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ABSTRACT

Numerical simulations of nonrotating flow with uniform basic wind and stability past long three-dimensional
(3D) ridges are compared to the corresponding two-dimensional (2D) limit to reveal the importance of 3D effects.
For mountain heights smaller than the threshold for breaking waves, the low-level flow over the interior of the
ridge is well described by 2D theory when the horizontal aspect ratio b is roughly 10 or greater. By contrast,
in flows with wave breaking significant discrepancies between 2D and 3D results remain apparent even for b
5 12.

It is found that the onset of wave breaking and the transition to the high-drag state is accompanied in 3D by
an abrupt increase in deflection of the low-level flow around the ridge. The increased flow deflection is produced
at least in part by upstream-propagating columnar disturbances forced by the transition to the high-drag state.
The deflection of the incident flow reduces the amplitude of the mountain wave aloft relative to 2D and acts as
a negative feedback on the surface form drag. As a result, the nonlinear enhancement of the surface drag
associated with wave breaking for a ridge with b 5 7.5 is found to be roughly half the enhancement obtained
for a 2D ridge.

1. Introduction

An extensive body of literature exists that explores
both linear and nonlinear gravity waves generated by
stratified flow over two-dimensional (2D) obstacles (see
reviews in Smith 1979; Durran 1986b; Baines 1995).
Among the interesting results to emerge from this work
is the identification of highly nonlinear effects leading
to flows with severe lee-slope winds and high surface
form drag. Such high-drag states have been noted in
flows with uniform basic wind and stability (Clark and
Peltier 1977; Peltier and Clark 1979), with uniform wind
and two layers of different stability (Durran 1986a), and
with uniform stability and a basic-state critical level
(Durran and Klemp 1987; Bacmeister and Pierrehum-
bert 1988). In each case, it is found that as a function
of increasing mountain height, the flow first evolves
through linear and weakly nonlinear wave regimes be-
fore making a relatively rapid transition to the fully
nonlinear high-drag state. The finite-amplitude analyt-
ical model of Smith (1985) and the numerical investi-
gations of Durran (1986a) and Durran and Klemp (1987)
have suggested that the high-drag state is similar in
character to nonlinear hydraulic flow with a subcritical
to supercritical transition at the crest of the obstacle. As
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in the hydraulic case, the high-drag state is accompanied
by upstream-propagating modes that decelerate the in-
cident flow at low levels (Pierrehumbert and Wyman
1985; Baines 1995, sections 5.10, 5.11).

The linear theory of flow with uniform wind and
stability over isolated three-dimensional (3D) obstacles
was first examined in detail by Smith (1980, 1988,
1989b,a). Smith (1989a) identified four flow regimes
based on the presence or absence of stagnation points
in the flow: a weakly nonlinear regime in which flow
stagnation does not occur, a wave-breaking regime with
stagnation and overturned isentropes aloft, a flow-split-
ting regime featuring stagnation on the upwind slope,
and a regime with both wave breaking and flow splitting.
In this categorization of flow regimes, the presence of
wave breaking is assumed to signal a high-drag state.1

By contrast, in the flow-splitting regime the majority of
the low-level flow is assumed to deflect laterally around
the barrier with limited vertical displacement, resulting
in diminished wave amplitude aloft and reduced lee-
slope wind and surface form drag.

On the basis of the linear analysis, Smith (1989a) was
able to construct an approximate regime diagram for

1 In flows with uniform basic wind and stability, the transition to
the high-drag state with increasing mountain height is coincident with
the overturning of isentropes above the lee slope (Peltier and Clark
1979). As the present work is limited to uniform basic states, we use
the terms high-drag state and wave-breaking regime interchangeably.
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elliptical mountains as a function of the nondimensional
mountain height e 5 Nh0/U0 (N: basic stability, U0:
basic wind speed, h0: maximum mountain height) and
the horizontal aspect ratio b (ratio of cross stream to
streamwise length scales). For obstacles of fixed b great-
er than unity, the regime diagram predicts that as a
function of increasing e, the flow progresses succes-
sively through weakly nonlinear, wave-breaking, wave-
breaking and flow-splitting, and flow-splitting-only re-
gimes. For narrow mountains (b , 1), wave breaking
is not predicted, and the flow progesses directly from
the weakly nonlinear regime to the flow splitting regime.

Advances in computing power have facilitated a num-
ber of recent numerical studies of nonlinear flow with
uniform wind and stability over 3D obstacles (e.g., Smo-
larkiewicz and Rotunno 1989, 1990; Miranda and James
1992; Smith and Grønås 1993; Ólafsson and Bougeault
1996, 1997; Schär and Durran 1997), which have largely
confirmed the qualitative predictions of Smith’s regime
diagram. The majority of these studies have focused on
inherently 3D effects in flow over circular mountains
(b 5 1). Smolarkiewicz and Rotunno (1990) considered
elliptical mountains of varying b but limited the inves-
tigation to large obstacles (e 5 3) for which flow split-
ting is the dominant feature. Ólafsson and Bougeault
(1996) examined each of the flow regimes for an elon-
gated elliptical ridge but considered only a single fixed
aspect ratio (b 5 5). A recent study by Bauer et al.
(2000) explores flow regimes for varying e and b but
is limited to moderately elongated ridges (b # 4).

Despite the recent effort devoted to exploring 3D flow
over topography, there has been no systematic attempt
to relate flow over obstacles in 3D to the well-studied
2D limit. Such a comparison is the objective of this
study. We consider 3D ridges with relatively steep lat-
eral ends connected by a uniform height section of var-
iable length in the ridge interior. For large b [e.g., b ;
O(10)], this 3D obstacle shape is expected to provide a
more meaningful comparison to the 2D case over the
ridge interior than the elliptical obstacles used in pre-
vious studies. The motivation for this work is twofold.
First, we wish to determine the extent to which the 2D
idealization provides a suitable approximation to flow
over long (large b) ridges in 3D. Second, direct com-
parison of flow over long ridges to the 2D case high-
lights 3D effects, which are increasingly evident as e
increases.

The focus of the present study is on nonrotating weak-
ly nonlinear and wave-breaking flows in a basic state
of uniform wind and stability. Linear and weakly non-
linear steady-state semianalytic models as well as fully
nonlinear numerical simulations are employed in an ef-
fort to highlight the nonlinear processes that shape the
3D flow. We note for clarity that the 3D effects of in-
terest in this work are distinct from the 3D instability
of breaking waves forced by the ridge, a topic that has
received recent attention (Andreassen et al. 1994; Afan-
asyev and Peltier 1998). In the present numerical sim-

ulations, the parameterized subgridscale turbulent fluxes
of heat and momentum are sufficiently strong to prevent
the resolved-scale waves from developing the stream-
wise vortices that are characteristic of 3D wave break-
down. We focus instead on more global properties of
the flow, such as deflection of the low-level flow around
the obstacle and the effect of such deflection on the
wave amplitude and the surface drag.

