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ABSTRACT

Gap winds produced by a uniform airstream flowing over an isolated flat-top ridge cut by a straight narrow
gap are investigated by numerical simulation. On the scale of the entire barrier, the proportion of the oncoming
flow that passes through the gap is relatively independent of the nondimensional mountain height e, even over
that range of e for which there is the previously documented transition from a ‘‘flow over the ridge’’ regime to
a ‘‘flow around’’ regime.

The kinematics and dynamics of the gap flow itself were investigated by examining mass and momentum
budgets for control volumes at the entrance, central, and exit regions of the gap. These analyses suggest three
basic behaviors: the linear regime (small e) in which there is essentially no enhancement of the gap flow; the
mountain wave regime (e ; 1.5) in which vertical mass and momentum fluxes play a crucial role in creating
very strong winds near the exit of the gap; and the upstream-blocking regime (e ; 5) in which lateral convergence
generates the strongest winds near the entrance of the gap.

Trajectory analysis of the flow in the strongest events, the mountain wave events, confirms the importance
of net subsidence in creating high wind speeds. Neglect of vertical motion in applications of Bernoulli’s equation
to gap flows is shown to lead to unreasonable wind speed predictions whenever the temperature at the gap exit
exceeds that at the gap entrance. The distribution of the Bernoulli function on an isentropic surface shows a
correspondence between regions of high Bernoulli function and high wind speeds in the gap-exit jet similar to
that previously documented for shallow-water flow.

1. Introduction

Strong surface winds can develop in several ways
when stably stratified air interacts with a mountain bar-
rier. In one prototypical case—downslope windstorms—
the winds blow down the lee slope of a mountain ridge.
Downslope windstorms occur only when there is a sig-
nificant cross-barrier flow. In a second prototypical
case—gap winds—the winds blow through a gap in the
ridge. Gap winds typically occur when there is a sig-
nificant drop in atmospheric pressure between the en-
trance and exit regions of the gap. Gap winds, which
have received considerably less theoretical attention
than downslope winds, are the focus of this paper.

The pressure differences responsible for gap winds can
be generated by several types of synoptic-scale weather
patterns. Low-level cross-barrier pressure gradients may
be present even when the large-scale flow surrounding
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the mountain is essentially stagnant provided there are
significant low-level temperature differences in the air
masses on each side of the mountain. Gap flow under
such conditions occurs frequently during the summer in
the Columbia River Gorge (between the states of Wash-
ington and Oregon in the United States). When synoptic-
scale pressure gradients exist above mountain-top level
they are usually in approximate geostrophic balance with
the larger-scale flow. Geostrophically balanced pressure
gradients associated with the large-scale flow have been
identified as the primary agent in creating gap flows in
locations such as the Shelikof Strait in Alaska (Lackmann
and Overland 1989) and Lake Torneträsk in Scandinavia
(Smedman et al. 1996) through a process known as ‘‘pres-
sure driven channeling’’ (Whiteman and Doran 1993).
Perhaps the most common type of gap flow occurs in
connection with cold-air surges, when both significant
cross-mountain winds and cross-mountain temperature
differences may be present. Examples of this type include
the wintertime easterlies in the Columbia River Gorge,
as well as easterly gap winds in Howe Sound, British
Columbia, (Jackson and Steyn 1994a,b), the Strait of Juan
de Fuca (Overland 1984; Colle and Mass 2000), and the
Strait of Gibraltar (Scorer 1952; Dorman et al. 1995),
and northerly winds through Chivela Pass into the Gulf
of Tehuantepec, Mexico (Steenburgh et al. 1998).
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This is the first of a pair of papers that will attempt
to present a relatively comprehensive analysis of those
gap flows that are dynamically forced by the interaction
of a large-scale flow with the topography. The more
complicated problem of gap winds driven by the com-
bined influences of cross-mountain winds and temper-
ature differences is left for future study.

Many previous theoretical studies of gap flow have
used shallow-water theory to examine the response of
flow within a channel to changes in the channel width
and channel depth (Baines 1995, chapters 2 and 3).
While such studies are very useful for investigating the
response to small-scale features within the gap, the po-
tential for mesoscale circulations near the gap-entrance
and -exit regions to dominate the total cross-gap pres-
sure gradient (Colman and Dierking 1992; Colle and
Mass 1998a,b) provides the motivation for our approach
in Part I of this paper, which is to examine the processes
that occur along the entire length of the gap, including
the entrance and exit regions. In particular, this paper
focuses on the regimes of free-slip gap flow generated
by mesoscale pressure perturbations arising from the
interaction of a uniform cross-mountain flow with a
mountain barrier cut by a straight, sea level gap. Coriolis
forces are neglected. The influence of surface friction
and the relative importance of mesoscale and geostroph-
ically balanced synoptic-scale pressure perturbations
(pressure-driven channeling) in determining the strength
and structure of gap flow will be considered in Part II.

Idealized simulations of gap winds generated by a
uniformly stratified airstream flowing perpendicular to
the long axis of the barrier (and parallel to the axis of
the gap or mountain pass) have been conducted by Saito
(1993) and Zängl (2002), both of whom found that sig-
nificant gap flows could develop in response to meso-
scale pressure gradients produced by the large-scale
cross-ridge flow. The focus in this paper is on the de-
tailed analysis of the kinematics and dynamics that are
responsible for the generation of the high gap winds that
can develop in such cross-mountain flows, including

• the extent to which air is deflected through the gap
or around the ends of a ridge as a function of the
nondimensional mountain height,

• the variations, with respect to the nondimensional
mountain height, in the portion of the gap within
which the maximum flow acceleration occurs and the
dynamical processes responsible for that acceleration,
and

• the application of Bernoulli’s theorem to those cases
with the strongest gap winds.

2. Model description

The calculations presented in this paper were con-
ducted using a numerical model to simulate nonhydro-
static compressible flow governed by the equations

]u ]u ]p9 u 2 u 1 ]Tiji i1 u 1 c u 2 d g 5 2 , (1)j p i3]t ]x ]x u r ]xj i j

]u ]u ]Bj
1 u 5 , (2)j

]t ]x ]xj j

]p9 R ]u Rp ]Bj j
1 5 . (3)

]t c ]x c u ]xy j y j

Here (x1, x2, x3) 5 (x, y, z) is the spatial position vector,
(u1, u2, u3) 5 (u, y, w) is the velocity vector, u is the
potential temperature, r is the density, cp and cy are the
specific heats of air at constant pressure and constant
volume, and R is the gas constant for dry air. Pressure
p appears in (1)–(3) through the Exner function p 5
(p/p0) . The thermodynamic variables p and u are di-R/cp

vided such that p 5 (z) 1 p9(x, y, z, t) and u 5 (z)p u
1 u9(x, y, z, t), where the reference state ( , ) is inp u
hydrostatic balance (i.e., cp ] /]z 5 2g). Finally, Tiju p
and Bj are the turbulent subgrid-scale fluxes of mo-
mentum and heat, parameterized in terms of an eddy
diffusivity K following Lilly (1962) as

]u
T 5 rKD , B 5 K . (4)i j i j j ]xj

Here the Prandtl number has been taken as unity,

]u ]u 2 ]uji lD 5 1 2 d ,i j i j]x ]x 3 ]xj i l

and K is proportional to (1 2 Ri)1/2, in which Ri is the
Richardson number

21/22g ]u
2Ri 5 D .O O i j1 2u ]x i j3

The numerical techniques used to solve (1)–(3) are
described in Durran and Klemp (1983). The model in-
corporates the topography using a terrain-following co-
ordinate (Gal-Chen and Sommerville 1975) and in-
cludes two-way interactive nesting (Skamarock and
Klemp 1993). At the lateral boundaries of the coarsest
grid, a one-way wave equation is applied to the normal
velocity using a constant outward-directed phase speed.
The linear radiation condition of Klemp and Durran
(1983) and Bougeault (1983) is applied at the top bound-
ary as modified for local evaluation by Durran (1999).
At the bottom boundary, T13, T23, B3, and the velocity
component normal to the topography are set to zero.

