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ABSTRACT

The formation of lee wakes and vortices is explored in the context of stratified flow with uniform basic-state
wind and stability past elongated free-slip ridges.

The theory of inviscid flow past a ridge of small nondimensional height e is revisited using a weakly nonlinear
semianalytic model to compute flow fields through O(e2). Consistent with previous work, the weakly nonlinear
solutions show an O(e2) couplet of vertical vorticity above the lee slope of the appropriate sense to describe
the observed circulation in lee vortices. Nonetheless, the actual O(e2) flow fields are found to be inconsistent
with the developing lee-vortex structures observed in previous nonlinear numerical experiments. Lee-vortex
formation must therefore depend significantly on finite-amplitude and/or dissipative effects not described by the
weakly nonlinear inviscid model.

The weakly nonlinear results are compared to fully nonlinear numerical simulations of wake formation in
viscous and thermally diffusive laminar flow. The nonlinear viscous simulations show a low-level hydraulic-
jump-like structure in the lee of the obstacle, which is not predicted by the weakly nonlinear inviscid theory.
A wake of decelerated fluid forms downstream of the jump with the surface flow in the wake reversing and lee
vortices forming for sufficiently large e. The vertical vorticity of the wake is concentrated along shear lines
extending downstream from the lateral ends of the jump. In its qualitative features the low-level wake flow is
surprisingly similar to previous shallow-water calculations.

1. Introduction

Significant attention has been devoted in the last de-
cade to the study of lee-wake and vortex formation in
stratified flow past isolated topographic obstacles. This
effort has been motivated in large part by indications
that the process of wake formation in stratified flow may
be fundamentally different from that occurring in ho-
mogenous flows at high Reynolds number. In homog-
enous flow the vorticity of the wake is produced in the
viscous boundary layer at the surface of the obstacle
and shed into the interior of the fluid through the process
of boundary-layer separation. That wakes in stratified
flow might form in the absence of boundary-layer sep-
aration was first explored in a seminal study by Smo-
larkiewicz and Rotunno (1989, hereafter SR89). SR89
conducted a series of numerical simulations of stratified
flow past topographic obstacles and found that realistic
wakes and vortices formed even when a free-slip con-
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dition was applied at the obstacle surface. The free-slip
condition eliminates the viscous boundary layer so that
the simulated vortices of SR89 are clearly not due to
boundary-layer separation. Similar indications have
been provided by numerical modeling studies of ob-
served wakes in the atmosphere; such studies show that
neglecting or reducing surface friction often results in
intensification rather than weakening of the simulated
vortices (see discussion in Wilczak and Christian 1990).
The idea that atmospheric wakes may form independent
of boundary layer separation has stimulated several the-
oretical efforts attempting to explain the process of wake
and vortex formation in free-slip stratified flows.

SR89 considered the idealized case of flow with uni-
form basic wind and stability past an axisymmetric to-
pographic barrier. The authors proposed that the vertical
vorticity of their simulated wakes and vortices derives
from the baroclinic generation and tilting of vorticity in
the three-dimensional gravity wave generated by the
obstacle. To support their argument, SR89 considered
a perturbation analysis of steady nondissipative flow
past an obstacle of small nondimensional height e 5
Nh0/u0 (N is the base-state buoyancy frequency; u0 is
the base-state wind speed; and h0 is the maximum height
of the obstacle). Using the linear mountain wave so-
lution of Smith (1980), SR89 showed that baroclinically
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generated O(e) horizontal vorticity is tilted into the ver-
tical by the O(e) vertical velocity to produce a couplet
of vertical vorticity over the lee slope at O(e2). The sign
of this couplet was shown to be consistent with the
observed circulations in the numerically simulated vor-
tices. It was then assumed that this O(e2) couplet of
vertical vorticity implies an O(e2) tendency to reverse
the flow over the central part of the lee slope, thereby
contributing to the formation of recirculating lee vor-
tices.

SR89’s basic argument involving baroclinic generation
and tilting has been extended or modified in a number
of subsequent studies (Crook et al. 1990, hereafter
CCM90; Rotunno and Smolarkiewicz 1991, hereafter
RS91; Davies-Jones 2000) to better account for nonlinear
processes and time dependence. The need to consider
highly nonlinear effects was particularly emphasized by
CCM90. CCM90 considered numerical simulations of
flow past an axisymmetric obstacle and noted that at small
or moderate e the fluid between the vortex centers over
the lee slope is always accelerated. Only with the onset
of wave breaking and a consequent increase in nonlin-
earity did the authors’ simulations produce reversal of
the lee-slope flow. This led CCM90 to question the ability
of small-amplitude theory to account for the formation
of lee vortices. Instead, CCM90 proposed that wave
breaking leads to lee-vortex formation by inducing strong
downward motion in the lee of the obstacle, thereby am-
plifying the tilting of baroclinically generated horizontal
vorticity in the mountain wave. Note that in this respect
the theories of SR89, CCM90, RS91, and Davies-Jones
(2000) are all fundamentally similar: each attributes the
vertical vorticity of the wake to the tilting of baroclini-
cally generated horizontal vorticity by the vertical motion
field in the lee of the obstacle.

A rather different description of wake and vortex for-
mation based on shallow-water theory has been consid-
ered in some detail by Schär and Smith (1993, hereafter
SS93). SS93 showed that in shallow-water flow, lee
wakes and vortices may form as a result of vorticity and
potential vorticity (PV) generation in hydraulic jumps.
The restriction to shallow-water dynamics is intended
as a first approximation to real atmospheric flows with
distinct elevated inversions; indeed, the shallow-water
model appears to provide a reasonable description of
observed wakes in such flows (Smith and Grubišić
1993). Nonetheless, the implications of these results for
more general flows without distinct inversions have re-
mained uncertain. A particular limitation of the shallow-
water approach is that in conventional shallow-water
theory the flow in the infinitesimally thin region of the
jump is left unspecified. As a result, the mechanisms of
vorticity and PV generation are also left unspecified.
The shallow-water analysis thus predicts the production
of PV in the jump but provides no conceptual model to
explain how air particles acquire vorticity and PV.