In the following section we scale the equations of
motion and briefly describe the semianalytic and nu-
merical models. Section 3 examines the steady-state sur-
face form drag and low-level flow deflection for 3D
ridges of varying e and b and relates the results to the
2D case. It is found that for long 3D ridges wave break-
ing introduces significant 3D effects that are absent in
weakly nonlinear flows. Some basic structural differ-
ences between high-drag-state flow over a long 3D ridge
and the corresponding 2D case are discussed. Section
4 considers the role of upstream-propagating distur-
bances in establishing the 3D effects induced by wave
breaking. Section 5 discusses possible extensions of the
present work to flows with rotation and nonuniform ba-
sic states. The final section summarizes the results of
the previous sections.

2. Model descriptions

a. Scale analysis and weakly nonlinear solution

We consider free-slip compressible-Boussinesq flow
on an f plane as described by

]u ]u ]u ]ui i i i1 (u 1 u) 1 (y 1 y) 1 w0 0]t ]x ]y ]z

]T]P ij
1 e fd u 1 2 d b 5 2 , (1)ijk j3 k i3]x ]xi j

]b ]b ]b ]b
21 (u 1 u) 1 (y 1 y) 1 w 1 N w0 0]t ]x ]y ]z

]Bj
5 2 , (2)

]xj

]u]P j21 c 5 0, (3)s]t ]xj

with lower boundary condition

]h ]h
w 5 (u 1 u) 1 (y 1 y) at z 5 h. (4)0 0]x ]y

Here, x 5 (x1, x2, x3) 5 (x, y, z) is the spatial position
vector; u0 5 (u0, y 0, 0) is the uniform basic velocity;
u 5 (u1, u2, u3) 5 (u, y , w) is the disturbance velocity;
P is the Boussinesq disturbance pressure and b the buoy-
ancy; Tij and Bj are turbulent fluxes of momentum and
buoyancy, respectively; N is the constant basic-state
buoyancy frequency; f is the Coriolis parameter; and
cs is the constant Boussinesq sound speed. The topog-
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raphy is given by h(x, y). Free-slip and thermal insu-
lation conditions are adopted at the lower boundary for
Tij and Bj, respectively. In a Boussinesq atmosphere, the
amplitude of a localized 3D disturbance decays with
height due to the horizontal dispersion of wave energy.
The appropriate upper boundary is thus a linear radia-
tion condition applied as z → `.

Following Smith and Grønås (1993), we adopt an
essentially linear, hydrostatic, nonrotating, inviscid scal-
ing and define nondimensional independent and depen-
dent variables by

U a0(x, y) 5 a(x̂, ŷ), z 5 ẑ, t 5 t,̂
N U0

(u , y ) 5 U (û , ŷ ), h 5 h ĥ, w 5 edU ŵ,0 0 0 0 0 0 0

2 ˆ(u, y) 5 eU (û, ŷ), P 5 eU P, b 5 eNU b̂,0 0 0

(5)

where a is a characteristic length scale for h, U0 5
( 1 )1/2 is the basic wind speed, d 5 U0/Na is the2 2u y0 0

vertical aspect ratio, and h0 and e are as defined pre-
viously. Substituting the scaled variables into (1)–(4)
yields the following set of control parameters: the non-
dimensional mountain height (or nonlinearity parame-
ter) e, the vertical aspect ratio d, the Rossby number Ro
5 U0/ fa, the Mach number Ma 5 U0/cs, the angle of
incidence c 5 arctan( ), and any parameters intro-ŷ /û0 0

duced in the specification of ĥ. A parameter describing
the importance of the turbulent fluxes is also required
to completely fix the flow. However, such a parameter
is difficult to define generally, since the turbulent vis-
cosity is a function of flow parameters such as the Rich-
ardson number and is also a function of grid resolution
in the numerical context.

The linear and weakly nonlinear semianalytic models
represent the first and second terms in a regular per-
turbation solution of the inviscid, incompressible (Ma
5 0), steady-state versions of (1)–(4) in the limit of
small e. The solutions are formally valid for any finite
d and Ro. The models are implemented using fast Fou-
rier transforms on a large horizontally periodic domain
[as done for the linear solution by Smith (1980)]. Details
of the weakly nonlinear model, including verifications,
are given in Epifanio (1999) and will be summarized
in a forthcoming publication.

b. Numerical model and experimental set-up

The fully nonlinear numerical simulations were com-
puted using a 3D nested version of the nonhydrostatic
model described by Durran and Klemp (1983) as mod-
ified to solve (1)–(3). Two-way interactive grid nesting
is included following Skamarock and Klemp (1993).
The model incorporates topography through the terrain-
following vertical coordinate of Gal-Chen and Somer-
ville (1975). The turbulent flux terms in (1) and (2) are
computed using the first-order closure of Lilly (1962)

with eddy length scale (DxDz)1/2, mixing coefficient
0.21, and Prandtl number unity. The linear radiation
condition of Klemp and Durran (1983) and Bougeault
(1983) (hereinafter the KDB condition) as modified for
local evaluation by Durran (1995) is enforced at the
upper boundary. A radiation condition with fixed-speed
phase propagation is applied to normal velocities at the
horizontal boundaries of the coarsest grid (Pearson
1974). In addition to the basic equations, we integrate

]z ]z ]z ]zi i i i1 (u 1 u) 1 (y 1 y) 1 w 5 u , (6)0 0 i]t ]x ]y ]z

where z 5 (j, h, z) is the displacement of fluid particles
from their undisturbed position following the basic flow.

The topography for all experiments takes the form of
a smooth ridge with the long axis oriented perpendicular
to the x direction as defined by

h0 4 [1 1 cos(pr)] , if r # 1;
h(x, y) 5 16 (7)


0, otherwise,

where

 2 2x |y| 2 (b 2 1)a
1 , if |y| . (b 2 1)a;1 2 1 2 4a 4a

2r 5 
2x
, otherwise.1 24a

(8)

Here, b $ 1 is the horizontal aspect ratio defined as the
ratio of y to x length scales for the topography. For b
5 1, h(x, y) is similar to a bell-shaped mountain [as in
Smith (1980)] with length scale a; for b . 1, a uniform
height section appears in the interior of the ridge.

We consider essentially hydrostatic (d 5 0.067), in-
compressible (Ma 5 0.024), nonrotating ( f 5 0) flow
at normal incidence (y 0 5 0). The set of control param-
eters then reduces to e and b (for fixed turbulence pa-
rameterization), and the values of these parameters con-
sidered in this study are shown in Table 1. The specific
dimensional parameters used are N 5 0.012 s21, U0 5
8 m s21, and a 5 10 km. The disturbance is initiated
by gradually accelerating the basic wind from rest over
the time interval 24 # U0t/a # 0.