The topography in our experiments is an elongated
flat-topped ridge parallel to the y axis with a gap per-
pendicular to the ridgeline defined by the product h(x, y)
5 r(x, y)g(y). The shape of the ridge into which the
gap is incised is given by the formula

4
h ps0 1 1 cos , if s # 4a;1 2 [ ]16 4ar(x, y) 5 (5)
0, otherwise,

where
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max(0, |x | 2 b), if |y | # c;
s 5

2 2 1/25max{0, [x 1 ( |y | 2 c) ] 2 b}, otherwise.

The ridge is centered at (x, y) 5 (0, 0) and is flat topped
with uniform height h0 over a distance 2b along the x
axis and a distance 2(b 1 c) along the y axis. The ends
of the flat-topped region are semicircular, with radius
b. The slopes of the ridge have an approximate half-
width a. The gap is carved out of the ridge by multi-
plying r(x, y) by

 0, if |y | # d /2;
 p( |y | 2 d /2) d d
g(y) 5 sin , if , |y | # e 1 ; (6)[ ]2e 2 2

1, otherwise.

In (6), d is the width of the floor of the gap, and e is
the horizontal distance over which the sidewalls rise
from the floor of the gap to the ridgeline. In the sim-
ulations presented in Part I of this paper, h0 5 1.4 km,
a 5 b 5 10 km, c 5 85 km, e 5 5 km, and unless
otherwise noted, d 5 10 km.

Some previous studies, both laboratory (Baines 1979)
and numerical (Saito 1993), have economized by study-
ing gap flow in a narrow channel perpendicular to the
ridge axis with channel walls along the centerline of the
gap and across the adjacent ridge. We also conducted
simulations in such narrow domains (with slab-sym-
metric boundary conditions in the gap and on a section
of the uniform ridge) and found a tendency for the low-
level flow upstream of the gap to become blocked when
Nh0/U was large. As will be shown in sections 4 and
5, such blocking can play an important role in the dy-
namics of gap flow, but the physical relevance of up-
stream blocking in the essentially two-dimensional ge-
ometry of a channel flow is open to question. Epifanio
and Durran (2001) have shown that once mountain
waves begin to break, the flow over the centerline of a
very long, but finite ridge is not well approximated by
a purely two-dimensional simulation. In order to faith-
fully represent the nature of any upstream blocking (and
in Part II, to accommodate large-scale winds at arbitrary
angles to the ridgeline) the simulations described in this
paper employ multiply nested grids to compute the flow
through the gap in an isolated ridge. This configuration
allows any tendency toward upstream blocking to be
mitigated by the possibility of flow around each end of
the ridge.

In these simulations the aspect ratio of the the ridge,
defined as the length of the ridge at half height divided
by the width of the ridge at half height, is b 5 (b 1
c)/(a 1 b) 5 4.75. Epifanio and Durran (2001) found
that for values of Nh0/U . O(1), the flow over the
centerline of a very long ridge (b 5 12) is much better
approximated by that over a ridge with b 5 5 than by
the flow in a purely two-dimensional (x 2 z) domain.
Thus, the results reported in this paper for gaps in ridges

with b ; 5 are expected to be more representative of
the flow through gaps in extremely long ridges than
results obtained using the channel geometry.

Each of the nested grids covered a square domain
with the gap at its center. The spatial and temporal res-
olution was refined by a factor of 3 on each nest. The
finest grid, on which Dx 5 1.5 km, occupied a square
271 km on a side, which was just large enough to include
the entire mountain. The intermediate grid, on which
Dx 5 4.5 km, covered a square 405 km on a side. The
outer grid, on which Dx 5 13.5 km, extended over a
square 1269 km on a side. The depth of the domain zT

was 13 km. The vertical grid spacing is variable, starting
at 100 m in the layer 0 # z # 3 km, then smoothly
increasing to 250 m over layer 3 # z # 4 km, and
remaining constant at 250 m above 4 km. This vertically
stretched grid allows us to efficiently resolve both the
low-level gap flow and any mountain waves that might
develop aloft.

The horizontal wind field is ‘‘turned on’’ instanta-
neously, and integrated to a nondimensional time T [
Ut/a 5 40, by which point the flow in the vicinity of
the topography reaches a nearly steady state. Other ini-
tialization techniques, such as a gradually ramping up
of the velocity, were tested, but all approaches gave
essentially the same nearly steady solution. All numer-
ical calculations were performed with single-precision
arithmetic because of computational costs. Solutions ob-
tained using double precision differ from the single-
precision simulations only in the lee of the obstacle in
regions of highly turbulent flow, but there was no dif-
ference in the basic character of the quasi-steady so-
lutions.

3. The barrier-scale response

Using linear theory, Smith (1989) investigated the
development of stagnation points in flow around an iso-
lated three-dimensional barrier. For flows with constant
N and U impinging on simple convex barriers of height
h0, he noted that stagnation was favored in cases with
larger values of e 5 Nh0/U, and that in addition, the
behavior of the stagnation points depended on the ratio
of the cross-flow extent of the ridge to its along-flow
extent b. For ridges oriented perpendicular to the flow
(b . 1), stagnation is favored in the wave-breaking
region above the lee slope. For ridges aligned parallel
to the flow (b , 1), stagnation is favored on the wind-
ward slope in connection with the splitting and deflec-
tion of the flow around each side of the ridge. Many
numerical studies have subsequently confirmed that the
parameters e and b are sufficient to characterize the
susceptibility of cross-barrier flows with constant N and
U to wave breaking and flow splitting.

When the ridge is cut by a gap, a new path becomes
available along which fluid parcels may travel to the lee
side of the barrier. In this section we consider two basic
questions that arise when there is a gap in the topog-
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FIG. 1. Horizontal streamlines and normalized perturbation velocity (u 2 U)/U (shaded contours) at z 5 300 m and
T 5 Ut/a 5 40, for flow over a ridge with a gap when e equals (a) 0.25, (b) 1.4, (c) 2.8, and (d) 5.0. The contour
interval is 0.5; dark (light) shading corresponds to negative (positive) values. Terrain contours are every 300 m.

raphy. The first question is: Do the barrier-scale flow
perturbations generated by a ridge with a narrow gap
differ from those that develop when no gap is present?
The second question is: How does the fraction of the
oncoming flow that is channeled through the gap vary
as a function of e?

Representative examples (selected from a much larger
set of simulations) of the low-level flow around ridges
with and without gaps at various values of e are shown
in Figs. 1 and 2. The ridges were identical in all the
simulations and defined according to (5). When a gap
was present, it was defined by (6). The static stability
was N 5 0.01 s21, and the variations in e were achieved
by changing the speed of the upstream flow, such that
values of e equal to (0.25, 1.4, 2.8, 5) were obtained
using values of U equal to (56, 10, 5, 2.8) m s21. Each
panel in Figs. 1 and 2 shows streamlines and the nor-
malized perturbation velocity [(u 2 U)/U] on the sur-

face z 5 300 m; no data are plotted where the elevation
of the topography exceeds 300 m.