The present two-part study extends and, to some ex-
tent, synthesizes the results of SR89 and SS93 through

the identification of fully finite-amplitude effects con-
tributing to lee-vortex formation in free-slip stratified
flows. Here, in Part I, we compare weakly nonlinear
[i.e., valid through O(e2)] semianalytic calculations and
fully nonlinear numerical simulations in an effort to
highlight the nonlinear processes leading to vortex de-
velopment. The following section gives the experimen-
tal setup and briefly describes the numerical and sem-
ianalytic models. In section 3 the weakly nonlinear mod-
el is used to revisit the small-amplitude inviscid theory
of SR89. It is shown that while the weakly nonlinear
steady-state solution does reveal a couplet of vertical
vorticity over the obstacle at O(e2), the associated O(e2)
velocity fields do not suggest the low-level flow reversal
characteristic of developing lee vortices. The small-am-
plitude results thus demonstrate that a tendency to re-
verse the flow over the lee slope cannot be deduced
from the vertical vorticity alone—the horizontal vortic-
ity and boundary conditions must also be considered.

Given that the weakly nonlinear inviscid model fails
to predict recirculating vortices, the dynamics of lee
vortex formation must be fundamentally dependent on
either finite-amplitude processes or dissipative effects
or both. Section 4 compares the small-amplitude results
of section 3 with fully nonlinear numerical simulations.
We consider the particular case of a moderate-Reynolds-
number flow in which the viscosity and thermal diffu-
sivity are large enough to prevent the development of
small-scale turbulence; this model is adopted as the sim-
plest context in which to analyze wake formation in
stratified flow. Flow reversal and vortex formation in
the nonlinear viscous simulations are found to be closely
tied to the dynamics of a hydraulic-jump-like structure
downstream of the obstacle. The resulting low-level
flow is similar in many respects to the shallow-water
calculations of SS93. Conclusions for Part I are given
in section 5.

Part II of this study (Epifanio and Durran 2002) pre-
sents a detailed investigation into the mechanisms of
vorticity and PV production in the nonlinear viscous
wake. There it is shown that the vertical vorticity of the
wake does in fact have its origins in the baroclinic gen-
eration and tilting mechanism of SR89. However, the
vertical vorticity produced through tilting is relatively
weak. The role of the hydraulic jump is then to amplify
this vorticity through stretching as fluid particles pass
through the jump, thereby producing the pronounced
vertical vorticity anomalies of the wake.

2. Model descriptions

a. Experimental setup

We consider free-slip, nonrotating, compressible
Boussinesq flow as described by
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]T]u ]u ]P iji i1 u 1 2 d b 5 2 , (1)j i3]t ]x ]x ]xj i j

]B]b ]b j21 u 1 N w 5 2 , and (2)j]t ]x ]xj j

]u]P j21 c 5 0, (3)s]t ]xj

where x 5 (x1, x2, x3) 5 (x, y, z) is the spatial position
vector; u 5 (u, y, w) is the fluid velocity; P is the
Boussinesq disturbance pressure and b the buoyancy; N
is the basic-state buoyancy frequency; and cs is the con-
stant Boussinesq sound speed. The viscous stress and
diffusive heat (or buoyancy) flux are given by

]u]u 2 ]uji kT 5 2K 1 2 d , and (4)ij M ij1 2]x ]x 3 ]xj i k

]b
B 5 2K , (5)j H]xj

where the kinematic viscosity KM and the thermal dif-
fusivity KH are taken to be constants with Prandtl num-
ber Pr 5 KM/KH unity. We restrict attention to flows
with constant N and uniform basic velocity u0 5 (u0,
0, 0). The basic-state potential temperature variable is
then b0 (z) 5 N2z 1 constant.

The topography for all calculations takes the form of
a smooth idealized ridge with long axis normal to the
incident flow as defined by

h0 4 [1 1 cos(pr)] , if r # 1;
16h(x, y) 5 (6)


0, otherwise,

where

 2 2x |y | 2 (b 2 1)a
1 , if |y | . (b 2 1)a;1 2 1 2 4a 4a

2r 5 
2x
, otherwise.1 24a

(7)

Here b $ 1 is the horizontal aspect ratio defined as the
ratio of y to x length scales for the topography. Note
that for b . 1 a uniform height section appears in the
ridge interior.

In all computations we set N 5 0.012 s21, u0 5 8 m
s21, and a 5 10 km. The resulting flow is nearly hy-
drostatic, with vertical aspect ratio d 5 u0/Na 5 0.067,
and essentially incompressible, with Mach number Ma
5 u0/cs 5 0.024. We fix the aspect ratio at b 5 5. With
d, Ma, and b specified, the set of control parameters
reduces to the nondimensional mountain height (or non-
linearity parameter) e 5 Nh0/u0 and a Reynolds number
describing the importance of viscosity and thermal dif-

fusion. Here we define Re 5 u0h0/KM so as to be con-
sistent with most previous laboratory studies (see, e.g.,
Baines 1995, p. 230); the numerically simulated e 5
1.8 case considered in section 4 then has Re 5 120.
[For comparison, Rotunno et al. (1999) define Re 5
u0a/KM, in which case Re 5 1000 for the simulated e
5 1.8 case.] Both KM and KH are zero in the weakly
nonlinear computations of section 3.

b. Weakly nonlinear semianalytic model

The linear and weakly nonlinear semianalytic models
considered in section 3 represent the first and second
terms in a perturbation solution of the inviscid, adia-
batic, steady-state versions of (1)–(3) in the limit of
small e. The models are implemented using fast Fourier
transforms (FFTs) on a large horizontally periodic do-
main. A brief description of the models including scale
analysis is given in Epifanio and Durran (2001). Details
of the weakly nonlinear model and verifications are pro-
vided in Epifanio (1999). Here we outline the semian-
alytic solution technique.