Three levels of nesting are employed with horizontal
and temporal resolution increasing by a factor of 3 with
each nesting level. The grid with finest horizontal mesh
occupies the region |x| # 7a, |y| # (6 1 b)a; the in-
termediate grid covers |x| # 18a, |y| # (17 1 b)a; and
the coarse grid extends over |x| # 48.6a, |y| # 48.6a.
The horizontal mesh spacing on the finest grid is Dx 5
Dy 5 0.18a. Vertical resolution and domain depth zT

are identical on all grids and are given by NDz/U0 5
0.086p and NzT/U0 5 8.4p. The large and small time
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TABLE 1. Values of e and b for numerical simulations in this study
(3 indicates simulated value).

e

b

1.00 1.54 2.38 3.75 7.50 12.0 2D

1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

3

3

3

3

3

3

3

3

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

3

3

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

FIG. 1. (a) Time dependence of the nondimensional drag coefficient
ĈD for e 5 1, b 5 7.5, and domain depths NzT/U0 5 4.3p (dotted),
6.4p (long dashed), 7.4p (dashed), and 8.4p (solid). (b) As in (a)
except 2D case.

steps on the finest mesh are U0Dt/a 5 0.0056 and
U0Dts/a 5 0.0056/3, respectively.2

c. Model sensitivities

The influence of horizontal periodicity on the weakly
nonlinear semianalytic model was minimized by re-
peating the computation on square domains of increas-
ing size until the nonlinear correction to the drag [ (2)Ĉ D

in (11)] varied by less than 1% between successive com-
putations. The weakly nonlinear solution also entails a
linear radiation condition, which in principle is applied
for z → ` but in practice must be applied at a large but
finite height. The radiation condition at finite height is
essentially equivalent to the KDB condition employed
in the numerical simulations. For the present experi-
ments, the radiation condition is applied at the same
height zT for both the numerical and weakly nonlinear
semianalytic models so as to remove the upper boundary
as a source of discrepancy between the solution tech-
niques. The sensitivity of the weakly nonlinear solution
to the height at which the radiation condition is applied
will be discussed in upcoming work.

As discussed in Klemp and Durran (1983), neither
the KDB radiation condition nor alternative sponge-lay-
er formulations completely eliminate the sensitivity of
numerically simulated mountain waves to the location
of the upper boundary when the waves are nonlinear
(e.g., e * 0.5). The upper boundary sensitivity of our
numerical model for large e is illustrated in Fig. 1. Fig-
ure 1a shows the time dependence of the surface form
drag [ĈD in (9)] for flow over a 3D ridge with e 5 1
and b 5 7.5 for various domain depths zT. The surface

2 As described in Durran and Klemp (1983), the compressible nu-
merical model maintains stability by integrating the terms responsible
for acoustic propagation on a small time step Dts and the remaining
terms on a larger step Dt.

drags for all domain depths are identical until the in-
fluence of the upper boundary becomes significant, at
which point the simulated drags diverge. In a 3D Bous-
sinesq atmosphere, increasing the depth of the numerical
domain improves the performance of the upper bound-
ary in two ways: greater domain depth gives an in-
creased delay time before reflections from the upper
boundary become significant near the surface, and in-
creasing the upper boundary height decreases the am-
plitude of the disturbance near the boundary (due to 3D
wave dispersion) and thus improves the effectiveness of
the radiation condition. Figure 1a suggests that a domain
depth NzT/U0 ø 4p is insufficient to achieve a realistic
approach to steady state for flow over long ridges. By
contrast, the domain depth NzT/U0 5 8.4p used in the
present study is seen to be quantitatively accurate to at
least time U0t/a 5 35 and qualitatively reasonable for
the duration of the present simulations (which terminate
at U0t/a 5 45).

In contrast to the 3D case, 2D hydrostatic distur-
bances in a Boussinesq atmosphere do not decay in
amplitude with height. As such, increasing the domain
depth in the 2D case simply increases the delay time
before reflections from the upper boundary corrupt the
solution near the surface. Nonetheless, the time-depen-
dent surface form drags shown in Fig. 1b suggest that
even in the 2D case, the domain depth NzT/U0 5 8.4p



1 MAY 2001 1055E P I F A N I O A N D D U R R A N

provides a sufficiently accurate solution to at least time
U0t/a 5 35.

The coarse and nested grids were found to be of suf-
ficient horizontal extent to minimize sensitivity to lateral
grid boundaries.

3. Quasi-steady surface drag and flow deflection

This section explores the surface form drag and low-
level flow deflection generated by ridges of varying e
and b at times long after the initial transient growth of
the disturbance. Note that even for the long time inte-
grations considered here, the flow in most cases does
not achieve a completely steady state. As such, there is
necessarily a degree of subjectivity in choosing repre-
sentative quasi-steady values for the surface drag and
low-level mass deflection (defined in section 3b). In the
present work, the surface drags reported as steady-state
in section 3a have been evaluated visually based on the
behavior of the drag after the initial transient growth
phase. Appendix A gives several examples showing the
time variation of the drag after the initial growth phase
and the chosen representative quasi-steady values. For
most of the 3D ridge cases and for the 2D cases without
breaking waves, the drag is relatively steady after U0t/a
5 20 and the representative quasi-steady value is de-
termined with good precision (see appendix A for de-
tails). By contrast, in the 2D cases with wave breaking,
the surface drag steadily amplifies after U0t/a 5 20 and
the flow does not reach a quasi-steady state. The drag
at U0t/a 5 32.5 is then taken as a representative value.

The low-level deflected mass fluxes considered in sec-
tion 3b become relatively steady after the initial tran-
sient phase in cases without breaking waves. In cases
with wave breaking, the deflected mass fluxes increase
monotonically with time but generally become quasi-
steady near the end of the simulation. In most cases,
the deflected mass flux is taken as approximately steady
at U0t/a 5 35. Exceptions are the calculations for b 5
7.5 and e 5 0.8 and 0.9. For e 5 0.9, the mass flux at
U0t/a 5 40 is taken as steady. For e 5 0.8, the deflected
mass flux increases for the duration of the simulation
without reaching a quasi-steady state, and the value at
the end of the simulation (U0t/a 5 45) is taken as rep-
resentative.

The time dependence of the surface drag and low-
level flow deflection are considered in more detail in
section 4.

a. Surface form drag

The surface form drag
` ` ]h

D 5 P dx dyE E ]x
2` 2`

depends both on the pressure difference across the bar-
rier and on the cross-sectional area of the barrier in the
plane normal to the incident flow. To remove the explicit

dependence of the drag on the obstacle cross section
and to allow direct comparison of flows over ridges of
varying lengths, we define the dimensional drag coef-
ficient as

` ` ]h
P(x, y, h) dx dyE E ]x

2` 2`

C 5D `

h(0, y) dyE
2`

` ` ]ĥ
P̂(x̂, ŷ, eĥ) dx̂ dŷE E ]x̂

2` 2`
2 2 ˆ5 eU 5 eU C , (9)0 0 D`

ĥ(0, ŷ) dŷE
2`

where the denominator is the cross-sectional area of the
obstacle. The dimensional drag coefficient measures the
average pressure difference across the barrier and thus
has the same linear scaling as pressure.

