N N
Z AnPn(C) = Z by coslvp,({ — 1)]
pr=(}

n=0)

for ¢ € {1, H]. Multiplying the preceding by cos v,,(¢ — 1), integrating with respect to
¢ over the interval [1, H1, and using the orthogonality of the Fourier modes, yields

Ly
by = Frn,n Qny (24)
H—1 oy
where
H
an = f 08 V(¢ — D)n(2) d2. (25)
1
The velocity matching condition (20) requires that
N Y o
5 — B 1) b, COSV - 1Y for i H,
5 (Zan —1) ant = > (Tt 1) brcosmn(e —1) for < <
n=0 0 forO<¢ < 1.

Multiplying the preceding by ¢,,, integrating with respect to ¢ over the interval [0, H],
and using (23), (25), and the orthogonality of the eigenfunctions to the Sturm~Liouville
problem (22), the preceding reduces to

(%ﬂm — 1) Gy = — i (%5;; + 1) r,mbPn,s (26)
f=0)

Let A and B be diagonal matrices in which the ith diagonal elements are «; and
B;, respectively. Let R be the matrix with elements ry, ,, and a be the vector whose ith
element is ;. Then (24) and (26) may be expressed as the single linear system

¥ 2 T 2 T
e R — — o— )
k(A+H—1RB)a (I H—IRR)a (27)

If A is specified, the preceding becomes a generalized eigenvalue problem for the
eigenvalues o and eigenvectors a. The actual along-step wave number for each mode
can be computed from (18) after determining o from (27).

Now consider the sensitivity of the solution to the upper boundary condition (15).
At least for the parameter values considered in this paper, the waves decay rapidly
with height and, as a consequence, the solution near the surface is quite insensitive
to the elevation at which P is artificially set to zero. This is illustrated in Fig. 3, which
shows vertical profiles of P~ computed above the point x = —L./2 for domain depths
corresponding to H = 2, 3, 4 and 5. The results shown are for the lowest-order mode in
an atmosphere with constant stratification.

The solutions shown in this paper were computed using MATLAB to evaluate (27).
In all cases H = 4 which, as suggested by Fig. 3, will allow an accurate approximation
to the true solution in an unbounded domain throughout the layer 0 < z/h < 2.54. In
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Figure 3. Vertical profiles of P~ for the lowest-order mode in a atmosphere with constant stability evaluated at
x = L f2, Individual curves correspond to solutions for which P issetto zero atz/h =2, 3, 4 and 5.

those cases for which A =1 km, 121 modes were retained in the expansions (21), and
the eigenmodes for the Sturm-Liouville problem (22) were computed on a numerical
mesh with 241 grid points. The mtegral (25) was evaluated at the same numerical
resolution as ¢, using the trapezoidal rule. In those cases for which s = 2 km, 241}
modes were retained in (21) and 481 grid points were used to compute the eigenmodes
and their vertical integrals. As noted by Schmidt and Johnson (1993b), who considered
a similar problem in an oceanic context, the pressure gradient is singular at the step
and the solution 1s, therefore, difficult to evaluate accurately as x — 0. Nevertheless,
outside of the immediate neighbourhod of the step, —0.03 < x /L, < 0.03, the solutions
presented in this paper are not sensitive to further refinements in the preceding numerical
parameters,

4. STEP-TRAPPED KFLVIN WAVES

Figure 4 shows an x-z cross-section of pressure and velocity through a step-trapped
Kelvin wave propagating along the face of a one-kilometre-high barrier in a basic state

with a uniform BruntViisild frequency of 0.01 s~1. Only the the bottom 60% of
the domain, which extends to z/k =4, is included in Fig. 4. No data are plotted in
the region —0.03 < x/L; < 0.03 because more than 121 expansion functions must be
retained in (21) to determine the solution accurately very close to the face of the step.