When e 5 0.25 (Figs. 1a and 2a), mountain waves
are present over the ridge, but there is no wave breaking
and the flow is similar to that obtained for very small
e (not shown). The waves are clearly visible in the is-
entrope displacements in the vertical cross section along
the gap axis plotted in Fig. 3a. Also plotted in Fig. 3
are contours of the normalized x-component perturba-
tion velocity field using the same shading and contour
intervals used in Figs. 1 and 2. For e 5 0.25, the lateral
deviation of the streamlines when they encounter the
ridge or the gap is small, which is consistent with the
results of Epifanio and Durran (2001), who found that
only modest lateral flow deviations occurred around
long uniform ridges unless the crest was high enough
to trigger wave breaking over the lee slope. Figures 1a
and 3a show a slight enhancement of the wind within
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FIG. 2. Horizontal streamlines and normalized perturbation velocity, as in Fig. 1, for flow over a ridge without a gap
for e equal to (a) 0.25, (b) 1.4, (c) 2.8, and (d) 5.0.

and downstream of the gap, but there is no distinct jet
of high winds emanating from the gap.

When e 5 1.4 (Figs. 1b and 2b), wave breaking oc-
curs over the lee slopes of the ridge, creating a narrow
zone of high winds that ends abruptly in a feature anal-
ogous to a hydraulic jump. A turbulent wake of decel-
erated flow is present downstream of the jump. In the
simulation without a gap the central portion of the wake
contains a well-organized current of reversed flow back
toward the mountain, whereas in the simulation with a
gap, the wake is split by a jet flowing rapidly away from
the mountain. This jet is the continuation of the accel-
erated gap flow, and it is flanked by a pair of vortices
in which the circulation is opposite to that typically
found in vortices forming in lee of a barrier without a
gap. The vertical cross section along the gap axis (Fig.
3b) shows the high-amplitude wave aloft, a zone of
stagnant or reversed flow (the region inside the third
level of dark shading) centered near (x, z) 5 (50, 1.2),

and the extension of the gap flow well downstream from
the ridge. Although the shape of the topography is some-
what different, the presence of wave breaking over the
gap itself is consistent with the simulations of Zängl
(2002), who in contrast to Saito (1993), found high gap
winds developing beneath a wave-breaking region ex-
tending across the gap from the adjacent ridges. Up-
stream of the barrier, the 300-m flow is mostly blocked
and deflected around the ends of the ridge. The presence
of the gap enhances the upstream blocking, except in
the localized region just upstream of the gap.

In comparison to the e 5 1.4 simulations, when e 5
2.8 the mountain waves over ridge are weaker (cf. Fig.
3c), wave breaking is reduced, and the high winds do
not extend down the lee slope to the 300-m level on
which the data are plotted in Figs. 1c and 2c. Down-
stream of the ridge without a gap, a typical pair of lee
vortices produces reversed (‘‘easterly’’) flow along the
centerline, but when a gap is present, a pronounced jet
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FIG. 3. Potential temperature and horizontal velocity in a y–z plane along the centerline of the gap for the four cases
shown in Fig. 1: e equal to (a) 0.25, (b) 1.4, (c) 2.8, and (d) 5.0. The heavy lines are the 275-, 280-, and 285-K
isentropes; the normalized perturbation velocity field is contoured every 0.5 and shaded as in Fig. 1. The dashed line
shows the profile of the adjacent ridge.

of enhanced ‘‘westerly’’ winds penetrates over 100 km
downstream, splitting the wake into four distinct vor-
tices. The gap-wind jet is flanked by a pair of smaller
vortices that rotate opposite to the main pair of vortices
that fill the wake farther downstream. Finally, there is
slightly less deceleration immediately upstream of the
central portion of the ridge when the gap is present.

The lee wave amplitude is negligible when e 5 5
(Fig. 3d). The lee vortex patterns in the gap and no-gap
simulations remain similar to those in the e 5 2.8 case,
but the jet emanating from the gap is much weaker; in
fact the gap winds in the exit region are weaker than
the undisturbed upstream flow (Figs. 1d and 2d). Ac-
celerated winds are nevertheless found within the gap
itself, and the lateral confluence feeding air into the gap

is more pronounced than in the simulations with smaller
values of e.

A closer look at the flow within the gap in the pre-
ceding simulations is provided in Fig. 4, which shows
the normalized pressure perturbation [p 2 (z)]/(er0U 2)p
at z 5 300 m (here r0 is a representative surface density),
along with the normalized perturbation wind speed pre-
viously plotted in Figs. 1 and 2. Note that the region
of highest perturbation wind speed shifts position as a
function of e. When e 5 0.25, the normalized pertur-
bation winds are too weak to show up at the contour
interval plotted in Fig. 4; nevertheless, other plots using
finer contour intervals show that the highest perturbation
winds are downstream of the centerline but still within
the gap. As e increases to 0.5 (not shown) and 1.4, the
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FIG. 4. Normalized pressure perturbation (p 2 )/(er0U 2) (solid black lines for positive, dashed black lines forp
negative values, thick solid line represents zero perturbation) and normalized perturbation velocity (u 2 U )/U (shaded
contours) at z 5 300 m and Ut/a 5 40, for (a) e 5 0.25, (b) e 5 1.4, (c) e 5 2.8, and (d) e 5 5.0. The contour
interval for pressure perturbation (italics) is 0.25 (cases e 5 0.25 and e 5 1.4) and 0.2 (cases e 5 2.8 and e 5 5.0).
For velocity perturbation, the contour interval is 0.4, dark (light) shading corresponds to positive (negative) values,
speeds in the interval [20.2, 0.2] are not shaded. Terrain contours are every 300 m.

FIG. 5. Cross-mountain pressure drag D as a function of Ut/a for
the simulations shown in Figs. 1 and 2. Pairs of curves are plotted
for each value of e, using filled circles for cases with a continuous
ridge and open squares for cases with a gap.

normalized perturbation wind maxima strengthen and
shift completely downstream of the ridge. Further in-
creases in e move the perturbation maximum wind speed
back upstream; it appears back inside the gap when e
5 2.8, and it shifts even farther upstream, to the gap-
entrance region, when e 5 5.0. The locations of the

maximum wind speed perturbations are approximately
coincident with the locations of the maximum wind
speed perturbations are approximately coincident with
the locations of the minima in the 300-m pressure field.
Note that for most values of e, the pressure within the
gap is lower than the ambient pressure upstream; how-
ever when e 5 1.4, the pressure in the upstream half
of the gap is higher than the pressure upstream, and the
pressure gradient contributing to the acceleration of the
gap flow is concentrated in the gap-exit region.

The normalized x component of the pressure drag on
the topography,

`1 ]h
D 5 p9 dx dy,E2r NUh L ]x0 0 y 2`

for each of the preceding simulations is plotted as a
function of nondimensional time Ut/a in Fig. 5. Here
p9 is the perturbation pressure and Ly is the length of
the ridge, taken as 2(b 1 c) 5 190 km [see (5)]. The
normalization factor is a scale for the pressure drag
associated with linear flow over a ridge of height h0 and
length Ly, but it is not the precise drag for linear flow
over the flat-top ridge defined by (5). Data for simu-
lations with and without a gap are indicated by open
squares or filled circles, respectively. The normalized
drag in the weakly nonlinear e 5 0.25 cases becomes
quite steady at values of about unity after Ut/a 5 20,
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FIG. 6. A control volume for low-level mass-flux calculations.

with the drag slightly stronger in the case with no gap.
The slight decrease in drag when the gap is present is
due to the reduction in the total area of the obstacle on
which the pressure drag can act.