In the context of the linear and weakly nonlinear so-
lutions, we may expand P̂(x̂, ŷ, eĥ) in powers of e as

(1)ˆ ˆP(x̂, ŷ, eĥ) 5 P (x̂, ŷ, 0)

(1)ˆ]P
(2)ˆ1 e P (x̂, ŷ, 0) 1 ĥ (x̂, ŷ, 0) 1 · · · ,[ ]]ẑ

(10)

and substitute into (9) to find

CD 5 ĈD 5 ( 1 1 · · · ).2 2 (1) (2)ˆ ˆeU eU C eC0 0 D D (11)

The linear and weakly nonlinear semianalytic models
predict the first and second terms of this expansion,
respectively.

The nondimensional coefficient ĈD is a stratified an-
alog [for the scaling in (5)] of the standard drag coef-
ficient defined for homogenous flows past bluff bodies
(e.g., Batchelor 1967, his section 5.11), and in the fol-
lowing, we refer to ĈD simply as the drag coefficient.
Note that in (11), the coefficients , , . . . are in-(1) (2)ˆ ˆC CD D

dependent of e and thus depend only on b. In particular,
for a given b, the linear prediction is independent(1)Ĉ D

of e so that any variation of ĈD with e is due entirely
to nonlinear effects. According to (11), the first nonlin-
ear correction to ĈD as predicted by weakly nonlinear
theory varies linearly with e for fixed b.

Figure 2a shows the aspect ratio dependence of the
drag coefficient as predicted by the linear, weakly non-
linear, and fully nonlinear models for e 5 0.5. The drag
coefficient for a 2D ridge, defined from the 2D limit of
(9) as

` ]ĥˆ ˆC 5 P(x̂, eĥ) dx̂, (2D case),D E ]x̂
2`

is indicated by a thin horizontal line for the linear and
fully nonlinear solutions. (The 2D drag coefficient pre-
dicted by the weakly nonlinear model is not believed
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FIG. 2. (a) Normalized drag coefficient as a function of b for e 5 0.5 as predicted by linear theory (solid), weakly nonlinear theory
(dashed), and fully nonlinear numerical simulation (crosses). The normalized drag coefficient for the 2D case is shown as a thin horizontal
line for the linear theory (solid) and nonlinear numerical (dot-dashed) cases. (b) As in (a) except e 5 1.0.

FIG. 3. Nonlinear drag amplification dĈD as a function of e for the
fully nonlinear 2D (circles) and b 5 7.5 (crosses) calculations and
for the b 5 7.5 weakly nonlinear semianalytic model (dashed).

to be relevant due to the inapplicability of the linear
radiation condition in the nonlinear 2D steady-state
problem.) In all cases, the drag coefficient has been
normalized using the linear coefficient for 2D flow,3

5 1.02. As expected, the drag coefficient for(1)Ĉ (2d)D

an axisymmetric (b 5 1) obstacle is significantly weaker
than the 2D ĈD for each of the linear, weakly nonlinear,
and nonlinear solutions. However, the drag coefficient
for the linear and nonlinear models does appear to as-
ymptote to the 2D result as b increases. For b 5 12,
the difference between the 2D and 3D drag coefficients

3 We do not have analytic expressions for the drag generated by
the obstacle (7). As such, the 2D value 5 1.02 is simply the(1)Ĉ D

result predicted by the linear semianalytic model.

is roughly 5% of the 2D value for both the linear and
fully nonlinear solutions.

For e 5 0.5, the flow is in the weakly nonlinear re-
gime for all aspect ratios, and the nonlinear drag is well
represented by the second-order weakly nonlinear so-
lution. Figure 2b shows the corresponding situation for
e 5 1.0. At this mountain height, isentropes above the
lee slope overturn and wave breaking occurs for b
slightly greater than unity. With the onset of wave break-
ing, the flow becomes highly nonlinear, and the weakly
and fully nonlinear models yield very different solu-
tions. Significantly, in contrast to the e 5 0.5 case, the
fully nonlinear ĈD for e 5 1.0 remains well below the
nonlinear 2D result for b at least as large as 12. Three-
dimensional effects are thus evident in the highly non-
linear wave-breaking regime even for relatively long
ridges.

As suggested by Fig. 2b, the nonlinear amplification
of the drag coefficient associated with the onset of wave
breaking in flows with constant N and U0 is significantly
weaker for flow over 3D ridges than for 2D flows. Figure
3 shows the nonlinear amplification factor

(1)ˆ ˆC 2 CD DˆdC 5 , (12)D (1)ĈD

as a function of e for flow over a ridge with b 5 7.5
and for 2D flow. Here, refers to the linear drag(1)Ĉ D

coefficient corresponding to the particular case (i.e., 2D
or b 5 7.5). The dashed line represents the nonlinear
amplification predicted by the weakly nonlinear model
for b 5 7.5, as given by substituting the first two terms
of the expansion in (11) into (12).4 The increase in the

4 Note the excellent agreement between the nonlinear numerical
and weakly nonlinear semianalytic predictions for dĈD in the limit
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FIG. 4. Lateral deviation of initially streamwise dye lines on the
low-level material surface N(z 2 z)/U0 5 0.4 for a ridge with b 5
12 and (a) e 5 0.5 or (b) e 5 1.0.

FIG. 5. Control volume for mass flux calculations. See text for de-
tails.

nonlinear amplification factor (12) associated with the
onset of wave breaking at e ø 0.8 is readily apparent
in both the 2D and b 5 7.5 simulations. However, the
increase in dĈD in the 3D case is much reduced from
the corresponding 2D result. At mountain height e 5
0.8, the nonlinear amplification dĈD for b 5 7.5 is
roughly 55% of the 2D value.

b. Low-level mass fluxes

The reduction in the nonlinear enhancement of the
drag in the wave-breaking regime in 3D appears to be
related to an increase in the lateral deflection of the low-
level flow associated with wave breaking in the finite-
length ridge case. Figure 4 shows initially streamwise
dye lines [i.e., lines of constant y 2 h; see (6)] on the
low-level material surface N(z 2 z)/U0 5 0.4 at time
U0t/a 5 35 for the case b 5 12. As illustrated in the
figure, the lateral deviation of the dye lines increases
dramatically as e increases from 0.5 to 1.0.