The wave shown in Fig. 4 is that eigenmode with no nodal lines below the top of the step
(mode-0) satisfying (19) with A = 1. The y-wavelength of this mode i, is 462 km and

its phase speed is 5.0 m s~!, This solution is similar to that shown in a different format
in Fig. 5 of Samelson (1999), except that the computation shown here is performed in
a much deeper domain and the horizontal and vertical axes are normalized in a manner
that easily allows one to appreciate that the mode is vertically trapped. Below the top of
the step the spatial structure of this mode is similar to that of a classical mode-0 linear
Kelvin wave propagating at the same phase speed through a uniformly stratified fluid
with Brunt-Viisidld frequency Ny and a free surface at z = k. Above the topography,
the wave amplitude decays rapidly with height. Note that the nodal line along which
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Figure 4. Cross-sections in the x~z plane through the mode-0 wave when N is constant. Individual panels

show contours of P (at intervals of 0.2 m?s=2), u and v (at intervals of 0.016 m s1y, and w (at intervals of
2.0 x 1074 m s~ 1). Negative contours are dashed. The step topography is indicated by the dotted rectangle.

v = 0 is not parallel to either coordinate axis, implying that the spatial structure of the
mode is non-separable, i.e. that v cannot be expressed as the product of functions of the
form s{(x) and r(z).

The horizontal structure of the pressure and horizontal velocity perturbations in the
same mode-0 wave are shown in Fig. 5. Halfway up the face of the step, at z/ & = 0.5, the
polarization relations between the pressure and velocity fields are identical to those in
a classical Kelvin wave—the horizontal velocity perturbations are parallel to the barrier
and in phase with the pressure perturbations. Some cross-barrier flow is present further
aloft, at z/h = 1.3, where the extrema in the pressure and velocity perturbations are
roughly 2.5 times weaker than those at z/ k = 0.5. The velocity field at z/h = 0.5 looks
highly ageostrophic although, as in a classical Kelvin wave, the v component is actually
close to geostrophic balance while the i component is approximately zero. Atz/h = 1.3
the circulations around the extrema in the pressure field appear closer to geostrophic
‘balance. A high degree of geostrophy should not be expected at z/ h = 1.3, both because
of the proximity of the terrain-induced ageostrophic forcing and because w/f = .68 for
this mode, whereas w/ f is no larger than O(0.1) in the quasi-geostrophic limit.

The x-z structure of the mode-0 wave shown in Fig. 4 may be compared with that
of the mode-1 wave shown in Fig. 6. As before, the solution shown in Fig. 6 is for the
case A == 1, A = | km, and a uniform Brunt-Viisild frequency of 0.01 s~1. The phase
speed for this mode is 2.4 m s~! and A, = 609 km. The mode-1 wave propagates more
slowly and decays away from the topography more rapidly than the mode-0 wave shown
in Fig. 4. The along-barrier horizontal velocity perturbations associated with a unit-
amplitude pressure perturbation in the mode-1 wave are approximately 3.5 times greater
than those associated with a unit-amplitude pressure perturbation in the mode-0 wave.
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Figure 5. Horizontal cross-sections of perturbation pressure in the mode-0 wave shown in Fig. 4 at the heights

z/h = 0.5 (contour interval is (.25 m?s™?) and z/# = 1.3 (contour interval is 0.058 m2s~2). Also shown are the
horizontal velocity vectors at each level. The vector magnitude is scaled differently at each level; the upper-level
flow is significantly weaker.

Consistent with the reduction in w/f for this mode to 0.25, the horizontal velocities
above the topography (not show) are more nearly in geostrophic balance than those for
the mode-0 wave.

Now consider how the preceding step-trapped Kelvin waves are modified when the
atmospheric structure includes an idealized marine boundary layer (MBL) capped by a
strong nversion. Ralph ef al. (1998) present a detailed synthesis of observations taken
as a CTD propagated along the central coast of California on 10~11 June 1994. Their
data show that the MBL upstream of the CTD was approximately 250 m deep and was
capped by an approximately 250 m thick inversion layer across which the temperature
increased by 10-12 K. The true atmospheric structure off the California coast on 10-11
June 1994 will, therefore, be approximated by a three-layer profile in which the bottom
two layers are each 250 mb thick and the static stabilities in the bottom, intermediate,
and top layers are Ny, = 0.002, N1 = 0.035, and Ny = 0.01 571, respectively. In order to
avoid computing the vertical derivative of a discontinuous function in (19), the Brunt-
Viisili frequency is actually defined as

