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Instability in a class of explicit two-time-level semi-Lagrangian schemes
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SUMMARY

Recently Gospodinov and collaborators derived a family of second-order two-time-level semi-Lagrangian
schemes that contain an undetermined parameter ®. It is shown that, when using one of these schemes to
approximate the forcing terms in partial differential equations in a semi-Lagrangian coordinate frame, the choice
of ® has a critical in� uence on the absolute stability of the method. Optimal stability properties are obtained by
choosing ® D 1=4 which corresponds to the SETTLS scheme proposed by Hortal.
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1. INTRODUCTION

Recent attempts to improve the accuracy and stability of nominally two-time-level semi-Lagrangian
schemes have been presented by Hortal (2002) and Gospodinov et al. (2001). Both authors focused on
two particular aspects of such schemes, the methodology for calculating backward trajectories and the
evaluationof nonlinear terms in the governing equations themselves. The focus of this note is on the second
problem—the integration of partial differential equations of the form

dÃ

dt
D F .Ã; x; t/; (1)

which describes the rate of change of the � eld variable Ã.x; t/ moving with the � ow in a Lagrangian
reference frame subject to the forcing F .

De� ne notation such that the superscripts ‘C’, ‘0’ and ‘¡’ denote values at time levels t C 1t , t and
t ¡ 1t , respectively; the subscripts D and A denote evaluation at the departure point x.t / and the arrival
point x.t C 1t/, respectively, along a Lagrangian trajectory, and Á

C
A denotes the numerical approximation

to Ã.x.t C 1t/; t C 1t/. Considerations of ef� ciency and accuracy have led to the approximation of the
governing equations (1) in many ‘two-time-level’ semi-Lagrangian methods by expressions of the form

Á
C
A ¡ Á0

D
1t

D 1
2 .LC

A C L0
D/ C a1N0

A C a2N0
D C a3N¡

A C a4N¡
D : (2)

Here the forcing F in (1) has been split into a piece L that is evaluated using a trapezoidal time difference
and a piece N that is evaluated using some explicit time integration formula, and the splitting of F into L
and N is designed so that the implicit coupling introduced by the trapezoidal approximation to L.Ã/ yields
a simple implicit algebraic system. In the most elementary case, L and N represent linear and nonlinear
forcings, respectively.The integrationof the forcing due to N in (2) has been a source of instability in some
semi-Lagrangian models (Gravel et al. 1993).

Recently Gospodinov et al. (2001) noted that all f.1t/2g accurate approximations to the nonlinear
forcing in (2) that predict Ã.x.t C 1t/; t C 1t/ from data at time levels t and t ¡ 1t and spatial locations
x.t / and x.t C 1t/ may be expressed in the form

Á
C
A ¡ Á0

D
1t

D . 3
4 ¡ ®/N0

A C . 3
4 C ®/N0

D ¡ . 1
4 ¡ ®/N¡

A ¡ . 1
4 C ®/N¡

D ; (3)

where ® is an undetermined parameter. In this note we examine how the choice of ® in� uences the stability
of the family of semi-Lagrangian schemes (3).

¤ Corresponding author: Department of Atmospheric Sciences, Box 351640, University of Washington, Seattle,
WA 98195, USA. e-mail: durrand@atmos.washington.edu
c° Royal Meteorological Society, 2004.
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2. STABILITY ANALYSIS

One of the most useful ways to characterize the stabilityof numerical solutions to ordinary differential
equations is to examine their absolute stability. Absolute stability is de� ned with respect to the test equation

dÃ

dt
D .¸ C i!/Ã; (4)

where ¸ and ! are real constants and the solution Ã.t/ is complex-valued. The region of absolute stability
is that set of values .¸1t; !1t/ for which perturbationsof the numerical solution at time n1t will produce
a change in subsequent values that does not increase from step to step (Gear 1971). Although (4) is a very
simple equation, its signi� cance arises from the fact that it also describes the local behaviour of numerical
solutions to much more general systems of ordinary differentialequations.To be speci� c, consider a general
system of nonlinear ordinary differential equations

dx
dt

D f.x/: (5)

The easiest way to estimate the local stability of a numerical approximation to this equation with respect to
variations about an arbitrary statebx is to linearize the problem aboutbx, in which case the coef� cient for the
ith perturbation component of x becomes

dxi

dt
D fi.bx / C .xj ¡ bxj /

@fi

@xj
.bx /: (6)

The eigenvalues of the Jacobian @fi=@xj characterize the fundamental behaviours of the solution to the
homogeneous part of (6). The amplitude of each eigenvector composing the homogeneous solution satis� es
the simple test problem (4) with ¸ C i! replaced by the eigenvalue corresponding to that eigenvector.