A quantitative measure of the low-level flow deflec-
tion can be obtained by considering a mass budget for
the control volume shown schematically in Fig. 5. The
lower boundary of the control volume coincides with
the topography, the sides are embedded in vertical
planes, and the top boundary is an initially horizontal
material surface z 2 z 5 z0 where z0 is a constant. The
sides parallel to the x axis intersect the ends of the
uniform height section of the ridge at y 5 6(b 2 1)a.
The downstream side is located at the obstacle crest x
5 0, and the upstream face is placed as far upstream

of small e for the b 5 7.5 case (Fig. 3). To obtain this agreement,
it was necessary to compute the numerical solutions for e 5 0.1, 0.2,
and 0.3 using double the standard machine precision to capture the
weak nonlinear effects at small e.

as is computationally feasible, which in this case was
x 5 215a. Note that the upper and lower boundaries
of the control volume are impermeable to mass fluxes.
As such, the mass entering the control volume through
the upstream face at steady state must either flow over
the obstacle crest or be deflected laterally out of the
control volume and around the ridge.

Let z̃(x, y, z0) denote the height of the material surface
with initial undisturbed height z0 [i.e., z̃(x, y, z0) 5 z0

1 z(x, y, z̃)], and consider the mass fluxes

0 z̃(z )0

F (y, z ) 5 r y dz dx, (13a)y 0 E E s

215a h

(b21)a z̃(z )0

F (x, z ) 5 r (u 1 u ) dz dy, (13b)x 0 E E s 0

2(b21)a h

where rs is a constant reference density for the Bous-
sinesq system. A measure of the flow deflection due to
the ridge may then be defined as

F [(b 2 1)a, z ] 2 F [2(b 2 1)a, z ]y 0 y 0
D 5M F (215a, z )x 0

ˆ5 eD . (14)M

The fractional mass deflection DM can be interpreted as
the fraction of the upstream mass flux below z0 incident
on the uniform height section of the ridge that deflects
around the ridge rather than ascending the crest. Non-
linear effects are highlighted by normalizing DM by its
linear scaling to remove the e dependence predicted by
linear theory. The scaled fractional mass deflection D̂M

may then be expanded in terms of e, as in (11), to
achieve linear and weakly nonlinear approximations.
However, the weakly nonlinear approximation to D̂M is
rather arduous to compute, and only the linear mass
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FIG. 6. Scaled low-level fractional mass deflection D̂M as a function
of b for e 5 0.5 (plus signs) and e 5 1.0 (crosses). Solid line shows
linear prediction .(1)D̂M

FIG. 7. Nonlinear enhancement of the low-level mass deflection
dD̂M as a function of e for the case b 5 7.5.

deflection is calculated here.5 For the case b 5 1,(1)D̂M

the mountain is circular, and we consider the limiting
form of (14)

0 z̃(z )0 ]y
r dz dxE E s ]y

215a h
D 5 (b 5 1 case), (15)M z̃(z )0

r (u 1 u ) dzE s 0

h

where all quantities are evaluated at y 5 0. In the fol-
lowing, we have chosen the bounding surface Nz0/U0

5 2, in which case the top of the control volume is
coincident with the lowest dye line plotted in Figs. 9
and 10. Above the lee slope, this surface is roughly
aligned with the top of the region of highly accelerated
downslope flow in cases with wave breaking.

The influence of aspect ratio on low-level flow de-
flection is illustrated in Fig. 6, which shows the scaled
fractional mass deflection D̂M as a function of b for e
5 0.5 and e 5 1.0. The linear prediction is shown(1)D̂M

as a solid line. As expected, the fractional mass deflec-
tion decreases sharply with increasing b for the linear
and e 5 0.5 calculations. At b 5 12 and e 5 0.5, less
than 5% of the incident mass flux below z0 is deflected
around the ridge (i.e., DM 5 eD̂M , 0.05). The fractional
mass deflection decreases much less rapidly with b for
the e 5 1.0 case. Even at b 5 12, nearly 30% of the
incident mass flux below z0 is deflected laterally around
the ridge for e 5 1.0.

5 The linear fractional mass deflection is computed by first(1)D̂M

calculating the linear semianalytic solution on a regular grid and then
computing the linear approximations to Fy[6(b 2 1)a, z0] numeri-
cally from the gridded data. [In the linear approximation to (14), the
denominator is taken to be 2rsu0z0(b 2 1)a.] The linear approxi-
mation to (15) is computed similarly.

The results of Fig. 6 suggest that the increased non-
linearity associated with wave breaking has a profound
effect on the lateral deflection of the low-level flow. The
influence of wave breaking on the low-level flow de-
flection is seen more clearly in Fig. 7, which shows the
nonlinear enhancement of the mass deflection

(1)ˆ ˆD 2 DM MˆdD 5 , (16)M (1)D̂M

[cf. (12)] as a function of e for b 5 7.5. A comparison
of Fig. 7 with Fig. 3 indicates that the onset of wave
breaking at e ø 0.8 leads to a significant increase in
the nonlinear contribution to the low-level mass deflec-
tion as well as the surface form drag. It is likely that
the increased flow deflection associated with wave
breaking acts as a negative feedback on the surface drag
and at least partially accounts for the discrepancy be-
tween the 2D and 3D results in Figs. 2b and 3. The
relationship between surface drag and low-level flow
deflection is explored in more detail in the following
subsection.

c. Wave amplitude and lee-slope warming

The pronounced lateral deflection of the low-level
flow upstream of the obstacle in 3D cases with breaking
waves leads to stronger downward displacements in the
lee as air from aloft descends to replace the deflected
mass. As a consequence, the near-surface flow above
the lee slope along the interior of a 3D ridge is more
positively buoyant than the corresponding 2D flow. Fig-
ure 8 compares the buoyancy at the lowest thermody-
namic grid level (Nz/U0 ø p/23) in the e 5 1.0 2D case
with that averaged over the uniform height section [i.e.,
over 2(b 2 1)a # y # (b 2 1)a] of a 3D ridge with
e 5 1.0 and b 5 7.5. The lee-side buoyancy is signif-
icantly greater in the 3D case than in the 2D case, and
the increase in buoyancy is maintained well downstream
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FIG. 8. Buoyancy b/eNU0 at the lowest thermodynamic grid level
(Nz/U0 ø p/23) at time U0t/a 5 35. Solid line shows average over
the uniform height section [i.e., over 2(b 2 1)a # y # (b 2 1)a]
of a 3D ridge with b 5 7.5 and e 5 1.0 and dashed line is the
corresponding 2D case.

FIG. 9. Buoyancy b/eNU0 contoured at intervals of 0.2083 at U0t/a
5 35 for (a) flow over a 2D ridge and for flow along the centerline
of 3D ridges with (b) b 5 12 and (c) b 5 7.5. In all cases, e 5 1.0.
Darkest shading indicates values in excess of 1.25. Overlaid as thick
solid lines are dye lines corresponding to material surfaces with N(z
2 z)/U0 5 2 and N(z 2 z)/U0 5 3.5. Thin horizontal lines at Nz/U0

5 0.75p are shown for reference.

of the obstacle. The enhancement of the buoyancy over
the lee slope in the 3D flow is similar to the föehn effect
often observed in flows over mountain ranges.