N(z) = 3[NL + Ny + (Ny — N tanh{s(¢ — &)} — (NL — Np) tanh{s(¢ — &)},

where ¢y = 250/ 4 and ¢ = 500/ h are the non-dimensional coordinates of the bottom

and the top of the inversion layer, and s = 100. As before, / is specified as 1 km.
When the basic-state atmospheric profile includes the preceding idealized MBL

and capping inversion, the x—z cross-sections of pressure and velocity through the
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Figure 7. Cross-sections showing the x~z structure of the the mode-0 wave in the presence of an idealized MBL.
and capping inversion. As in Fig. 4, except that the contour interval for » and v 18 0.0079 m s~! and for w it is
7.8 x 1075 m s~'. Horizontal dash-dotted lines denote the top and bottom of the inversion layer.
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Figure 8. Asin Fig. 7, except that 2 =2 km and only the lowest 30% of the domain is plotted. The contour
interval for # and v is 0.0058 ms~!, and for witis 7.1 x 10~ ms™ !,

mode-0 step-trapped Kelvin wave appear as shown in Fig. 7. This mode is again
obtained by setting A = 1. The phase speed for this mode is 4.9 m s~ !, Ay = 389 km,
and w/f =0.79. The perturbations in v and P are strongest in the layer below the
inversion, which might lead one to suppose that the disturbance is vertically trapped
by the inversion. The perturbations in # and w are, however, very similar to those for the
mode-() wave in an atmosphere with uniform Brunt—V#isili frequency (cf. Fig. 4) and,
in reality, the wave shown in Fig. 7 is vertically trapped because it is sub-inertial and the
height of the vertical step is finite.

The inability of the inversion to prevent vertical energy propagation in step-trapped
Kelvin waves is more apparent if one considers the case shown in Fig. 8 in which %
is increased to 2 km, but all other physical parameters are held fixed. In this case the
perturbations in v and P extend well above the MBL, and it is clear that the actual
limitation on their vertical extent is associated with the finite height of the topography.
The phase speed of this mode is 10.0 m s™1, 4, = 902 km, and w/f = 0.70.

Of course one would not use a shallow-water model to study the vertical structure
of disturbances in an internally stratified fluid, but one might hope that the reduced-
gravity shallow-water model is at least capable of predicting the phase speed of these
waves when there is a pronounced inversion capping the MBL. Using the 250 m height
of the base of the inversion layer* to define the undisturbed depth of the shallow-water
layer D, the linearized reduced-gravity shallow-water equations support Kelvin waves

moving at a phase speed of 8.75 m s~! . Shallow-water Kelvin waves are non-dispersive,
* The difference between the phase speeds of shallow-water Kelvin waves and step-trapped Kelvin waves is not

systematically reduced by using the middle or the top of the marine inversion to define the top of the shallow-water
layer.
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Figure 9. Phase speed as a function of along-step wavelength for the reduced-gravity shallow-water model (dot-

dashed line) and for mode-0 step-trapped Kelvin waves when the topographic barrier is 1 km high (solid lines) or

2 ke high (dashed lines). Data for the case with an idealized MBL and capping inversion are shown by the thick

tines; the thin Hnes are for the case with uniform stability. Also shown as a reference is the line ¢ = fa,/(2m)
(thin dotted line),

but the internal waves that are actually supported by this system (the step-trapped Kelvin
waves shown in Figs. 7 and 8) are dispersive. The phase speeds for shallow-water Kelvin
waves and for mode-0 step-trapped Kelvin waves are plotted as a function of the along-
step wavelength in Fig. 9. As is apparent in Fig. 9, the reduced-gravity shallow-water
model does not provide a reliable estimate of the true phase speed of step-trapped
Kelvin waves, which are a strong function of A, and a somewhat weaker function of
the mountain height. All step-trapped Kelvin waves are sub-inertial and the phase-speed
curves for these waves asymptote to the line c = f1,/(27) as Ay, — O which, of course,

is completely different from the reduced-gravity shallow-water result that ¢ = /g’ D>