Under the assumption of small e, the disturbance
fields are expanded as

(1) (2) (1) (2)u 2 u 5 u 1 u 1 · · · , y 5 y 1 y 1 · · · ,0

etc., where it is understood that u (1) ; O(e), u (2) ; O(e2),
and so forth. The expanded variables are substituted into
the steady, inviscid, and adiabatic versions of (1)–(3)
and terms of like power in e are grouped. The resulting
O(e) system is equivalent to the linearized equations of
Smith (1980), and solutions for the O(e) flow fields and
their spatial derivatives are obtained using the FFT
method described there. The O(e2) system takes the
form

(2) (2)]u ]P
u 1 5 g , (8)0 u]x ]x

(2) (2)]y ]P
u 1 5 g , (9)0 y]x ]y

(2) (2)]w ]P
(2)u 1 2 b 5 g , (10)0 w]x ]z

(2)]b
2 (2)u 1 N w 5 g , and (11)0 b]x

(2) (2) (2)]u ]y ]w
1 1 5 0, (12)

]x ]y ]z

with lower boundary condition

(2)w (x, y, 0) 5 g .h (13)

The nonlinear forcing terms include the lower boundary
correction
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]h ]h
(1) (1)g 5 u (x, y, 0) 1 y (x, y, 0)h ]x ]y

(1)]w
2 h (x, y, 0), (14)

]z

and O(e2) advective terms of the form
(1) (1) (1)]u ]u ]u

(1) (1) (1)g 5 2u 2 y 2 w (15)u ]x ]y ]z

(and similarly for gy , gw, gb). The forcing functions are
obtained as products of the O(e) flow fields and deriv-
atives on the numerical grid.

All disturbance quantities are assumed to vanish for
(x2 1 y2)1/2 → `. Equations (8)–(12) then reduce to a
single equation for w (2), which may be Fourier trans-
formed in x and y to yield

2 (2) ˜d w̃ F
2 (2)1 m w̃ 5 2 , (16)

2 2 2dz k u0

where w̃ (2)(k, l, z) denotes the horizontal Fourier trans-
form of w (2). Here, m2 is

2 2 2N k 1 l
2 2m 5 2 k , (17)

2 21 2u k0

and the nonlinear forcing is given by

dg̃ dg̃u y2 2 2F̃(k, l, z) 5 u k 1 u kl 2 (k 1 l )g̃0 0 bdz dz
2 22 iu k(k 1 l )g̃ . (18)0 w

Localized three-dimensional disturbances in a Boussi-
nesq atmosphere decay in amplitude with height due to
the horizontal dispersion of wave energy. As a result,
the nonlinear forcing functions in (8)–(12) vanish in the
limit z → `. In practice the forcing functions must be
neglected above some large but finite height z9, and we
thus set F̃(z) 5 0 in (16) for z . z9. The height z9 must
be chosen sufficiently large that nonlinear interactions
above z9 have an insignificant impact on the solution
below. For the b 5 5 case discussed in section 3, it was
found adequate to neglect the nonlinear forcings above
Nz9/u0 5 20.3p (i.e., z9 ø 10l, where l 5 2pu0/N is
the vertical wavelength for two-dimensional hydrostatic
waves). A radiation condition is then applied to ensure
that all waves above z9 have upward energy propagation.

For u0 | k | , N, the solution to (16) satisfying (13)
and the radiation condition for z . z9 can be written in
the form (see appendix for derivation)

(2) 2 1 imzw̃ (k, l, z) 5 [g̃ 2 C (z9) 1 C (z)]eh

2 2 2imz1 [C (z9) 2 C (z)]e , (19)

where
z ˜i F(k, l, t)

6 7imtC (k, l, z) 5 e dt, (20)E 2 22m k u00

and where the sign of m is chosen such that m 5 (m2)1/2

(k/ | k | ). For u0 | k | . N, an exponential decay condition
is applied for z . z9 and solutions to (16) take the form
of (19) and (20) with m replaced by ig, where g 5
(2m2)1/2. Given F̃(k, l, z), the integrals in (20) (and those
in the similar u0 | k | . N case) are evaluated numerically
for each k and l, and the results are used in (19) to
obtain w̃ (2)(k, l, z). Having solved for w̃ (2), the remaining
fields ũ (2)(k, l, z), (2)(k, l, z), P̃ (2)(k, l, z), and b̃ (2)(k, l,ỹ
z) are obtained through polarization relations derived
from (8)–(12), as done for the O(e) solution (see, e.g.,
Gill 1982, section 8.4). Polarization relations for all spa-
tial gradients are obtained similarly. Inverse Fourier
transformation at fixed z then gives the O(e2) flow fields
and their spatial derivatives.

As noted by Smith (1980), the vertical wavenumber
m approaches infinity as k/l → 0. As a result, the in-
tegrals in (20) are difficult to evaluate numerically for
small k/l due to rapid oscillations of the integrand in
the vertical. Moreover, for small k/l the wavenumber m
is a rapidly varying function of k, leading to rapid os-
cillations in the integrands of the Fourier inversion in-
tegrals [at both O(e) and O(e2)] as k → 0 (D. J. Muraki
2000, personal communication). No attempt is made to
explicitly deal with the singular behavior of the Fourier
modes as k/l → 0 in the present work.1 To avoid the
singularities we simply neglect modes for which m .
7N/u0, effectively truncating the Fourier integrals at
small k/l. Note that those modes for which k/l is small
have negligible vertical group velocity, and their energy
propagates primarily downstream as a result of advec-
tion by the basic flow (see Smith 1980). As such, the
neglected modes are unlikely to contribute significantly
to the solution directly over the obstacle, where the
disturbance is dominated by modes with substantial ver-
tical energy propagation. Indeed, the results of the weak-
ly nonlinear semianalytic model have been verified by
comparison to numerical estimates of the O(e2) flow
fields obtained by subtracting the linear solution from
high-precision nonlinear numerical simulations at small
e (Epifanio 1999; see also Fig. 3 of Epifanio and Durran
2001 for comparison of semianalytic and numerically
simulated surface drags). The numerical and semian-
alytic predictions show reasonable agreement for all dis-
turbance fields, especially directly over the obstacle.
More accurate methods for dealing with the singularities
in the Fourier computations will be considered in future
work.

c. Numerical model

The numerical experiments in section 4 were con-
ducted using a three-dimensional version of the non-