Figure 9 shows the scaled buoyancy b/eNU0 in ver-
tical cross section for e 5 1.0 at time U0t/a 5 35 for
the 2D case and along the ridge centerline for the cases
b 5 12 and b 5 7.5. A comparison of Figs. 9a, 9b,
and 9c indicates that although the near-surface lee-slope
buoyancy is increased in the 3D simulations relative to
the 2D case, the buoyancy further aloft above the lee
slope is significantly greater for the 2D case throughout
most of the lowest wavelength of the disturbance (ap-
proximately throughout the region 0.125 # Nz/2pU0 #
0.75). Similarly, comparison of the dye lines in Figs.
9a, 9b, and 9c suggests that the deflection of the low-
level flow upstream of the 3D ridges results in reduced
vertical displacements above the windward slope and
weaker wave amplitude aloft. The weaker wave ampli-
tude and accompanying reduction in vertically inte-
grated buoyancy above the lee slope results in a weaker
lee-slope pressure minimum in the b 5 12 and b 5 7.5
cases relative to 2D, as shown in Fig. 10. The pro-
nounced weakening of the lee-side pressure minimum
primarily accounts for the reduction in the surface form
drag in 3D simulations with wave breaking relative to
the 2D case as discussed in section 3a.

4. Upstream influence and low-level flow deflection

The onset of wave breaking and the transition to the
high drag state in stratified flow produces upstream-
propagating disturbances in a manner analogous to the
generation of upstream disturbances by hydraulic tran-
sitions in flows of multiple homogenous layers. Such
disturbances are dominated by nearly columnar modes
(i.e., modes with x-direction wavenumber k ø 0 and
vertical group speed cgz ø 0), which act to decelerate
and deepen the low-level flow upstream. Upstream dis-
turbances in 2D stratified flow have received detailed
attention in previous studies (for review, see Baines
1995, sections 5.11 and 5.12). Here, we briefly compare
the upstream disturbances generated by 2D and 3D ridg-

es and consider the effect of such disturbances on the
3D flow.

Figure 11a shows the disturbance field u/eU0 up-
stream of the obstacle crest at U0t/a 5 40 for the 2D
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FIG. 10. As in Fig. 9 except that P/ is contoured at intervals of2eU 0

0.25. Darkest shading indicates values more negative than 22.0.

FIG. 11. The x component disturbance wind speed u/eU0 (contour
interval 0.125; shading every 0.25 for negative values) upstream of
the obstacle at U0t/a 5 40 (a) for 2D ridge with e 5 1.0; (b) in cross
section along the centerline y 5 0 of 3D ridge with b 5 7.5 and e
5 1.0; and (c) at the lowest grid level for the b 5 7.5 and e 5 1.0
case. Heavy solid line in (c) is topographic contour at half maximum
height. Also shown in (c) are contours of the y component disturbance
wind speed y /eU0 (c.i., 0.125).

case with e 5 1.0. The corresponding disturbance along
the centerline of a 3D ridge with b 5 7.5 is shown in
Fig. 11b. In the 2D case, the columnar modes propagate
indefinitely upstream, with only a weak decay due to
vertical dispersion. (As will be seen in Fig. 12, the low-
level decelerated layer in Fig. 11a is still expanding
upstream at U0t/a 5 40.) In 3D, the disturbance dis-
perses in the horizontal as well as the vertical, and a

steady state is achieved with decelerated flow extending
only a finite distance upstream. Figure 11b shows that
the magnitude of the disturbance wind speed (i.e., |u|)
at the surface for b 5 7.5 decays upstream with a length
scale slightly less than ba. This decay scale is consistent
with the prediction of Baines (1995) (section 6.6) based
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FIG. 12. The x component disturbance wind speed u/eU0 (c.i., 0.125, shading every 0.25 for negative values) upstream
of the obstacle at z 5 h as a function of distance upstream and time (a) for 2D ridge with e 5 1.0; (b) at centerline y
5 0 for 3D ridge with b 5 7.5 and e 5 1.0; (c) at y 5 0 for 3D ridge with b 5 7.5 and e 5 0.5; (d) shows y component
wind speed y /eU0 (c.i., 0.075, shading every 0.15) at z 5 h upstream of the end of the ridge at y 5 2(b 2 1)a for
the b 5 7.5 and e 5 1.0 case. Horizontal lines in (b) and (d) mark the local extrema in time of the surface pressure
drag for b 5 7.5 and e 5 1.0 (cf. Fig. 13).

on small-amplitude theory for steadily forced columnar
modes in 3D. Note that despite the limited upstream
extent of the low-level decelerated layer in the 3D case,
the minimum upstream u is more negative for b 5 7.5
than for 2D.

The horizontal structure of the disturbance at the low-
est u and y grid level (Nz/U0 ø p/23) is shown in Fig.
11c. The contours of y /eU0 show that the pattern of
deflected flow at the ends of the ridge extends well
upstream of the obstacle, suggesting that the enhanced
low-level flow deflection in the high-drag state (cf. sec-
tion 3b) is produced at least in part by the upstream-
propagating modes. Figure 11c also shows that the flow
deflection is accomplished without the occurrence of
stagnant flow at the lowest u and y grid level (i.e., the
minimum value in Fig. 11c is u/U0 5 20.92 . 21.0).

The time development of the upstream disturbance in
the 2D and 3D cases is considered in Fig. 12. Figures
12a and 12b show the streamwise disturbance speed
u/eU0 at the surface along y 5 0 as a function of time
for the 2D and b 5 7.5 cases with e 5 1.0. The case
b 5 7.5 and e 5 0.5, in which wave breaking does not
occur, is shown for comparison in Fig. 12c. All three
cases exhibit a rapid upstream expansion of the region
of decelerated flow associated with the transient growth
of the disturbance over the time interval 24 # U0t/a
# 4. The initial upstream surge is significantly stronger
for e 5 1.0 than for e 5 0.5, but this difference cannot

be attributed to wave breaking, since isentropes do not
overturn in the e 5 1.0 cases until roughly U0t/a 5 7.5.
After the initial transient phase, the flow in the e 5 0.5
case becomes relatively steady, while in the e 5 1.0
cases, the flow continues to evolve in time.

In the 2D case with e 5 1.0, the most pronounced
feature of the time development is the rapid advance of
the upstream disturbance after U0t/a 5 20 until the end
of the simulation. Figs. 13a and 13b show that the sur-
face pressure drag is steadily amplifying during this
same time interval. By contrast, during the earlier in-
terval 8 # U0t/a # 20, the drag is decreasing in time
and the upstream extent of the disturbance is nearly
steady.