The influence of atmospheric structure on the phase speed of step-trapped Kelvin
waves can be seen by comparing the speeds of the eigenmodes when an MBL and strong
capping inversion is present (heavy dashed and solid lines) with those gigenmodes for
an atmosphere with uniform Brunt-Viisald frequency (thin dashed and sold lines). In
the case of the two-kilometre-high barrier, the mode-0 eigenmode is almost completely
insensitive to the presence of the idealized MBL and capping inversion. When the step
is 1 km high, however, the mode-0 step-trapped Kelvin wave is much more sensitive to
the presence of the MBL.

Perhaps the most interesting influence of the idealized MBL and capping inversion
on the structure of Kelvin waves trapped against a one-kilometre-high step occurs in
the mode-2 wave, for which the perturbation pressure and velocity fields in an x-z

cross section are shown in Fig. 10. As before, this mode was computed for the case

* Although the hydrostatic approximation, used in both the shallow-water model and in {11), becomes invalid in
the limit A, — 0, the difference between the phase speeds of shallow-water Kelvin waves and step-trapped Kelvin
waves becomes significant at values of A, for which the hydrostatic approximation remains appropriate.
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Figure 10.  Cross-sections showing the x-z structure of the mode-2 wave in the presence of an idealized MBL
and capping inversion. As in Fig. 7, except that the contour interval for P is 0.8, for # and v itis 0.16 m s~L, and
for witis 2.2 x 1074 ms!.

A =1; its phase speed is 2.13 m s/, Ay =610 km, and w/f = 0.24. The strongest
perturbations in this mode are concentrated in the inversion layer in a manner similar
to that observed during the 10-11 June 1994 CTD off the central California coast
(Ralph er al. 1998, Fig. 23). Since the MBL and capping inversion specified in this
idealized problem are derived from the thermodynamic profile upstream of the 1011
June 1994 CTD, the similarity in the observed and computed vertical structures suggests
the simplified mathematical model presented in this paper is not idealized beyond all
practical application. Nevertheless, it should be noted that the 2 m s~ phase speed of
the mode-2 wave is more than a factor of four slower than that of the actual CTD. On
the other hand, the 7-8 m s~ phase speed of a typical CTD is close to that of a mode-0
step-trapped Kelvin wave with a physically reasonable along-barrier wavelength of

Ay = T00 km (see Fig. 9). A more detailed comparison between theory and observation
cannot be conducted without a more accurate representation of the topography, the
inclusion of low-level northerly flow in the reference-state profile and some assessment
of the importance of nonlinear processes. It is difficult to include a vertically sheared
mean flow in the preceding semi-analytic model, so more realistic basic-state flows will
not be considered in this paper. The influence of more realistic topography and nonlinear
processes will discussed in the next section.

5. FINITE SLOPES AND NONLINEARITY

It 1s not possible to use the preceding methodology to compute the eigenmodes
supported by a more realistic topographic profile in which the vertical step in the
topography is replaced by a slope of finite width. At least in principle, the structure of
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such modes could be determined by fully numerical techniques like resonance iteration
(Wang and Mooers 1976) and inverse iteration (Huthnance 1978). These numerical
methods, and refinements thereof, have been used to compute coastal-trapped waves
in both idealized and realistic ocean basins. In most oceanic applications the surface of
the ocean provides a natural upper boundary that limits the depth of the fluid through
which computations need to be performed, and thereby limits the size of the numerical
domain and the total computer time required to obtain an accurate solution.™ Even in the
relatively recent work by Webster and Holland (1987), the numerical solution is obtained
on a comparatively coarse 25 x 17 vertically stretched grid. Recall that, in order to
remove any sensitivity to the upper boundary and to adequately resolve the structure of
the MBL and capping inversion, the calculations in this paper were performed with at
least 241 grid points along the vertical coordinate. A very considerable computational
effort is thus required to obtain the equivalent of Fig. 7 for topography with a finite slope,
and such computations were not attempted in this study. Some gain in efficiency might
be realized using the solution procedure of Schmidt and J ohnson (1993a), however their
approach is not immediately applicable to the physically important, lowest-order mode
for which w/f 1s O(1).