1 To achieve sufficient accuracy in the O(e2) solutions, it was found
necessary to use unusually large horizontal domain sizes. For ex-
ample, the calculations of section 3 employed a horizontal domain
of 270a 3 270a. It is possible that the use of such large domains
helps to resolve the rapid oscillations of the integrand in the fast
Fourier inversion integrals by adding more modes at small k.
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hydrostatic model described by Durran and Klemp
(1983) as modified to solve the compressible-Boussi-
nesq system (1)–(3). The solutions are computed in a
terrain-following coordinate system with vertical co-
ordinate

z 2 h
g 5 z , (21)Tz 2 hT

where zT is the depth of the model domain and h(x, y)
is the terrain height (Gal-Chen and Somerville 1975).
The linear radiation condition of Klemp and Durran
(1983) and Bougeault (1983) as modified for local eval-
uation by Durran (1999, section 8.3) is used at the upper
boundary. A radiation condition with fixed-speed phase
propagation is applied to normal velocities at the hor-
izontal boundaries (Klemp and Lilly 1978). Approxi-
mate free-slip and thermal insulation conditions are ap-
plied by setting T13, T23, and B3 to zero at the lower
boundary under the assumption of topography with
small slope.2 The flow is initiated from rest by gradually
accelerating the basic wind over the time interval 24
# u0t/a # 0.

To remove high-wavenumber numerical noise and
maintain numerical stability we add weak fourth-deriv-
ative filters of the form

4 4 4 4] u ] u ] b ] bi i2a 1 , 2a 1 (22)
4 4 4 41 ) ) 2 1 ) ) 2]x ]y ]x ]y

g g g g

to the right-hand sides of (1) and (2), respectively. The
derivatives in (22) are taken at constant g. The coef-
ficient a is set so that the effective Reynolds number
of the first of (22) is u0a3/a 5 10 000. The influence
of the filters is then significantly weaker than the effects
of viscosity and thermal conduction at the resolved
scales of motion. However, the relative importance of
the filters increases rapidly with decreasing scale. As a
result, the filter terms are of the same order in magnitude
as (but still smaller than) the viscous and thermal con-
duction terms in the hydraulic jump downstream of the
obstacle (as briefly discussed in section 5 of Part II). A
comparison simulation with u0a3/a 5 20 000 produced
nearly identical results confirming that the filters have
negligible impact on the dynamics of interest. However,
the Lagrangian diagnostic computations in Part II were
slightly degraded by short-wavelength noise when using
the smaller value of a.

The horizontal extent of the model domain is given
by 212a # x # 18a, | y | # (9 1 b)a with Dx 5 Dy
5 0.125a. The vertical grid spacing is NDz/u0 5 0.031p
at the lower boundary and increases geometrically with

2 The true free-slip condition is n 3 (T · n) 5 0, where T is the
viscous stress tensor (4) and n the unit normal to the boundary. Scale
analysis of the true condition suggests that the approximate condition
applied here is valid as long as (h0/a)2 K 1. In the present case h0/
a 5 0.12 so that the approximation is warranted. Similar consider-
ations apply to the thermal insulation condition njBj 5 0.

height with stretching factor 1.022 until reaching a max-
imum of NDz/u0 5 0.119p near the upper boundary. The
domain depth is NzT/u0 5 4.28p. Both the vertical and
horizontal extent of the domain are sufficient to minimize
boundary sensitivities for the short time integrations con-
sidered here. The model employs a time-splitting tech-
nique to stably integrate terms associated with acoustic
propagation on a small time step Dts while advancing the
remaining terms on a larger step Dt. In all simulations
u0Dt/a 5 0.0056 and u0Dts/a 5 0.0056/3.

3. Weakly nonlinear inviscid theory

For steady and inviscid flow, the vorticity equation
given by the curl of (1) is

(u · =)z 5 (z · =)u 2 k 3 =b, (23)

where z 5 (j, h, z) is the vorticity, k is the vertical unit
vector, and where the second term on the right is the
Boussinesq approximation to the baroclinicity vector. In
this section we use the weakly nonlinear semianalytic
model to obtain solutions to (23) and the steady-state,
nondissipative versions of (1)–(3) through O(e2). The
basic state and topography are as given in section 2a.

a. Analysis

The O(e) approximation to the vorticity equation (23)
is given by

(1) (1) (1) (1)]j ]b ]h ]b
u 5 , u 5 2 ,0 0]x ]y ]x ]x

(1)]z
u 5 0. (24)0 ]x

According to (24) the O(e) wave field features baro-
clinically generated horizontal vorticity but is free of
vertical vorticity. To obtain a first approximation to z
we consider the O(e2) equation

(2) (1) (1)]z ]w ]w
(1) (1)u 5 j 1 h , (25)0 ]x ]x ]y

which shows that vertical vorticity is produced at second
order through tilting of the baroclinically produced hor-
izontal vorticity. Equations (24), (25), and the O(e) ver-
sion of (2) may be combined to form the second-order
PV equation

(1) (1)] ]b ]b
(1) (1) 2 (2)u j 1 h 1 N z 5 0, (26)0 1 2]x ]x ]y

where
(1) (1)]b ]b

(2) (1) (1) 2 (2)Q 5 j 1 h 1 N z 5 0 (27)
]x ]y

is the O(e2) approximation to the potential vorticity Q
5 z · =(b0 1 b). Equation (27) expresses at O(e2) the
constraint that, for inviscid and adiabatic flow with zero
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FIG. 1. Weakly nonlinear semianalytic solutions for flow of uniform wind and stability past an isolated ridge with b
5 5. (a)–(c) Fields at height Nz/u0 5 p/4. (d)–(f ) Fields at Nz/u0 5 p/2. The heavy line shows contour of half maximum
ridge height. (a) and (d) Buoyancy b (1)/eNu0 (contour interval is 0.156, solid line is positive and dashed line is negative)
and horizontal vorticity (j (1), h (1))/eN (maximum vector length is 0.583). (b) and (e) Vertical vorticity z (2)/e2dN (contour
interval is 0.06) and (j (1), h (1))/eN. (c) and (f ) z (2)/e2dN and O(e2) flow (u (2), y (2))/e2u0 (maximum vector length is 0.4).

upstream PV, the vorticity must everywhere remain tan-
gent to isentropic surfaces (i.e., surfaces of constant b
1 b0).