The fundamental stability properties of semi-Lagrangian approximations to (1) can be similarly
analysed by examining their absolute stability in the case where Ã D Ã.x; t/, F D .¸ C i!/Ã , and dx=dt
is a constant U , so that (1) becomes

dÃ

dt
D

³
@

@t
C U

@

@x

´
Ã D .¸ C i!/Ã: (7)

If Ã.x; 0/ D g.x/, the solution to this test problem is

Ã.x; t/ D g.x ¡ Ut/ e.¸Ci!/t ; (8)

which is non-amplifyingfor ¸ 0. The absolute stability of semi-Lagrangianapproximations to (7) may be
assessed by determining the set of values of .U1t=1x; ¸1t; !1t/ for which both the numerical solution
and the true solution decay with time. To simplify the analysis, the errors generated during the interpolation
to departure points in the semi-Lagrangian algorithm will be ignored, in which case our results describe the
limiting behaviour of a family of semi-Lagrangian schemes that use increasingly accurate interpolation.

We limit our investigation to the behaviour of the explicitly differenced forcing by setting L D 0
and assuming that (7) is approximated by some member of the family of schemes (3). If U D 0, then
x.t C 1t/ D x.t/; all schemes of the form (3) reduce to a second-order Adams–Bashforth time difference,
and the region of the ¸1t–!1t plane throughout which the numerical solution is non-growing (and the
scheme is absolutely stable) is that lying inside the thick curve plotted in each of the panels in Fig. 1.
Precisely the same region of absolute stability can be obtained, independent of the value of the Courant
number U1t=1x, using the semi-Lagrangian scheme

ÁC
A ¡ Á0

D
1t

D 3
2 G0

D ¡ 1
2 G

¡
D¡; (9)

where the subscript D¡ denotes evaluation at x.t ¡ 1t/ (Durran 1999, section 6.2). This method uses only
data lying exactly along the trajectory terminating at the arrival point .x.t C 1t/; t C 1t/. In contrast to (9),
all schemes of the form (3) utilize data from points that do not lie along the precise backwards trajectory,
and for all of these schemes the region of absolute stability depends on the Courant number.

Hortal (2002) observed that, despite the superior stability of (9) when applied to the test problem (7),
the requirement that N be evaluated at x.t ¡ 1t/ leads to several dif� culties in applications to complete
weather-predictionmodels. Hortal therefore proposed a scheme (called SETTLS) that may be expressed in
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Figure 1. Regions of absolute stability for six values of ®. In each panel the area inside the heavy curve is
the region of absolute stability when the Courant number is zero; it is identical for all ®. The individual curves
trace out the limits of the absolutely stable region of a 21x wave for 20 equally spaced values of the Courant
number spanning the interval .¡1; 1]. The central white region consisting of the set of points inside all of these
curves is the region of the ¸1t–!1t plane throughout which the method is absolutely stable independent of the
Courant number. The absolutely stable region reduces to the single point .0; 0/ when ® D 0. See text for further

explanation.

the form (3) by choosing ® D 1=4. Hortal demonstrated that there exists a non-trivial region of the ¸1t–
!1t throughout which the SETTLS scheme yields absolutely stable solutions independent of the value of
the Courant number. This region is smaller than that for the scheme (9) but, as will be demonstrated in the
following, it is larger than the absolute stability region obtained using any other choice of ®.

The absolute stability of the family of semi-Lagrangian approximations (3) to the partial differential
equation (7) may be determined by examining the behaviour of a single Fourier mode whose value at
point .j1x; n1t/ is An eikj1x . Substituting this mode into (3) for the case N D .¸ C i!/Ã and letting
µ D Uk1t , ° D .¸ C i!/1t , one obtains the following quadratic equation for the ampli� cation factor A:

A2 ¡ [° f 3
4 ¡ ® C e¡iµ . 3

4 C ®/g C e¡iµ ]A C ° f 1
4 ¡ ® C e¡iµ . 1

4 C ®/g D 0: (10)

The ampli� cation factor depends on the strength of the forcing per time step (through ° ) and the Courant
number (through µ ). Solutions to (10) are periodic in µ over the interval [¡¼; ¼ ].

The shortest wavelength resolved on the numerical mesh is 21x, for which k D ¼=1x and µ D
¼U1t=1x. Thus, the ampli� cation factor determined by (10) for the 21x wave completes one periodic
cycle as U1t=1x varies over the interval [¡1; 1]. Therefore, except in the relatively inef� cient case in
which a semi-Lagrangian scheme is utilized with such a small time step that the maximum Courant number
is less than unity, a necessary condition for the absolute stability of any of the family of schemes (3) is that
the magnitude of the roots of (10) be less than or equal to unity for all µ . The individual lines in each panel
of Fig. 1 show the numerically computed boundary of the region of absolute stability for each µ in the set
[¡9¼=10; ¡8¼=10; : : : ; 0; : : : ¼ ]. The region in which (3) is absolutely stable for all µ is the closure of
the intersection of the interiors of all these curves.

As indicated in Fig. 1, the region for which (3) yields absolutely stable solutions independent of
Courant number (i.e. independent of µ ) varies dramatically as a function of ®. This region reduces to the
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origin when ® D 0, achieves its maximum size¤ when ® D 1=4 and gradually shrinks to a negligible size as
® becomes much larger than two. There is no value of ® for which the region of absolute stability includes
a � nite-length segment of the imaginary axis.