In contrast to previous results for pressure drag across
ridges with well-defined peaks (Ólafsson and Bougeault
1997; Epifanio and Durran 2001), the maximum value
of the normalized drag for the flat-top ridge is achieved
at relatively small e, for example, among our simula-
tions with e in the set {0.25, 0.5, 1.0}, the largest value,
D 5 2.0, was obtained for e 5 0.5. As suggested by
the remaining pairs of curves in Fig. 5, in the more
nonlinear cases, the drag undergoes a strong initial tran-
sient and then settles down but never becomes com-
pletely steady. The e 5 1.4 cases become quasi-steady
with values of D around 1.1, with slightly higher drag
for the ridge pierced by the gap. As noted previously,
the simulation with the gap produces a little more up-
stream blocking along the ridges on each side of the
gap, and it is the upstream pressure perturbations as-
sociated with this blocking that appear to be responsible
for the slightly enhanced drag. In the e 5 5.0 case, the
drag is much weaker; it is virtually independent of the
presence of the gap, and it decreases gradually in as-
sociation with a long time-scale evolution of the wake.
The e 5 2.8 cases exhibit the most complex behavior.
After achieving an almost steady value of 0.55 between
Ut/a 5 15 and 35, the drag begins to undergo fluctu-
ations with a period of roughly 20 Ut/a. These fluctu-
ations are associated with vacillations in the lee wave
and wake structure that are a subject of continued in-
vestigation. The phase/onset time of the oscillation is
sensitive to the presence or absence of the gap.

Now consider the question of how the fraction of the
oncoming flow channeled through the gap varies as a
function of e. A quantitative measure of low-level flow
deflection through the gap or around the ends of the
ridge can be obtained by evaluating the mass fluxes
through the sides of the control volume shown in Fig.
6. The lower boundary of the control volume follows
the terrain, the sides are vertical planes and the top
boundary follows a surface of constant potential tem-
perature (ut 5 277 K). The downstream boundary is
parallel to the y axis and is located where the topography
first rises to its full height, at x 5 2b 5 210 km. The
downstream boundary is sufficiently upstream, with re-
spect to the centerline of the ridge, that wave breaking
never occurs within the control volume; therefore the
flow along the top of the control volume is isentropic.
The lateral sides are parallel to the x axis, intersecting
the north and south ends of the uniform section of the
ridge at y 5 6c 5 685 km. The upstream boundary
is placed at x 5 xi 5 2200 km, which is sufficiently
far upstream to ensure that all significant deflection of
the flow around the ends of the mountain is included
in the mass fluxes through the lateral sides of the control
volume. The mass flux budget is evaluated at nondi-
mensional time T 5 40, at which point the flow through

the control volume in each simulation is almost com-
pletely steady.

Since at steady state, both the lower and upper bound-
aries of the control volume act as material surfaces, the
mass entering the control volume through its upstream
face is either deflected laterally around the ends of the
obstacle, lifted over the ridge crest, or channeled
through the gap. Let zt(x, y) be the height of the ut

isentropic surface. The fluxes through each face of the
control volume shown in Fig. 6 may be evaluated as

c z (x ,y)t i

f 5 ru(x , y, z) dy dz,i E E i

2c 0

0 z (x,c)t

f 5 ry(x, c, z) dx dz,d1 E E
x h(x,c)i

0 z (x,2c)t

f 5 2 ry(x, 2c, z) dx dz,d2 E E
x h(x,2c)i

c z (2b,y)t

f 5 ru(2b, y, z) dy dz,c1 E E
e1d /2 h0

2e2d /2 z (2b,y)t

f 5 ru(2b, y, z) dy dz,c2 E E
2c h0

e1d /2 z (2b,y)t

f 5 ru(2b, y, z) dy dz.g E E
2e2d /2 h(2b,y)

Normalized fluxes may now be defined representing
the fraction of the mass entering the control volume that
is deflected around the ends of the ridge Fd 5 (fd1 1
fd2)/fi, lifted over the crest Fc 5 (fc1 1 fc2)/fi or
channeled through the gap Fg 5 fg/fi. These normal-
ized mass fluxes are plotted as a function of e in Fig.
7a, which clearly shows the expected shift between a
flow-over regime at small e and a flow-around regime
at large e. Somewhat surprisingly, the fraction of the
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FIG. 7. Partitioning of the low-level mass flux as a function of e.
(a) Laterally deflected flux Fd (diamonds), gap flow Fg (shaded
squares), and cross-crest flow Fc (circles) for the control volume
shown in Fig. 6 when the bottom of the gap d is 10 km wide. (b) As
in (a), except that the control volume is topped by a horizontal plane
at the elevation of the ridge crest and the circles represent the vertical
flux through this plane. (c) Comparison of Fg for d 5 10 km (shaded
squares) and d 5 40 km (open squares).

FIG. 8. Control volumes for analysis of the low-level mass budget
in the gap. Arrows representing mass fluxes for the entrance region
are also shown.

total mass flux that exits through the gap Fg is relatively
independent of e. For the topography shown in Fig. 1,
the gap flow Fg varies from 0.18 to a minimum of 0.11
at e 5 1.4 and then gradually increases back to 0.14.
In contrast, over the same range of e both the portion
the flow deviating laterally around the ends of the ridge
Fd and that flowing over the crest Fc change by roughly
100% as the flow-over regime (small e) gives way to
the flow-around regime (large e).

The preceding analysis does not uniquely differentiate
between the gap flow itself and the air that passes over
the gap above the height of the ridge. Does the per-
centage of air passing through the gap itself exhibit a
greater dependence on e? To address this question, the
top of the control volume defined in Fig. 6 was replaced
with a horizontal plane at the height of the ridge crest,
and the portion of the flow passing over the ridge was
redefined as the vertical flux through this horizontal
plane normalized by the total incoming flux upstream.
The variation of these ‘‘below crest’’ fluxes as a function
of e is plotted in Fig. 7b, which shows the same basic
behavior revealed in the previous analysis: as e increas-
es, there is a clear shift between a flow-over regime to
a flow-around regime while the percentage of flow pass-
ing through the gap remains relatively constant. One
minor piece of additional information available in Fig.
7b is that the net vertical flux through the top of the
volume drops almost to zero for e $ 2.8.

The robustness of the result that Fg does not expe-
rience a regime change as a function e was verified in
a second series of simulations in which the width of the
bottom of the gap d was increased from 10 to 40 km

[see (6)] without modifying any of the other parameters
defining the shape of the topography. This increase in
d widens the total y–z cross section of the gap by a
factor of 2.8. The fraction of the incoming mass flux
that is channeled through the gap in both the d 5 10
and d 5 40 km simulations is plotted as a function of
e in Fig. 7c. In both cases, the fraction of the flow that
passes through the gap is relatively independent of e.
Not surprisingly, the fraction of the total flow channeled
through the gap increases as the width of the gap in-
creases. Furthermore, for a given value of e, the ratio
of Fg for the d 5 40 km case to that in the d 5 10
case is approximately equal to the ratio of the cross-
sectional areas of the gaps in the two simulations.

4. Flow through the gap: Kinematics

Having examined the barrier-scale response, let us
now consider the kinematics of the gap flow itself,
which may be revealed by analyzing the mass fluxes
through the series of three control volumes oriented
along the gap shown in Fig. 8. The top of all three
volumes is bounded by the horizontal plane z 5 1200
m, which lies 200 m below the ridgetop. The width of
each volume is the minimum of either 20 km [d 1 2e
as defined in connection with (6)] or the actual width
of the gap. The entrance volume occupies the region
240 # x # 210 km along the windward slopes of the
ridge, the exit volume is aligned with the lee slopes over
the interval 10 # x # 40 km, and the central volume
is found where the gap width is independent of x in the
interval 210 5 2b # x # b 5 10 km.