SR89 use (27) to infer the O(e2) pattern of vertical
vorticity associated with the O(e) solution of Smith
(1980). An equivalent computation is shown in Fig. 1
for a ridge with b 5 5. Figures 1a and 1d show the
buoyancy b (1) and horizontal vorticity (j (1), h (1)) at Nz/
u0 5 p/4 and Nz/u0 5 p/2, respectively. At both heights
the vortex lines encircle the obstacle with positive h (1)

upstream and negative h (1) downstream. At the lateral
edges of the ridge the O(e) vorticity vectors cross con-
tours of b (1) implying that at O(e2) the vectors tilt up-
ward on the right (viewed from upstream) and down-
ward on the left so as to remain tangent to the sloping
isentropic surface. The resulting z (2) field as diagnosed
from (27) is shown in Figs. 1b and 1e.

According to SR89 the O(e2) vertical vorticity shown
in Figs. 1b and 1e implies negative u (2) in the region
between the vortex centers and thus suggests a tendency
to reverse the flow above the lee slope at large mountain

heights. However, it is important to note that the vertical
vorticity alone does not determine the second-order flow
field. Figures 1c and 1f show the O(e2) horizontal ve-
locity vectors (u (2), y (2)) as computed by the weakly
nonlinear semianalytic model at the heights considered
in Figs. 1b and 1e. The figures clearly reveal a net
circulation of the O(e2) flow around the centers of ver-
tical vorticity. Nonetheless, note that u (2) is in fact pos-
itive above the lee slope. Figure 2b shows u (2) in cross
section along the centerline y 5 0 and reveals accel-
erated flow at low levels downstream of the crest where
reversed flow typically occurs in numerically simulated
lee vortices. The sum u (1) 1 u (2) displayed for the case
e 5 0.5 in Fig. 2a similarly shows accelerated low-level
flow downstream of the obstacle. The steady weakly
nonlinear inviscid theory thus provides little indication
of the leeside stagnation and flow reversal characteristic
of lee vortices.

Consideration of the cross-stream vorticity h also
suggests the inadequacy of the weakly nonlinear invis-
cid description. Scaling dependent and independent var-
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iables as in Epifanio and Durran [2001; see also Smith
and Grønås (1993)], the cross-stream vorticity may be
written as

]û ]ŵ
2h 5 eN 2 d , (28)1 2]ẑ ]x̂

where hats denote nondimensional variables taken to be
of order unity. For nearly hydrostatic disturbances (i.e.,
small d) the cross-stream vorticity is given to a good
approximation by ]u/]z. Numerical simulations of near-
ly hydrostatic flow show that as the height of a topo-
graphic obstacle is increased, leeside stagnation and
flow reversal at steady state occur first at the lower
boundary (Rotunno et al. 1999, hereafter RGS99). The
leeside flow also reverses first at the lower boundary in
the initial value problem of flow started implusively
from rest past a large topographic obstacle (RS91).3 Re-
versal of the surface flow implies that developing vor-
tices are characterized by a region of negative u 2 u0

and positive h ø ]u/]z. However, this pattern is not
seen above or downstream of the lee slope in the weakly
nonlinear solution. Figures 2b and 2d show that in the
lee of the obstacle, h (2) ø ]u (2)/]z is positive only im-
mediately above the lee slope where u (2) shows the flow
to be accelerated. Indeed, farther aloft and farther down-
stream the negative values of h (2) suggest the steepening
of the mountain wave rather than the formation of vor-
tices at the surface. Comparison of Figs. 2a and 2c
shows that similar arguments hold for u (1) 1 u (2) and
h (1) 1 h (2).

b. Discussion

The weakly nonlinear description of lee vortices has
been previously criticized by CCM90. CCM90 showed
that in numerical simulations of flow past obstacles at
small or moderate e the net flow between the centers of
vertical vorticity is actually accelerated. However, in
their simulations the authors were unable to differentiate
between O(e) and O(e2) contributions to the net flow;
the observed acceleration of the flow between the vor-

3 CCM90 propose a distinctly different process of lee-vortex for-
mation in the case where e is increased gradually by decelerating the
basic wind. The authors assert that, as u0 is decreased, the flow re-
verses first aloft and that this region of flow reversal then descends
to the surface in a time-dependent fashion. However, the evidence
presented to support this conclusion is ambiguous. In their Fig. 7 an
incipient region of decelerated surface flow is already evident in the
lee of the obstacle even at the first time for which flow reversal occurs
aloft (t 5 1000 min); this decelerated surface flow is clearly distinct
from the reversed flow in the breaking wave. Similarly, their Fig. 7c
shows the flow to be nearly stagnant at the lower boundary—and
perhaps even reversed as the zero contour is omitted—even though
the reversed flow associated with wave breaking remains well aloft.
It thus seems appropriate to conclude that there are separate regions
of decelerated flow aloft and at the surface and that these regions in
some sense merge as u0 is decreased and the vertical scale contracts.
We argue that it is the region of flow deceleration at the surface that
is relevant to lee-vortex formation.

tices was thus attributed to the known accelerative ten-
dency at O(e) (as derived by Smith 1980) while the
contribution at O(e2) was left unspecified. As such, the
comments of CCM90 do not explicitly address whether
the second-order theory at least qualitatively predicts a
tendency to form lee vortices at O(e2). Here we offer
a more fundamental criticism of the small-amplitude
analysis. The present results show that, even at O(e2),
the weakly nonlinear inviscid theory does not predict
flow fields that are consistent with the lee-vortex cir-
culations observed in previous nonlinear numerical ex-
periments. Finite-amplitude and/or dissipative effects
must therefore play an essential role in producing even
the qualitative sense of these observed circulations.