In the b 5 7.5, e 5 1.0 case, the surface drag after
the initial transient phase is characterized by a damped
oscillation about an apparent steady state. The frequency
of the oscillation is a function of the width of the ridge
with smaller b producing a more rapid oscillation (not
shown). As in the 2D case, the rate of expansion of the
upstream disturbance appears to be related to the time
tendency of the surface drag. The vertical lines in Figs.
13a and 13b and the horizontal lines in Figs. 12b and
12d mark the local maxima and minima in time of the
surface drag for b 5 7.5. The times at which these
maxima and minima occur divide the evolution of the
upstream disturbance into distinct phases (Fig. 12b).
During the interval 7 # U0t/a # 20, the drag is de-
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FIG. 13. (a) Nondimensional drag coefficient ĈD as a function of time for the 2D e 5 1.0 case (short dash) and for b 5 7.5 and e 5 1.0
(solid). Also shown is the scaled low-level fractional mass deflection D̂M (long dash) for the b 5 7.5 case. (b) Time tendencies (a/U0)dĈD/dt
and (a/U0)dD̂M/dt for the curves shown in (a). Vertical lines in both panels mark the local extrema of the surface pressure drag for b 5 7.5
and e 5 1.0.

creasing in time, and the upstream advance of the low-
level decelerated layer is slow. From U0t/a 5 20 to
U0t/a 5 34, the drag is increasing, and the disturbance
progresses upstream more rapidly. After U0t/a 5 34,
the drag shows a weak decrease (Fig. 13b), and the
upstream advance of the decelerated layer is again slow.

Figure 12d shows the cross-stream wind speed y /eU0

at z 5 h upstream of the end of the uniform height
section of the ridge [y 5 2(b 2 1)a] as a function of
time for the b 5 7.5 and e 5 1.0 case. As the columnar
disturbance propagates upstream, the region of deflected
flow at the end of the ridge expands upstream as well.
As a result, the low-level mass deflection D̂M increases
in time throughout the simulation. Note that the rate of
increase in D̂M (Fig. 13b) is well correlated with the rate
at which the low-level decelerated layer expands up-
stream. This again suggests the importance of the up-
stream-propagating columnar disturbance in establish-
ing the low-level mass deflection.

5. Discussion: Limitations and extensions

The results of the previous sections have been limited
to the idealized case of nonrotating, free-slip flow with
uniform basic wind and stability past smooth, isolated ridg-
es. The consideration of such simplified prototype flows
forms a basis for understanding more complex cases. Here
we offer brief comments on the extension of our results
to flows with nonuniform basic states and rotation.

In the case of uniform wind and stability, the tran-
sition to the high-drag state is concurrent with the steep-
ening and overturning of isentropes above the lee slope.
However, high-drag-state transitions are often produced
without wave breaking in flows with height-varying ba-
sic stability. Preliminary computations using two uni-
form layers of different stability, as in Durran (1986a),
suggest that the basic results of sections 3 and 4 extend
to high-drag-state flows without wave breaking as well.
The generation of upstream disturbances and the as-

sociated low-level flow deflection are thus more intrin-
sically related to the high-drag-state transition than to
wave breaking per se.

The extension of the present results to rotating flows
past long ridges is perhaps more subtle. We restrict our
remarks to the case of large Ro 5 U0/ fa (e.g., Ro *
4) for which our results are most relevant. In the op-
posite limit of small Ro (i.e., Ro K 1) the flow is quasi-
geostrophic, and high-drag states do not occur. The in-
termediate regime of Ro ; 1 has received relatively
little attention in the literature (see, however, Trüb and
Davies 1995), and we leave this case to future work.

For large Ro, the wave disturbance over the obstacle
and presumably the mechanism for columnar mode gen-
eration are not directly affected by rotation. However,
linear theory predicts that rotational effects limit the
streamwise decay scale of an upstream columnar dis-
turbance at steady state to roughly the deformation ra-
dius LD 5 N/mf, where m is the dominant vertical wave-
number of the upstream-propagating modes. [Note that
there is in general no a priori way to predict an appro-
priate value for m. Pierrehumbert and Wyman (1985)
suggest m ø g/h0, where g is some universal constant;
alternatively, from Fig. 11a, we might estimate m ø
2N/3U0).] As discussed in section 4, horizontal disper-
sion limits the upstream decay scale to roughly ba. We
thus expect that for ba , LD, rotation has little effect
on either the mountain wave in the vicinity of the ob-
stacle or the upstream disturbance, and the results of
the present study apply without modification. By con-
trast, for ba . LD the upstream decay scale is limited
by rotation, and the upstream disturbance adjusts toward
geostrophy with a greater fraction of the flow deflected
northward around the ridge. The modification of the
upstream flow then likely affects the wave disturbance
over the obstacle as well. Nonetheless, it seems probable
that the basic result of increased flow deflection and
consequent increase in 3D effects with transition to the
high-drag state still applies.
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6. Summary and conclusions

This study has compared flow over ridges in 3D to
the well-studied 2D limit. Our results indicate that for
linear and weakly nonlinear cases, the low-level flow
over the interior of the ridge is well described by 2D
theory when b is roughly 10 or greater. By constrast,
when e is large enough to force wave breaking and high-
drag-state flow, substantial discrepancies between the
2D and 3D results remain apparent for the largest b
considered in this work (b 5 12).

As in the 2D case, an abrupt increase in the surface
form drag occurs when the height of an elongated (b
. 1) 3D ridge is made large enough to force overturning
isentropes. The results of this study show that in 3D,
the transition to the high-drag state is also accompanied
by an abrupt increase in low-level flow deflection. Even
at b 5 12, a significant fraction of the incident low-
level mass flux in the high-drag state is deflected around
the ridge rather than ascending the crest. The increased
flow deflection is produced at least in part by the up-
stream-propagating columnar disturbances associated
with the high-drag-state transition. As a result of the
low-level flow deflection, the enhancement of the sur-
face drag associated with wave breaking is significantly
weaker for the 3D case than for 2D. For example, the
nonlinear enhancement of the surface drag as e is in-
creased above the critical value for wave breaking in
2D is roughly twice the corresponding enhancement for
b 5 7.5.

The pronounced low-level flow deflection in the high-
drag state leads to important morphological differences
between the 2D and 3D flows. The 3D case features
warmer near-surface flow above the lee slope, as air
from aloft descends to replace the deflected mass. At
the same time, the vertical displacement of fluid parti-
cles over the windward slope is weaker in the 3D case,
since less of the incident mass ascends to the crest. The
reduced vertical displacement above the windward slope
leads to weaker wave amplitude and weaker buoyancy
perturbations aloft. As a result, the vertically integrated
buoyancy above the lee slope and the magnitude of the
lee-side surface pressure minimum are less for 3D high-
drag-state flow than for 2D. The weakening of the lee-
side surface pressure minimum primarily accounts for
the weaker cross-mountain pressure drag in the 3D case.