Define the area-integrated mass fluxes , ,x xf f→en →c

, and as the integral of ru over the y–z surfacesx xf fc→ ex→

that constitute the upstream sides of the entrance, central
and exit volumes, and the downstream face of the exit
volume, respectively. Let , , and be the integralz z zf f fen c ex

of rw over x–y surfaces at the top of the entrance, cen-
tral, and exit volumes. Finally, let and be they yf fen ex
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FIG. 9. Normalized mass fluxes through the control volumes shown
in Fig. 8, for simulations with different e. Vertical dashed lines denote
the x-coordinate locations of the boundaries of the individual control
volumes. For each simulation, the leftmost pair of lines delimits the
entrance volume, the center pair the central volume, and the rightmost
pair the exit volume. The cross-ridge topographic profile associated
with these control volumes is plotted below each set of mass-flux
data, along with the normalized surface wind speed. Squares, dia-
monds, and circles denote the normalized values of f x, f y, and f z,
respectively.

net area-averaged lateral mass flux out of the entrance
and exit volumes, defined for example for the entrance
volume such that 5 fN 2 fS, where fN and fS areyf en

the integrals of ry over the ‘‘northern’’ and ‘‘southern’’
faces indicated in Fig. 8. At steady state, conservation
of mass requires

x x z yf 5 f 2 f 2 f , (7)→c →en en en

x x zf 5 f 2 f , (8)c→ →c c

x x z yf 5 f 2 f 2 f . (9)ex→ c→ ex ex

Note that the sidewalls of the gap prevent any lateral
mass fluxes from entering the central volume, and they
reduce the x–y cross-sectional area of the central volume
by a factor of 0.64 relative to the area of the upstream
face of the entrance volume (and the downstream face
to the exit volume).

The steady-state mass balance for four simulations
with e 5 0.25, 1.4, 2.8, and 5.0 is displayed in Fig. 9.
In all cases the mass budget closes to within 5% of the
largest term. For each simulation all terms appearing in
(7)–(9) are normalized by division by max( | | ,xf→en

| | , | | , | | ) and plotted at representativex x xf f f→c c→ ex→

locations along the x axis. The along-gap fluxes f x are
plotted at the x coordinate of the y–z face through which
the flux is transmitted, whereas the fluxes f y and f z

are plotted at the x coordinate of the center of the surface
through which they are transmitted. The ridge profile
and the normalized surface wind speed u(x, 0, 50)/[U(1
1 e)] are also displayed for each simulation. Three basic
regimes of mass transport through the gap are apparent
in Fig. 9.

In the first regime, which applies to the case e 5 0.25,
the air flows up and over the topography with only

minimal lateral divergence; there is no wave breaking
and almost no amplification of the gap flow. The var-
iation in the average along-gap wind speed can be de-
duced from the along-gap mass fluxes in this case as
follows. The mass flux out the downstream face of the
entrance volume is decreased from the upstreamxf→c

value by almost the full factor of 0.64 by whichxf→en

the cross-sectional area of flow is reduced within the
gap. The decrease in mass flux is slightly less than 64%
because there is a slight acceleration of the along-gap
wind component within the entrance volume. The mass
balance required by (7) is achieved primarily by re-
moving mass through the top boundary of the entrance
volume ( . 0); lateral convergence provides only azf en

small contribution to the total mass balance. Within the
central volume there is very slight acceleration of the
flow and enhancement of the along-gap flux duexf c→

to a weak downward flux . The mass flux out exitzf c

volume is increased relative to by downwardx xf fex→ c→

fluxes through the top of the exit volume ( , 0);zf ex

lateral divergence out the sides of the exit volume is
weak. The increase in relative to is due almostx xf fex→ c→

entirely to the increase in cross-sectional area of the exit
volume downstream of the gap. Since is onlyxf ex→

slightly greater than , there is almost no net en-xf→en

hancement of the along-gap wind speed.
The second gap-flow regime, which will be called the

mountain wave regime, is illustrated by the e 5 1.4
case; it is characterized by a monotone increase in mass
flux through each of the control volumes leading to a
significant enhancement of the gap wind. Despite the
reduction in the y–z cross-sectional area across the en-
trance volume, exceeds due to both lateralx xf f→c →en

convergence ( , 0) and downward transport ( ,y zf fen en

0). Downward mass fluxes into the central volume pro-
duce a further enhancement of relative to . Fi-x xf fc→ →c

nally, very strong downward fluxes in the exit region
offset modest lateral divergence to accelerate the along-
gap flow to the point where exceeds by rough-x xf fex→ →en

ly a factor of 5.
A third gap-flow regime, the upstream-blocking re-

gime is apparent in the e 5 5.0 simulation, in which
the largest increase in the along-gap mass flux occurs
in the entrance volume due primarily to strong lateral
convergence. Modest downward transport also plays a
role in increasing , but there is little subsequentxf→c

change in the along-gap mass flux through central and
exit regions. Since ø despite the factor of 1.6x xf fex→ c→

increase in the cross-sectional area between the up-
stream and downstream faces of the exit volume, the
average wind speed decreases within the exit volume.

The behavior of the averaged along-gap wind speed
deduced from the preceding mass budgets is reflected
in the distributions of normalized 50-m wind speed
shown at the bottom of Fig. 9. These wind speeds, taken
from the lowest grid level in the numerical simulation,
are normalized by U(1 1 e), which is a characteristic
scale for the maximum horizontal wind speed that would
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FIG. 10. Control volumes for analysis of the low-level momentum
budget within the gap. Arrows representing advection through the
faces of the entrance volume are also shown.

FIG. 11. Normalized momentum forcing in the control volumes
shown in Fig. 10, for simulations with different e. Vertical dashed
lines denote the x-coordinate locations of the boundaries of the in-
dividual control volumes. For each simulation, the leftmost pair of
lines delimits the entrance volume, the center pair the central volume,
and the rightmost pair the exit volume. The cross-ridge topographic
profile associated with these control volumes is plotted below each
set of mass-flux data, along with the normalized surface wind speed.
Squares, diamonds, circles, and triangles denote the normalized vol-
ume integrals of ]ru2/]x, ]ruy/]y, ]ruw/]z, and ]p/]x, respectively.

be obtained in the linear mountain wave solution. Al-
though the flow in the e 5 0.25 case is almost linear,
the surface winds within the gap itself are weaker than
the maximum winds in the mountain wave aloft, and
[u(x, 0,50)/U](1 1 e)21 remains approximately equal to
(1 1 e)21. In particular, there is neither significant
blocking near the gap entrance, nor significant accel-
eration of the surface winds within the gap. In contrast,
upstream blocking reduces the normalized surface wind
to near zero in the three cases with larger values of e,
and there is significant subsequent acceleration of the
winds farther along the gap. In the mountain wave re-
gime (e 5 1.4) this acceleration occurs along the entire
length of the gap and is strongest in the exit region. In
the upstream-blocking regime (e 5 5.0), acceleration
occurs only in the entrance region, and the flow decel-
erates as it passes through the exit region. The simu-
lation with e 5 2.8 is an intermediate case with char-
acteristics of both the mountain wave and upstream
blocking: the flow accelerates rapidly near the gap en-
trance, but continued acceleration occurs through the
central region of the gap to balance a downward mass
flux .zf c

5. Flow through the gap: Dynamics

The mass budgets calculated in section 4 provide in-
formation about the basic kinematics of the flow through
the gap. Insight into the gap-flow dynamics can be ob-
tained by examining the momentum budgets for three
control volumes placed along the axis of gap as shown
in Fig. 10. These control volumes are similar to those
used in the mass-budget analysis except the cross-flow
dimension of each volume was reduced to the 10-km-
wide region | y | # d/2 along which the bottom of the
gap is completely flat, and the top of each volume was
lowered to z 5 500 m to focus on flow near the surface.