4. Nonlinear viscous flow morphology

In this section we consider the basic morphology of
wakes and vortices in viscous and thermally diffusive
laminar flow and compare the results to the weakly non-
linear calculations of the previous section.

a. The viscous model: General comments

As is typical in problems of geophysical interest, the
most energetic scales of motion in atmospheric flow
over orography are many orders of magnitude larger
than the scales at which energy is removed by viscous
dissipation. This broad range of relevant scales renders
the true direct numerical simulation of such flows a
practical impossibility for at least the foreseeable future.
Indeed, most simulations of flow over three-dimensional
orography to date have been limited to grid spacings
that accurately resolve only the most energetic large-
scale motions. The net effect of smaller-scale features
is then represented through a subgrid-scale turbulence
parameterization. Unfortunately, the degree to which
these parameterizations realistically represent the sub-
grid-scale effects is often unclear; details of the flow
that depend significantly on the parameterized turbu-
lence must therefore be regarded with caution.

In the present context, the parameterization of sub-
grid-scale effects complicates the detailed analysis of
vorticity and PV generation in orographic wakes. The
turbulent diffusivities predicted by subgrid-scale param-
eterizations in orographic flows typically feature rather
strong spatial gradients, which leads to significant vor-
ticity generation by the associated turbulent stresses. It
is presently uncertain whether this generation of vor-
ticity can be considered realistic. Furthermore, simu-
lations with parameterized turbulence often require sig-
nificant numerical filtering to maintain numerical sta-
bility in regions where the parameterized dissipation is
weak or inactive. This filtering is strictly unphysical but
may account for a significant fraction of the net dissi-
pation and associated PV generation in the flow
(RGS99; Ólafsson and Bougeault 1996).

To avoid the uncertainties associated with turbulence
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FIG. 2. Weakly nonlinear semianalytic solutions for flow of uniform wind and stability past an
isolated ridge with b 5 5 and e 5 0.5. Fields shown along the line of symmetry y 5 0. Dark
lines in all panels are contours of potential temperature (b0 1 b (1) 1 b (2))/Nu0 (contour interval is
0.833). (a) Disturbance speed (u (1) 1 u (2))/eu0 (contour interval is 0.25; light shading is positive,
dark shading is negative); (b) O(e2) correction u (2)/e2u0 (contour interval is 0.125); (c) cross-stream
vorticity (h (1) 1 h (2))/eN (contour interval is 0.25); and (d) h (2)/e2N (contour interval is 0.15).

parameterizations and numerical filtering, we instead
opt to consider a moderate-Reynolds-number flow in
which the onset of small-scale turbulence is suppressed
by viscosity and thermal diffusion. Such a model has
been considered previously by RGS99. While this lam-
inar viscous case does not accurately represent real at-
mospheric flows, it does provide a complete and qual-
itatively realistic physical model in which to analyze
wake and vortex formation. As illustrated in Part II, the
developing vortex structures produced in the viscous
flow are qualitatively very similar to those observed in
identical simulations with parameterized turbulence.
This suggests that the moderate-Reynolds-number case
provides a useful starting point for understanding wake
formation in more realistic high-Reynolds-number
flows. Moreover, in the present simulations the Reyn-
olds number is still sufficiently large that viscosity and
thermal diffusion play secondary roles in the dynamics;
qualitative comparison to the inviscid theory of section
3 is thus reasonable.

b. Numerical results

The figures in this section show results from fully
nonlinear numerical simulations of viscous and ther-
mally diffusive flow over free-slip ridges with b 5 5
and e 5 1.5, 1.8, and 2.2. The kinematic viscosity KM

is fixed so that the Reynolds number of the e 5 1.8
case is Re 5 120. The remaining parameters are as given
in section 2. The vertical cross sections are along the
line of symmetry y 5 0. The horizontal plots show fields
on the terrain-following coordinate surface Ng/u0 5
0.351 ø p/9, which is the fourth scalar grid level from
the lower boundary [see Durran and Klemp (1983) for
discussion of the grid structure]. Figures 3 and 4 show
fields from the e 5 1.8 simulation at the first time for
which lee-side flow stagnation occurs along y 5 0 on
the terrain-following analysis surface. (For the case con-
sidered, the flow along y 5 0 reverses at the lower
boundary one nondimensional time unit before the ap-
pearance of flow stagnation on the analysis surface.)
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FIG. 3. Nonlinear numerical simulation of free-slip viscous flow with Re 5 120 over an isolated
ridge with b 5 5 and e 5 1.8. Fields are shown along the line of symmetry y 5 0 at time u0t/a
5 7. Dark lines are contours of potential temperature (b0 1 b)/Nu0 (contour interval is 0.833).
(a) Disturbance speed (u 2 u0)/eu0 [contour interval is 0.139, light shading is positive, dark
shading is negative; values less than 21/e (i.e., reversed flow) are indicated by darkest shading];
and (b) cross-stream vorticity h/eN (contour interval is 0.15).

Figure 5 illustrates the time dependence of the flow for
e 5 1.8, while the e 5 1.5 and e 5 2.2 cases are
considered in Fig. 6.

Figure 3a shows the streamwise disturbance speed u
2 u0 and contours of constant b0 1 b along the cen-
terline of the ridge for the e 5 1.8 case. The deflections
of the isentropes suggest that the flow differs signifi-
cantly in character from the weakly nonlinear case
shown in Fig. 2. In the wave field above the obstacle
the isentropes are steeply inclined creating a region of
weak stability above the lee slope. Below the weak sta-
bility region is a stream of accelerated lee-slope flow
coinciding with strongly depressed low-level isentropes.
Downstream the isentropic surfaces abruptly return to
nearly their upstream heights in a jump-like feature and
the flow is decelerated. This lee-side flow structure is
characteristic of waves with steeply inclined or over-
turning isentropes and has often been described for two-
dimensional flow through analogy to nonlinear hydrau-
lic theory (e.g., Baines 1995, section 5.11). In the fol-
lowing we consider the role of the leeside hydraulic
jump in lee-wake and -vortex formation.

Figure 3b shows that the cross-stream vorticity h is
negative in the region of accelerated lee-slope flow.
Downstream of the jump the flow is decelerated and the
cross-stream vorticity is positive. As discussed in sec-
tion 3, lee wakes and vortices are characterized in cross
section along y 5 0 by a region of negative u 2 u0 and
positive h ø ]u/]z. Figure 3 suggests that the hydraulic
jump plays an important role in establishing these con-
ditions.