Considerably fewer grid points are required if one does not have to resolve the ma-
rine inversion in the basic-state flow accurately. In particular, much less computational
effort is required to evaluate the trapped modes supported by a smooth ridge in a fluid
in which the basic-state Brunt—Viisild frequency is constant. Calculations of this type
have been performed by Brink (1989) in an investigation of seamount-trapped waves.
Brink computed the structure of the eigenmodes that freely orbit an idealized seamount
and, in agreement with the behaviour of the step-trapped Kelvin waves presented in
this paper, he found that those modes that were bottom trapped were sub-inertial. The
finding that bottom-trapped waves are sub-inertial is also consistent with the analysis of
Rhines (1970), who obtained solutions for boundary-trapped eigenmodes in a continu-
ously stratified fluid bounded by an infinite plane tilted off the horizontal at an arbitrary
angle. Further evidence that the vertical trapping of more general types of CTD is not
dependent on the presence of an elevated inversion is provided by the recent nonlinear
numerical simulations by Skamarock et al. (1999). They found that CTD-like distur-
bances could be created in response to a localized off-shore flow both in an atmosphere
with a typical marine layer and capping inversion and in an atmosphere with uniform
Brunt-Viisild frequency.

Skamarock et al. (1999) emphasized the importance of nonlinearity in creating a
realistic CTD-like response. Shallow-water theory provides some of the simplest math-
ematical descriptions of nonlinear fluid-dynamical processes, and it is likely that nonlin-
ear CTD are qualitatively analogous to nonlinear shallow-water Kelvin waves. The qual-
itative similarity, and quantitative differences, between nonlinear shallow-water ow
over an obstacle and downslope windstorms in the atmosphere have already been estab-
lished in several previous studies (Smith 1985; Durran 1986; Durran and Klemp 1987,
RBacmeister and Pierrehumbert 1988: Durran 1992), all of which suggest that strong
downslope winds can be produced when the atmosphere undergoes a transition analo-
gous to that from subcritical to supercritical flow in the shallow-water model. Neverthe-

less, Durran (1986) did demonstrate that these atmospheric analogues to subcritical and
supercritical flow cannot be distinguished by the sign of F ' — 1, where F’ is the Froude

* The surface of the ocean also serves as physical boundary that clearly limits upward energy propagation by
coastal-trapped waves. As a consequence, the question of vertical energy propagation examined in this paper does
not seem to have been addressed in papers on oceanic coastal-trapped waves.
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number for the reduced-gravity shallow-water model,

Fl= __Lf_____ (28)

VD
U is average the speed of the flow in the layer between the ground and the base of the
elevated inversion, and D is the depth of that layer.

As 1n the case of downslope windstorms, the most useful connection between
the dynamics of inversion-capped MBL and shallow-water theory may be primarily
qualitative. In particular, the results presented in this paper suggest that there is no
theoretical basis for quantitatively distinguishing between supercritical and subcritical
flows within the marine boundary layer by computing a local Froude number (#/) based
on the depth of the marine layer and the temperatare change across the inversion. In
classical shallow-water theory the Froude number represents the ratio of the flow speed
to the shallow-water gravity-wave speed. However, as shown in Fig. 9, those linear
waves that are actually supported by a strong elevated inversion seaward of a step
mountain may move at speeds quite different from the phase speed for Kelvin waves
predicted by the reduced-gravity shallow-water model. Thus, the conventional shallow-
water Froude number does not have the same physical interpretation as the Froude
number for the reduced-gravity shallow-water model, because, F’ is generally not the
ratio of the flow speed to the phase speed of any particularly significant linear wave.