At steady state the x-momentum equation may be
written in flux form as

2]ru ]ruy ]ruw ]p
1 1 1 5 0, (10)

]x ]y ]z ]x

where the divergence of the subgrid-scale fluxes has
been neglected because it is negligible in comparison
to the other retained terms. (These are free-slip simu-
lations and any wave-breaking regions lie outside these
control volumes). The momentum budgets for a series
of simulations with different e were computed once the
flow in the gap reached an essentially steady state by
integrating each of the terms in (10) over the three sub-
volumes shown in Fig. 10. Because of the flux form of
(10) these volume integrals reduce to differences in the
advective momentum fluxes through opposing faces, or
differences in the pressure on the opposing faces of each
control volume. In all cases the momentum budget ob-
tained from this procedure closes to within 10% of the
largest individual term.1

Each term in the volume integral of (10) is plotted
in Fig. 11 for a series of simulations with e 5 0.25, 1.4,
2.8, and 5.0. The dimensional integrals from each sim-
ulation are normalized to fall in the interval [21, 1] by
dividing them by the magnitude of the largest individual
integral from that simulation. These normalized results
are plotted at the x coordinate of the centroid of their
respective volumes (i.e., the centroids of the entrance,
central, or exit regions). The topography and normalized
surface wind speed u(x, 0,50)/[U(1 1 e)] are also plotted
below the momentum budget data for each simulation

1 The sole exception occurs in the exit volume of the e 5 1.4
simulation, in which the residual is 14.6% of the largest term because
of transience due to wave breaking. Nevertheless, the interpretation
of the budget remains clear cut because in this case the residual is
only about 15% of all the individual terms in the budget.
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as a reference. The volume integral of ]ru2/]x is denoted
by a square, with positive values indicating net accel-
eration along the gap axis. Negative values of the re-
maining volume integrals indicate a contribution toward
acceleration along the gap axis; they are the integrals
of of ]ruy/]y (lateral-momentum divergence), denoted
by diamonds; ]ruw/]z (vertical-momentum divergence),
denoted by circles; and ]p/]x (pressure gradient), de-
noted by triangles.

As noted in the previous analysis of mass fluxes, there
is little amplification of the gap flow in the e 5 0.25
simulation. The volume-averaged acceleration in the en-
trance region is almost exactly offset by deceleration in
the exit region; although there is also a contribution
toward acceleration in the central region that produces
a modest net increase in the along-gap winds. Perhaps
the most interesting aspect of the momentum budget in
the e 5 0.25 case is the relative unimportance of the
pressure gradient force, particularly in the entrance and
central regions.

The momentum budget in the e 5 1.4 simulation, the
mountain wave regime, shows acceleration of the along-
gap winds in all three subvolumes, with the rate of ac-
celeration increasing downstream. Vertical and lateral
momentum flux convergence and pressure gradient forc-
es all contribute toward the acceleration of the flow in
the entrance and central regions. Lateral momentum flux
divergence acts to reduce the acceleration in the exit
volume, but it is more than offset by strong pressure
gradient forces and strong downward momentum trans-
port. The mountain wave regime is the only case in
which a net acceleration of the gap wind occurs within
the exit region, and that acceleration is quite intense.

In contrast to the mountain wave regime (e 5 1.4),
in which vertical momentum flux convergence plays a
crucial role in amplifying the gap winds, vertical mo-
mentum transport is essentially zero in the upstream-
blocking regime (e 5 5.0). Lateral momentum flux con-
vergence and pressure gradient forces accelerate the gap
flow in the entrance region and retard the flow in the
exit region. The e 5 2.8 simulation once again appears
as a hybrid between the two gap-wind regimes. The
momentum budgets in the entrance and exit volumes
are similar to those in the upstream-blocking regime,
whereas downward and lateral momentum fluxes to-
gether with the pressure gradient force produce signif-
icant accelerations within the central volume.

6. Flow through the gap: Trajectories and
Bernoulli’s equation

It has often been suggested that to a first approxi-
mation the dynamics of gap flow may be interpreted as
a rough balance between the along-gap pressure gra-
dient, along-gap accelerations, and surface friction
(Mass et al. 1995, and references therein). The influence
of surface friction will be discussed in Part II; as a
preliminary step in the assessment of the preceding gap-

flow paradigm, we consider the free-slip case, which is
often analyzed using Bernoulli’s equation (Reed 1981).
Under the assumption that the air parcel trajectories are
horizontal and that the vertical and cross-gap wind com-
ponents are negligible, Bernoulli’s equation for incom-
pressible flow through a gap parallel to the x axis be-
comes

2 2u u p 2 pex en en ex5 1 , (11)
2 2 r

where the subscripts ‘‘en’’ and ‘‘ex’’ denote quantities
sampled at the gap-entrance and -exit regions, respec-
tively. As noted by Mass et al. (1995), (11) typically
overpredicts the actual acceleration experienced by air
parcels passing through the gap.

It does not seem to have been recognized that a correct
application of the compressible Bernoulli equation ac-
tually leads to a rather different relation for horizontal
flow through a gap. Accounting for the compressibility
of the atmosphere, Bernoulli’s equation implies that

1
B 5 c T 1 u u 1 gzp i i2

is conserved following a fluid parcel in a steady inviscid
flow. Here cpT 5 cyT 1 p/r, and cp and cy are the specific
heats of air at constant pressure and constant volume.
As in the approximations leading to (11), suppose the
flow is level and that all velocity perturbations are dom-
inated by the component of the flow along the gap, then
conservation of B implies

2 2u uex en5 1 c (T 2 T ). (12)p en ex2 2

It follows that for purely horizontal flows, the gap winds
in the exit region can only exceed those in the entrance
region when the temperature at the exit is colder than
the temperature upstream. Since O(cpT) k O(u2) the
decrease in temperature required to produce a significant
increase in wind speed is only a fraction of a degree;
however, observations of flows through essentially level
gaps often show the temperature increases between the
entrance and exit regions.

The key element for the correct application of Ber-
noulli’s equation to the strongest gap-wind simulations
in this paper is the inclusion of vertical motion. The
strongest gap winds occur in the e 5 1.4 simulations,
in which the 10 m s21 upstream flow accelerates to 22
m s21. In comparison the winds in the upstream-block-
ing regime (e 5 5.0) increase from 2.8 m s21 upstream
to 7 m s21 within the gap. Consistent with the factors
that produce different flow regimes over a specific
mountain range in the real world, the 1.4-km height of
the ridge was held fixed between the different simula-
tions, and the values of e characteristic of the flow-
blocking regime were associated with relatively weak
upstream winds. Thus, although the gap-induced nor-
malized velocity perturbations u[U(1 1 e)]21 have sim-
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FIG. 12. Variation of key parameters along a trajectory above the centerline of the gap that
exits at the height z 5 300 m: (a) air parcel elevation (thin black) and ridge profile (thick gray);
(b) temperature (thin black) and temperature under the assumption that u is constant along the
trajectory (thick gray); (c) actual along-gap wind component (thin black) and along-gap wind
component under the assumptions that B and u are conserved along the trajectory and that y and
w are negligible (thick gray); (d) B* 5 B 2 cpT0, the Bernoulli function minus the enthalpy of
the parcel at the upstream end of the trajectory (thin black) and the constant reference lineB*0
(thick gray); and (e) potential temperature.

ilar magnitudes in all the simulations, the potential for
the local amplification processes to generate damaging
winds is greatest in the mountain wave regime.