The horizontal structure of the jump for the e 5 1.8
case is shown most clearly by the region of strong con-
vergence in the horizontal wind (u, y) and strongly pos-
itive ]w/]z near x/a 5 2 in Fig. 4d. Upstream and to the

sides of the jump the flow is accelerated, while imme-
diately downstream of the jump the wake flow is nearly
stagnant. The jump is also outlined by the region of neg-
ative ]b/]x in Fig. 4e. As shown in Fig. 4e, the flow
descending the lee slope encounters a positive x gradient
of buoyancy upstream of the jump and thus develops
negative cross-stream vorticity h [cf. (23)]. The hydraulic
jump is characterized by strongly negative ]b/]x, which
reverses the cross-stream vorticity resulting in a region
of positive h behind the jump. The resulting pattern of
horizontal vorticity (j, h) is similar to the steady weakly
nonlinear calculation upstream of the jump but differs
downstream (compare Figs. 4a and 1a,d).

Comparison of Figs. 4b and 1b,e shows the vertical
vorticity to be more strongly concentrated at the lateral
edges of the wake in the nonlinear viscous solution than
is predicted by the weakly nonlinear model. Note that
in the nonlinear solution, the maxima of vertical vor-
ticity are shifted downstream of the obstacle and are
connected by horizontal vorticity vectors that run di-
rectly across the wake from negative to positive y. In
cross section in the y–z plane (not shown), the vortex
lines connecting the vorticity centers arch up and over
the wake as shown by Schär and Durran (1997, their
Fig. 12) and RGS99 (their Fig. 4c). This structure of
the vortex lines is consistent with positive h in the wake
region as diagnosed above and represents an important
discrepancy from the weakly nonlinear inviscid theory.
Figure 4f shows that the vertical vorticity maxima are
located slightly downstream of the lateral edges of the
jump (as defined by the shaded area of strongly negative
]b/]x). The regions of strong vertical vorticity extending
downstream from the jump define the shear lines be-
tween the decelerated wake flow and the accelerated
flow outside the wake. Note that in contrast to the weak-
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FIG. 4. Nonlinear numerical simulation of free-slip viscous flow with Re 5 120 over an isolated ridge with b 5 5
and e 5 1.8. Fields shown on the terrain-following coordinate surface Ng/u0 ø p/9 at time u0t/a 5 7. Here and in the
following, solid lines indicate positive values and dashed lines negative: (a) buoyancy b/eNu0 (contour interval is 0.174)
and horizontal vorticity (j, h)/eN (maximum vector length is 0.46); (b) vertical vorticity z/e2dN (contour interval is
0.21) and (j, h)/eN; (c) z/e2dN and disturbance horizontal velocity (u 2 u0, y)/eu0 (maximum vector length is 1.04);
(d) (1/edN )]w/]z (contour interval is 0.69) and horizontal velocity (u, y)/u0 (maximum vector length is 1.875); (e) (a/
eNu0)]b/]x (contour interval is 0.579) and (j, h)/eN; (f ) z/e2dN, (u, y)/u0, and (a/eNu0)]b/]x (shading indicates values
less than 20.579).

ly nonlinear case the disturbance flow (u 2 u0, y) clearly
forms closed circulations around the centers of vertical
vorticity (compare Figs. 4c and 1c,f).

The time dependence of wake and vortex formation
in the e 5 1.8 case is shown in Fig. 5. At time u0t/a 5
0, the strong negative x gradient of buoyancy character-
istic of the jump has formed4 in the lee of the obstacle,
and the flow has begun to curl around the lateral edges
of the jump. Note that even at this early time the maxima
of vertical vorticity are located downstream of the jump
and are connected by horizontal vorticity vectors (j, h)
running behind the jump from negative to positive y (Fig.
5d). At u0t/a 5 5, the fluid immediately behind the jump
is nearly stagnant and the flow past the lateral edges of
the jump is accelerated. The vertical vorticity anomalies

4 Recall that the disturbance is initiated by accelerating the basic
flow over the time interval 24 # u0t/a # 0.

defining the shear lines have begun to extend down-
stream. At u0t/a 5 10 the flow behind the jump is weakly
reversed, indicating the onset of the recirculating vortex
flow. The region of decelerated wake flow has grown in
horizontal extent and the vorticity anomalies continue to
extend downstream. Note that both the flow reversal be-
hind the jump as well as the concentrated anomalies of
vertical vorticity at the edges of the wake in Fig. 5c are
suprisingly suggestive of the shallow-water calculations
of SS93 (see their Fig. 6).

The e dependence of the wake at fixed viscosity is
considered in Fig. 6. Note that the e 5 1.5 case shown
in Figs. 6a and 6b is below the threshold e at which
flow reversal occurs in the wake. Nonetheless, the basic
features of the flow are similar to those seen in Figs. 3
and 4. Over the lee slope the isentropes in Fig. 6a are
displaced strongly downward and downstream there is
a recovery zone in which the isentropes nearly regain
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FIG. 5. Time dependence of vortex formation in free-slip viscous flow over an isolated ridge. Shading in all panels
indicates values of (a/eNu0)]b/]x less than 20.579. (a)–(c) Vertical vorticity z/e2dN (contour interval is 0.21) and
horizontal velocity (u, y)/u0 at times u0t/a 5 0, 5, and 10, respectively. (d)–(f ) z/e2dN and horizontal vorticity (j, h)/
eN (maximum vector length is 0.46) at times u0t/a 5 0, 5, and 10.

their upstream heights. Behind this recovery zone the
flow is decelerated and ]u/]z is positive. In plan view
the vertical vorticity is again found to be concentrated
along shear lines at the lateral edges of the wake. As
in Fig. 4f the maxima in | z | occur just slightly down-
stream of the region of strongly negative ]b/]x in the
recovery zone.