In the present work, we have carefully diagnosed and
explored the onset of 3D effects with increasing e in
flows over long ridges. Most previous studies have em-
phasized the importance of windward-slope stagnation
in establishing 3D flow perturbations. In particular, it
has been suggested that stagnation on the upstream slope
produces a transition from a regime in which flow passes
directly over the obstacle to a more fully 3D regime in
which flow is deflected laterally at low levels (e.g.,
Smith 1989a; Baines 1995, section 6.7). Smith and
Grønås (1993) and Baines (1995, sections 6.4, 6.7) have
further suggested that wave breaking promotes stag-

nation on the windward slope (at least for relatively
small b) and thereby induces the transition to the flow-
splitting regime. For long ridges (large b), the present
results show that wave breaking may introduce signif-
icant low-level flow deflection and consequent 3D ef-
fects without windward stagnation. In the b 5 7.5 case
shown in Figs. 3 and 7, upstream stagnation first occurs
at the surface for e 5 1.0.6 In contrast to the evident
effects of wave breaking at e 5 0.8, the occurrence of
upstream stagnation has no noticeable effect on the sur-
face drag or the low-level mass deflection.
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APPENDIX

Time Variation of the Surface Drag after the
Transient Growth Phase

Figures A1a–c indicate the time variation of the sur-
face drag [in terms of the nondimensional drag coeffi-
cient ĈD defined in (9)] after the transient growth phase
for a 3D ridge with b 5 7.5 and 3 different values of
e. Thin horizontal lines give the chosen representative
quasi-steady value for each case. In the e 5 0.5 case
of Fig. A1a, the obstacle height is below the critical
value at which isentropes overturn and wave breaking
occurs. By contrast, wave breaking is present in both
the e 5 0.8 and e 5 1.0 cases of Figs. A1b and A1c.
Figure A1d shows an example of a 2D case with wave
breaking (e 5 1.0).

In the 3D cases without breaking waves, the time
variation of the surface drag is minimal after roughly
U0t/a 5 15, and the steady-state values are thus deter-
mined rather precisely. In the example of Fig. A1a, the
range in the drag after U0t/a 5 15 is less than 61% of
the chosen representative value. Similar precision is ob-
tained in the 2D cases without wave breaking. However,
when wave breaking occurs, the surface drag is less
steady. For 3D ridges, the greatest time variation in the
surface drag after the transient growth phase is observed
for long ridges with heights just greater than the thresh-
old at which breaking waves are forced. The b 5 7.5

6 Note that stagnant flow at the lowest grid level for u and y (Nz/U0

ø p/23) does not occur at steady state until e 5 1.3 (cf. Fig. 11c).
However, a more precise diagnosis of surface stagnation may be
obtained from consideration of w, which is defined at the lower bound-
ary. Along the centerline of the obstacle, y 5 0, so that by (4), w 5
(u0 1 u)]h/]x at z 5 h. The occurrence of w # 0 along the centerline
on the upstream slope then implies u0 1 u # 0 as well. Using this
more precise criterion, surface stagnation first occurs at e 5 1.0 (but
does not occur for the e 5 0.8 or e 5 0.9 cases, both of which feature
breaking waves and significant upstream deflection).
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FIG. A1. Time variation of the surface drag after the initial transient
phase. Heavy lines show the nondimensional drag coefficient ĈD [de-
fined in (9)], and thin horizontal lines show the value taken as the
representative quasi-steady value. (a)–(c) show results for b 5 7.5
and (a) e 5 0.5, (b) e 5 0.8, and (c) e 5 1.0; (d) shows the 2D case
for e 5 1.0.

and e 5 0.8 case in Fig. A1b is an example of such a
flow. Note that even in this case, the range in the drag
after the initial growth phase is limited to roughly 67%
of the representative quasi-steady value. As the height
of a 3D ridge is further increased, the drag becomes
somewhat more steady. In the b 5 7.5 and e 5 1.0 case
of Fig. A1c, the range in the drag after U0t/a 5 20 is
at most 65%; furthermore, the oscillation in the drag
decays in time so that the steady-state value is likely
determined to within a few percent. By contrast, when
wave breaking occurs in the 2D cases, the drag steadily
amplifies after U0t/a 5 20 and does not approach a
quasi–steady state (Fig. A1d). In this case, we take the
drag at U0t/a 5 32.5 as a representative value.
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Ólafsson, H., and P. Bougeault, 1996: Nonlinear flow past an elliptic
mountain ridge. J. Atmos. Sci., 53, 2465–2489.
, and , 1997: The effect of rotation and surface friction on
orographic drag. J. Atmos. Sci., 54, 193–210.

Pearson, R., 1974: Consistent boundary conditions for numerical
models of systems that admit dispersive waves. J. Atmos. Sci.,
31, 1481–1489.

Peltier, W. R., and T. L. Clark, 1979: The evolution and stability of
finite-amplitude mountain waves. Part II: Surface wave drag and
severe downslope windstorms. J. Atmos. Sci., 36, 1498–1529.

Pierrehumbert, R. T., and B. Wyman, 1985: Upstream effects of me-
soscale mountains. J. Atmos. Sci., 42, 977–1003.

Schär, C., and D. R. Durran, 1997: Vortex formation and vortex
shedding in continously stratified flows past isolated topography.
J. Atmos. Sci., 54, 534–554.

Skamarock, W. C., and J. Klemp, 1993: Adaptive grid refinement for
two-dimensional and three-dimensional nonhydrostatic atmo-
spheric flow. Mon. Wea. Rev., 121, 788–804.

Smith, R. B., 1979: The influence of mountains on the atmosphere.
Advances in Geophysics, Vol. 21, Academic Press, 87–230.
, 1980: Linear theory of stratified hydrostatic flow past an iso-
lated mountain. Tellus, 32, 348–364.
, 1985: On severe downslope winds. J. Atmos. Sci., 42, 2597–
2603.
, 1988: Linear theory of stratified flow past an isolated mountain
in isosteric coordinates. J. Atmos. Sci., 45, 3889–3896.



1 MAY 2001 1065E P I F A N I O A N D D U R R A N

, 1989a: Hydrostatic airflow over mountains. Advances in Geo-
physics, Vol. 31, Academic Press, 1–41.
, 1989b: Mountain induced stagnation points in hydrostatic flow.
Tellus, 41A, 270–274.
, and S. Grønås, 1993: Stagnation points and bifurcation in 3-D
mountain airflow. Tellus, 45A, 28–43.

Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number

flow past three-dimensional obstacles. Part I: Baroclinically gen-
erated lee vortices. J. Atmos. Sci., 46, 1154–1164.
, and , 1990: Low Froude number flow past three-dimen-
sional obstacles. Part II: Upwind flow reversal zone. J. Atmos.
Sci., 47, 1498–1511.
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