Figure 12 shows the variation of several key param-
eters along a trajectory above the centerline of the gap
in the e 5 1.4 simulation. The trajectory lies along the
line y 5 0; the x coordinate of the parcel is labeled
along the bottom axis. Figure 12a shows the elevation
of the parcel, along with the cross section of the ridge.
The parcel, which exits the gap (at x 5 40 km) at a
height of 300 m, originates from an elevation of roughly
870 m in the upstream flow, and ascends to 1239 m in
the gap-entrance region. The adiabatic heating and cool-
ing associated with these vertical motions is mirrored
in the parcel temperature (Fig. 12b). Note that the tem-
perature of the parcel increases by roughly 5 K as it
moves along the trajectory. Despite the increase in en-
thalpy, the parcel accelerates from 6.4 m s21 over the
gap entrance to 21 m s21 in the exit region because of
the conversion of potential to kinetic energy during its
939-m descent (Fig. 12c). Because of this descent, there
is an increase in atmospheric pressure along the trajec-
tory between the gap-entrance and -exit regions. Thus
if (11) were applied along the actual trajectory, instead
of at constant height, it would erroneously predict that
air parcels decelerate as they pass through the gap.

To what extent can the acceleration of the gap wind
be predicted from Bernoulli’s equation? As indicated in
Figs. 12d and 12e, neither the Bernoulli function B nor
the potential temperature are exactly conserved along
the air parcel trajectory. The small increase in the po-
tential temperature along the trajectory is due to the
action of the fourth-order smoother on steep gradients
in the numerically simulated potential temperature field.
If the potential temperature data are adjusted to remove
the effects of the fourth-order smoother, the simulated
wind speed may be shown to be in very good agreement
with that which would be predicted based on conser-
vation of the Bernoulli function. To demonstrate such
agreement, B and T were recomputed along the trajec-
tory as if u were exactly conserved, and the results were
plotted as the thick gray curves in Figs. 12d and 12b.
With u held constant, B is constant along the trajectory
(thick gray curve in Fig. 12d), yet there is essentially
no change in the along-trajectory fluctuation in T shown
in Fig. 12b. Finally, assuming a constant value for B,
the variation in u along the trajectory was evaluated
from the along-trajectory values of T and z and plotted
as the thick gray curve in Fig. 12c. Comparing the actual
variations in u along the trajectory (thin black curve)
with those deduced from conservation of the Bernoulli
function assuming adiabatic flow (thick gray curve), it
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FIG. 13. Normalized perturbation fields on the u 5 276 K surface (a) height z̃, (b) pressure , (c) Bernoulli function , and (d) cross-p̃ B
mountain wind speed ũ. Light (dark) shading denotes positive (negative) perturbations; the zero contour is the heavy black and white dashed
line. Contour intervals are (a) 0.2, (b) 0.01, (c) 0.01, and (d) 0.5. The thick black line denotes the area where the constant potential temperature
surface intersects the ground.

is apparent the two are almost identical. Thus for this
trajectory, which lies outside the wave-breaking region,
the analysis of air parcel accelerations via Bernoulli’s
equation yields quantitatively correct results after com-
pensating for the small impact of fourth-order smooth-
ing on the potential temperature.

This same type of Bernoulli function analysis shows
that descent continues to play a crucial role in producing
acceleration along those trajectories that exit the gap
very near the surface. In particular, an air parcel orig-
inating at z 5 283 m upstream subsequently decelerates
while rising to a height of 724 m in the gap-entrance
region before finally accelerating as it descends to exit
the gap at z 5 50 m, the lowest level at which ther-
modynamic and horizontal wind data are carried in the
numerical model.

7. Bernoulli function distribution in jets and
wakes

Pan and Smith (1999) performed shallow-water sim-
ulations in which a uniform upstream flow encountered
a long ridge pierced by a series of gaps. A gap-wind
jet flanked by regions of decelerated flow was found
over the level terrain in the lee of each gap. Since the
Bernoulli function for the shallow-water flow over flat
bottom topography is simply

1
2B 5 rU 1 rgH,sw 2

where U is the horizontal flow speed and H the fluid
depth, Pan and Smith (1999) noted that the variations
in Bsw depend solely on the variations in the horizontal
speed of the fluid and the fluid depth. Furthermore, since
the fluid depth tends to equilibrate downstream of the
obstacle, they found that the variations in U 2 were di-
rectly proportional to the values of Bsw within the wake
region. The gap-wind jet appeared in a region of rela-
tively high Bsw; the slower winds within the wake on
each side of the jet were associated with lower values
of Bsw. This spatial gradient in Bsw was generated by
dissipation and Bernoulli loss in jumps in the lee of the
ridges on each side of the gap, whereas there was no
dissipation or Bernoulli loss within the gap flow itself.

In the mountain wave regime (e 5 1.4), which pro-
duces the strongest gap winds, there is no tendency for
the gap-wind jet to coincide with a region of high Ber-
noulli function if both fields are compared on a constant
level surface. If, however, these fields are plotted on an
isentropic surface (which is a better analog to the free
surface in a shallow-water model because for inviscid
flow the isentropic surface is a material surface), the
region of strong gap flow does indeed coincide with a
region of high Bernoulli function, as shown in Figs. 13c
and 13d. The normalized perturbation vertical displace-
ment z̃ 5 (z 2 z0)/z0 of the 276-K isentropic surface is
plotted in Fig. 13a, where z0 5 1.14 km is the undis-
turbed height of that isentropic surface in the upstream
flow. The 276-K u surface ascends so that z̃ increases
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to roughly 1.4 throughout a broad region immediately
upstream of the gap; the surface continues to ascend as
it passes over the crest of the ridge, and then plunges
to the ground along the lee slope on each side of the
gap. Within the gap-exit jet itself, the 276-K u surface
never intersects the ground, but z̃ falls below 0.4. Not
surprisingly, this descent is associated with an increase
in the atmospheric pressure along the isentropic surface,
which is shown in Fig. 13b by the field of normalized
perturbation pressure 5 (p 2 p0)/p0 (where p0 isp̃
the value of the Exner-function pressure on the undis-
turbed 276-K surface).

As in the shallow-water case examined by Pan and
Smith, the Bernoulli function in the region of the gap
flow is essentially unmodified from its upstream value,
whereas the lower values of the Bernoulli function
throughout the remainder of the wake appear to have
been produced by dissipation in the wave-breaking re-
gions over and leeward of the higher topography. This
is apparent in Fig. 13c, which shows contours of the
normalized perturbation Bernoulli function B̃ 5 (B 2
B0)/B0 (where B0 is the Bernoulli function on the un-
disturbed 276-K isentropic surface). In fact, B̃ remains
in the range [20.005, 0.005] along an air parcel trajec-
tory through the gap, but B̃ drops below 20.03 down-
stream of the wave-breaking regions.

The normalized perturbation x component of the ve-
locity ũ 5 (u 2 u0)/u0 (where u0 is the value of u on
the undisturbed 276-K u surface) is plotted in Fig. 13d.
Clearly high values of ũ are found in the regions of
highest B̃. Within the gap flow at x 5 45 km plotted in
Fig. 13c, ũ exceeds 1.0, implying the wind speeds are
more than double their value in the undisturbed flow.
Farther downstream the winds decrease, but ũ still re-
mains positive, indicating air parcels have undergone
net acceleration. These high winds are associated with
a cross-wake maximum in B̃, but in contrast to the sin-
gle-layer shallow-water results, the lee-side pressure on
the isentropic surface is higher than the pressure up-
stream (see Fig. 13b). Indeed even within the wake, the
pressure and the enthalpy are slightly higher along the
jet axis [since the data are plotted on an isentropic sur-
face, the perturbation enthalpy cp(T 2 T0) is just
cpu0p0 , so its spatial distribution is identical to thatp̃
for ]. Rather than a pressure minimum, the gap-windp̃
jet downstream of x 5 100 km is associated with a cross-
wake minimum in z̃.