To better understand the signi� cance of the absolute stability regions in Fig. 1, let ¹ D U1t=1x be
the Courant number, and let .¸1t; !1t/ be an arbitrary point outside the region of absolute stability in the
left half-plane ¸1t 0, then there exists some µ0 2 .¡¼; ¼ ] for which the numerical solution will undergo
spurious ampli� cation. Since µ D ¹k1x, this ampli� cation will appear in the Fourier mode of wavelength
2¼¹1x=µ0 . (Again assuming the semi-Lagrangian integration uses Courant numbers larger than unity, the
wavelength of the unstable mode will be no shorter than 21x and will be resolvableon the numericalmesh.)

3. CONCLUSIONS

The choice ® D 0, yielding a method referred to as the classical scheme by Gospodinov et al. (2001)
and the ‘1997’ scheme by Hortal (2002) cannot be recommended for solutions of partial differential
equations of the form (7) because the region of absolute stability shrinks to the origin when ® D 0. Although
the best results are achieved when ® D 1=4, and this would appear to be the method of choice, the stability
of the SETTLS approximation to (7) is still not ideal because, except for the origin, the imaginary axis lies
outside its region of absolute stability. Thus, in the purely oscillatory case, for which ¸ D 0 and ! 6D 0, the
SETTLS scheme generates spurious growth regardless of the size of 1t . Since Gospodinov et al. (2001)
have demonstrated that all f.1t/2g accurate approximations for the computation of Á

C
A involving only

data at the arrival and departure points at the two preceding time levels may be written in the form (3), the
current stability analysis shows that all such schemes will give unstable approximations when N is a purely
oscillatory forcing, unless the unstable growth is compensated by the numerical approximation to L or by
some other dissipative operator. Note that, in this respect, the stability of SETTLS is exactly opposite that
which would be obtained using a three-time-level semi-Lagrangian scheme in which the forcing term N
is integrated using leapfrog time differencing. Again neglecting possible stabilizing in� uences due to the
numerical approximation of L or other dissipative operators, the leapfrog integration will only give stable
results when N is associated with a purely oscillatory forcing.

Thus it seems advisable to ensure that, when the total semi-Lagrangianforcing F is split into L and N
and the forcing N is integrated using SETTLS, the function N should not be purely oscillatory in the sense
that, when N.Ã; x; t/ is linearized about arbitrary points in the phase space of the solution, the resulting
linear operator should have no purely imaginary eigenvalues.Alternative approaches that can eliminate this
type of instability within the context of two-time-level semi-Lagrangian schemes are to avoid the family
of methods (3) by either off-centring the time extrapolation in the integration of N.Ã; x; t/ (Gravel et al.
1993), although this decreases the accuracy of the method to � rst order, or to simply set L D F and N D 0
in (2) (Coté et al. 1998; Cullen 2001), which in most practical applications requires the solution of a more
dif� cult system of nonlinear algebraic equations.

Up to this point, our focus has been on the semi-Lagrangian solution of partial differential equations
of the form (1) without considering the method for integrating backward trajectories or the interaction
between the trajectory computation and the overall stability of the scheme. Schemes of the form (3) may
also be used to compute back trajectories. Indeed, the use of SETTLS for trajectory computations made a
major improvement in several forecasts with the model of the European Centre for Medium-Range Weather
Forecasts (Hortal 2002).

Semi-Lagrangian trajectory calculations require a backward-in-time integration of the ordinary differ-
ential equation (ODE)

dx
dt

D V.x; t/; (11)

where V is the � uid velocity. Given that each back trajectory is computed only over a time interval 1t ,
it is probably not important to examine the stability of the solutions to (11) in isolation. Furthermore, it
is not clear what can be said about the absolute stability of solutions to (11) generated using schemes of
the form (3) since, when (3) is applied to an ODE, the method differs from conventional multistep ODE
solvers in that the forcingV.x; t/ is not only evaluated using approximationsto the solutionat previous time
levels, but also using additional points .x; t/ that lie off the trajectory. One thing that can be said is that the
approximate solutions to ODE generated by (3) are suf� ciently stable to converge to the exact solution in
the limit 1t ! 0 independent of the value of ®, because (3) satis� es the so-called root condition (Isaacson
and Keller 1966).

¤ The value of ® that yields the maximum region of absolute stability was determined empirically by numerically
evaluating the roots of (10) for a series of different ® and is subject to an uncertainty of §1=64.
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The much more important question of the in� uence of the trajectory calculation on the stability of
the overall scheme is a subtle and dif� cult problem that is beyond the scope of this note. An example of the
trouble that can occur is given by Bates et al. (1995), who showed that a forward-in-time extrapolation of
the velocity � eld in the back-trajectory calculation may create instability in semi-Lagrangian approxima-
tions to Rossby wave solutions to the linearized non-divergentvorticity equation.
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