As e is increased from 1.5 to 1.8, the recovery zone
in Fig. 6a steepens into the jumplike structure shown
in Fig. 3. Note that the steepening of the isentropes is
most pronounced at low levels. Further increases in e
cause further steepening of the jump until at e 5 2.2
the jump is only marginally resolved on the numerical
mesh (Fig. 6c). At larger e significant numerical artifacts
appear in the vicinity of the jump due to the inability
to resolve the steep gradients. It is likely that in a higher-
resolution simulation the jump would overturn and be-
come turbulent at this stage. Note that as e is increased,
the production of vertical vorticity increases rapidly
(note the e2dN scaling for z in the figures) and the
recirculating vortices form more quickly. In the e 5 2.2

case shown in Fig. 6d, the recirculating vortex flow is
already well-established at time u0t/a 5 7 (cf. Fig. 4f).

5. Summary and discussion

This study has explored lee-vortex formation in free-
slip stratified flow over elongated ridges. Weakly non-
linear inviscid calculations and fully nonlinear viscous
simulations were compared in an effort to identify pro-
cesses leading to vortex development. As predicted by
SR89, the weakly nonlinear solutions reveal an O(e2)
couplet of vertical vorticity over the lee slope produced
through the tilting of baroclinically generated horizontal
vorticity. However, the associated horizontal velocity
field (u (2), y (2)) shows no tendency to reverse the lee-
slope flow between the vortex centers. Furthermore, in
regions where u (2) is negative, the cross-stream vorticity
h (2) ø ]u (2)/]z is of the wrong sense to describe vortex
development at the surface. These results suggest that
the mechanism of vorticity tilting in nondissipative flow
as described by weakly nonlinear theory provides an
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FIG. 6. Basic wake features for e 5 1.5 and e 5 2.2. (a) and (b) Fields for e 5 1.5; (c) and
(d) e 5 2.2. All fields shown at time u0t/a 5 7. Both (a) and (c) have disturbance speed (u 2
u0)/u0 (contour interval is 0.25; light shading is positive; dark shading is negative; darkest shading
indicates reversed flow) and potential temperature (b0 1 b)/Nu0 (contour interval is 0.833). (b)
and (d) As in Fig. 4f, except shading in (b) indicates values of (a/eNu0)]b/]x less than 20.35.

inadequate description of lee-vortex formation. A more
complete description then requires the consideration of
additional finite-amplitude and/or dissipative effects.

The weakly nonlinear results were compared to a fully
nonlinear numerical simulation of laminar moderate-
Reynolds-number (Re 5 120) flow past an obstacle of
medium height (e 5 1.8). Wake formation in the laminar
viscous case is found to be closely tied to a low-level
hydraulic-jump-like feature that is not predicted by the
weakly nonlinear calculations. Upstream of the jump
the lee-slope flow is accelerated and is similar in char-
acter to supercritical hydraulic flow. Upon crossing the
jump the flow deepens and decelerates and a wake of
nearly stagnant fluid forms downstream of the jump.
The vertical vorticity of the wake is concentrated into
narrow bands extending downstream from the lateral
ends of the jump. At later times the flow behind the
jump reverses and recirculating vortices form. The low-
level flow is then qualitatively very similar to the shal-
low-water calculations of SS93 (their Fig. 6). As e is
increased the hydraulic jump becomes steeper and re-

circulating vortices form more rapidly. For e . 2.2, the
jump is no longer resolved by the numerical mesh and
the flow would likely become turbulent if simulated at
higher resolution.

In the present simulations the hydraulic-like nature
of the leeside flow is highlighted through the consid-
eration of a long, uniform-height ridge. Nonetheless, it
can be argued in retrospect that hydraulic-jump-like fea-
tures are also evident in previous numerical studies of
wakes in flow past circular (Fig. 3 of Schär and Durran
1997; Fig. 2 of RS91) and elliptical (Fig. 2 of Ólafsson
and Bougeault 1996) obstacles, at least for moderate
obstacle heights. For large obstacles (e * 3, say), the
jumplike features in the centerline plane are typically
weak or absent at steady state but may nonetheless be
prominent during the rapid early evolution of the vor-
tices (Fig. 1 of RS91). Even at steady state jumps may
occur on the flanks of large obstacles rather than in the
centerline plane (Ólafsson and Bougeault 1996).

The importance of hydraulic jumps in lee-wake for-
mation has previously been suggested for shallow-water
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flow (SS93) and for the analogous case of stratified flow
with a distinct elevated inversion (Smith and Grubišić
1993). The present results show that the formation of
lee wakes and vortices may be closely tied to the dy-
namics of hydraulic-jump-like features even in flow
with uniform basic wind and stability. In terms of vor-
ticity, the negative x gradient of buoyancy across the
jump directly contributes to the generation of positive
h ø ]u/]z in the wake and thereby promotes the reversal
of the surface flow. Similarly, the pronounced anomalies
of vertical vorticity extending downstream from the lat-
eral ends of the jump suggest that the jump is in some
way responsible for creating the vertical vorticity of the
wake. However, the mechanism of vertical vorticity pro-
duction cannot be determined from the qualitative anal-
ysis given here. In Part II it is shown that the wake
vertical vorticity actually originates through baroclinic
generation and tilting in the mountain wave upstream
of the jump, much as described by SR89. This vorticity
is then strongly amplified by vortex stretching as fluid
particles pass through the jump. To obtain these results
we use a new method of vorticity diagnosis developed
in Part II.
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APPENDIX

Solution of the Vertical Structure Equation

The solution to (16) with (13) can be written in the
form

z9 F̃(t)
(2) imzw̃ (z) 5 g̃ e 2 G(z, t) dt, (A1)h E 2 2k u00

where, as in section 2b, we have assumed that F̃(z) 5
0 for z . z9. Here, G(z, t) is the Green’s function sat-
isfying

2d G
21 m G 5 d(z 2 t), (A2a)

2dz

with boundary conditions
imzG(z, t) } e for z . t, and (A2b)

G(0, t) 5 0. (A2c)

The condition (A2b) ensures upward energy propagation
for z . z9, while (A2c) guarantees that the integral term
in (A1) vanishes at z 5 0. The solution to (A2) is

 i
imt 2imt imz(e 2 e )e , for z . t ;2m

G(z, t) 5 (A3)
i

imt imz 2imz e (e 2 e ), for z , t.
2m

Substituting (A3) into (A1), breaking the integral into
subintegrals over [0, z] and [z, z9], and then rearranging
terms yields (19).
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