6. CONCLUSIONS

It has been shown that an infinitely deep, stably stratified fluid can support vertically-
trapped fiydrostatic modes that propagate parallel to the face of an uninterrupted topo-
graphic step. These modes have been referred to as step-trapped Kelvin waves, because
their structure in the region below the top of the step is very similar to that of a classical
internal Kelvin wave in a stratified fluid bounded by a free surface at the same height as
the top of the step. Step-trapped Kelvin waves are laterally trapped by the Coriolis force
and vertically trapped because their frequencies are less than £ and, at least to within the
accuracy of the f-plane approximation, no sub-inertial disturbance can propagate verti-
cally through the laterally unbounded atmosphere above the topographic step. It should
be emphasized that none of these hydrostatic modes would be vertically trapped if the
the topographic step was infinitely high, because there is no low-frequency limit on the
vertical propagation of classical internal Kelvin waves.

Step-trapped Kelvin-wave solutions were obtained for two basic states: one with
uniform stratification throughout the fiuid and one with an idealized MBL capped by a
strong inversion. Although the marine inversion plays no fundamental role in preventing
upward energy propagation in linear CTDs, the vertical structure of step-trapped Kelvin
waves 18 significantly modified when a strong inversion caps the MBL. In particular,
when the basic state is specified using an MBL and capping inversion characteristic of
that duning the 10-11 June 1994 central California CTD, the vertical structure of the
mode-2 step-trapped Kelvin wave (see Fig. 10) is surprisingly similar to that actually
observed during this event.

Many previous investigators have used the shallow-water equations to mathemati-
cally model hydrostatic motions within an MBL capped by a strong inversion. In these
studies the linkage between the atmosphere and the shallow-water equations is not gen-
erally made by evaluating the normal modes for the full stratified equations, but rather by
replacing the gravitational acceleration in the standard single-layer shallow-water model
with a reduced gravity proportional to g times the potential-temperature (or density)
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difference across the capping inversion, and by replacing the fluid depth in the standard
model with the depth of the MBL. This ‘reduced-gravity shallow-water model’ 1s clearly
an approximation because it assumes that all pressure perturbations within the MBL are
produced by vertical displacements of the capping inversion. The results presented in
this paper suggest that at least some aspects of this approximation are not very good.

The phase speeds of Kelvin-wave solutions to the linearized reduced-gravity
shallow-water equations were compared with those of the hydrostatic linear step-trapped
Kelvin waves supported by a basic state with an idealized MBL and a strong capping
inversion. The phase speeds predicted by these two approaches were generally in poor
agreement, not only with respect to the numerical values, but also in the sense that
step-trapped Kelvin waves are dispersive whereas shallow-water Kelvin waves are non-
dispersive. (see Fig. 9). Thus, the reduced-gravity shallow-water model does not appear
to provide an accurate description of the linear dynamics of CTDs.

Nevertheless, the preceding is not meant to suggest that shallow-water theory is
completely irrelevant to the dynamics of CTDs or inversion-capped marine layers. As is
the case with downslope windstorms, considerable evidence has been compiled demon-
strating a qualitative similarity between the nonlinear behaviours of the shallow-water
and continuously stratified systems. In particular, both systems appear to undergo a tran-
sition from a state where disturbance energy can be efficiently radiated away by wave
propagation (subcritical flow) to a state in which energy transport is largely accom-
plished by horizontal advection (supercritical flow). Nevertheless, caution is advised
when attempting to characterize marine-layer flows as supercritical or subcritical using
a Froude number defined on the basis of the reduced-gravity shallow-water model in a
manner similar to (28). One source of concern is simply the uncertainty in the compu-
tation of F’. In many real-world applications there is sufficient vertical variation in the
wind profile, lack of definition at the top of the inversion, and uncertainty in the depth
of the MBL that it is rather difficult to unambiguously determine a numerical value for
F'. Even more fundamental, however, is the difficulty of determining the precise phys-
ical significance of F’ because, in contrast to the conventional shallow-water Froude
number, F' need not represent the ratio of a flow speed to the speed of any particularly
significant linear wave.
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