The results shown in Fig. 13 are consistent with those
examined in more quantitative detail in Fig. 12 by fol-
lowing an air parcel trajectory that originated at the u
5 275.4 K level along the centerline of the gap. Both
u and B are almost conserved along trajectories passing
through the center of the gap-wind jet; the Bernoulli
function is able to remain constant despite increases in
both enthalpy and wind speed, because the air parcels
undergo significant descent.

8. Conclusions

This paper has examined gap winds generated by an
airstream with uniform static stability and horizontal
wind speed impinging on an isolated ridge cut by a
relatively narrow gap. Both the barrier-scale response
and the flow within the gap itself have been investigated
as a function of the normalized mountain height e 5
Nh0/U.

On the scale of the entire barrier, the previously well
documented transition from a flow-over regime for e ,
O(1) to a flow-around regime for e . O(1) was clearly
evident in our numerical simulations. The fraction of
the oncoming flow passing through the gap did not,
however, reveal any such regime change. In comparison
to the dramatic e-dependent changes in the percentage
of flow going over or around the ridge, the percentage
of the total flow passing through the gap was found to
be relatively independent of e. This result, which was
obtained for gaps that transmitted up to 40% of the
oncoming low-level flow, must not be applicable to gaps
that are so wide that the flow through the gap becomes
indistinguishable from the flow around the interior end
of each adjacent ridge. Unfortunately, limitations on our
computational resources prevented us from determining
the width at which the change to a flow-around regime
begins to increase the proportion of air channeled
through the gap.

The kinematics of the flow within the gap itself were
investigated by examining mass budgets through three
control volumes located in the entrance, central, and
exit regions of the gap. Three basic gap-flow regimes
were encountered for different ranges of e. In the linear
regime, which included the e 5 0.25 case, there was
almost no enhancement of the gap flow. The e 5 1.4
case was representative of the mountain wave regime,
in which there is a monotonic increase in the along-gap
mass fluxes through all three control volumes and a
particularly strong increase in the mass flux and wind
speed within the exit volume due to downward transport
by the mountain wave above the lee slopes of the to-
pography. The upstream-blocking regime is well illus-
trated by the e 5 5.0 case, in which the largest increase
in the along-gap mass flux occurs in the entrance volume
due to lateral convergence. In contrast to the mountain
wave regime, in which the highest gap winds appear
downstream near the exit, the highest winds occur in
the upstream portion of the gap in the upstream-blocking
regime.

The dynamical processes associated with each flow
regime were determined by examining the momentum
budgets for control volumes in the entrance, central, and
exit regions. The momentum budgets confirm the crucial
importance of vertical transport in creating the high
winds in the gap-exit region in the mountain wave re-
gime. On the other hand, vertical momentum transport
plays almost no role in generating the high winds in the
upstream-blocking regime, which are produced by lat-
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eral momentum flux convergence and pressure gradient
forces in the entrance volume.

In a previous study of airflow with constant N and U
perpendicular to a ridge with a gap, Zängl (2002) iden-
tified two flow regimes, linear and nonlinear, and sug-
gested that in the nonlinear regime confluence on the
upstream side of the mountain is negligible and ‘‘the
low-level pressure difference across the mountain ridge
primarily drives the gap flow.’’ Zängl’s topography rose
to a single peak, rather than the flat-top ridge used in
this study. As a consequence, the dynamical processes
active at the gap-entrance and -exit regions are not easily
separated in his results. His nonlinear regime is com-
parable to the mountain wave regime identified in this
paper, although our Eulerian momentum budgets for
flow in the mountain wave regime show that the pressure
gradient force is not the single dominant factor accel-
erating the gap winds. We also found upstream conflu-
ence to be important for gap-wind acceleration in the
upstream-blocking regime, but the prototypical exam-
ples of this type of flow occur at larger values of e than
the maximum of 3.0 considered by Zängl, so our find-
ings are not inconsistent with his results.

In our simulations, the variations in e were obtained
by holding h0 and N fixed while varying U. To the extent
that a constant N and U profile may be offered as a
model for the real atmosphere, the strategy of varying
e by changing U mimics the situation involving airflow
across a given mountain barrier in the real world. The
mountain height is obviously fixed, and the tropospheric
static stability averaged through a deep layer is never
greatly different from 0.01 s21. The primary variations
in the deep-layer-averaged e are due to changes in the
cross-mountain wind speed.

Since the gap winds that develop in the upstream-
blocking regime involve accelerations with respect to a
weak mean flow, the upstream-blocking regime is not
likely to be associated with damaging winds in real-
world applications (2.8 m s21 winds upstream accelerate
to 7 m s21 in the gap in the e 5 5.0 case). The mountain
wave regime appears far more likely to serve as a model
for those severe gap winds that develop in response to
strong cross-mountain flow in real-world events. Indeed,
previous work by Colman and Dierking (1992) and
Colle and Mass (1998b) has suggested that mountain
waves play a major role in enhancing gap winds along
the Taku River in Alaska and through the Stampede Gap
in Washington State.

The dynamics of potentially severe gap winds pro-
duced in the mountain wave regime were further in-
vestigated by evaluating the Bernoulli function along
air parcel trajectories for the e 5 1.4 simulation. Com-
plementing the control-volume budgets for mass and
momentum, the trajectory analysis confirmed the link
between descent and acceleration in the gap flow, even
for parcels exiting the gap at heights as low as 50 m.

Previous attempts to diagnose the strength of gap
winds using Bernoulli’s equation for an incompressible

fluid under the assumption of level flow (11) have typ-
ically led to serious overprediction of the wind speed.
However, (11) is defective because it neglects the in-
fluence of changes in atmospheric density. The correct
expression for conservation of the Bernoulli function
for level flow in a compressible atmosphere is (12),
which implies that constant-level gap winds will un-
dergo acceleration only if the temperature at the gap
exit is lower than the temperature at the gap entrance.
Observations often show higher temperatures at the exit
than at the entrance during gap-flow events, and this is
also the case in the e 5 1.4 simulation. Gap-wind ac-
celeration is sustained despite the increase in temper-
ature between the entrance and the exit because the air
parcels undergo net descent during their passage through
the gap.

Comparison of the Bernoulli function distribution on
an isentropic surface in the high-wind e 5 1.4 case
shows similarities to the shallow-water results obtained
by Pan and Smith (1999) in that the regions of highest
Bernoulli function are coincident with the highest gap
winds, and the B field is essentially unmodified within
the gap-exit jet but is reduced on each side of the jet
by dissipation in the wave-breaking regions in the lee
of the higher topography. The flow undergoes substan-
tial subsidence as it accelerates near the gap exit to more
than double the speed of the upstream winds. It is this
subsidence, rather than the change in pressure (which
increases along the isentropic trajectory) that gives the
most direct analog to the downward free-surface dis-
placements in the Bernoulli equation analysis of shal-
low-water gap flow.

Surface friction is a potentially important factor lim-
iting the maximum velocities in actual gap-wind events.
The influence of surface friction together with the im-
pact of pressure-driven channeling associated with geo-
strophic flows crossing the ridge at various angles will
be investigated in Part II of this paper. In Part II, it will
be demonstrated that these additional factors do not
change the central conclusion of this paper, that at least
in the mountain wave regime, vertical fluxes of mo-
mentum and mass play a crucial role in the formation
of strong gap winds.
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