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1. Introduction

Kasahara (2003) recently investigated the linear nor-
mal modes arising in a series of problems designed to
elucidate the influence of the horizontal component of
the Coriolis force in Cartesian tangent-plane approxi-
mations to the earth’s atmosphere or oceans. He suggests
that when the horizontal component of the Coriolis force
is included in the presence of horizontal rigid upper and
and lower boundaries, ‘‘a distinct kind of wave oscil-
lation emerges whose frequencies are very close to the
inertial frequency,’’ and refers to these waves as
‘‘boundary-induced inertial (BII) modes.’’ In the case
of a compressible stratified atmosphere he suggests di-
viding the normal modes into three types: ‘‘acoustic,
inertio–gravity, and boundary-induced inertial modes.’’
The same three pairs of eigenmodes were also recently
identified in essentially the same type of tangent-plane
analysis by Thuburn et al. (2002b), although no BII
modes were found in a related numerical analysis of
eigenmodes on the full sphere (Thuburn et al. 2002a).
The purpose of this comment is to clarify the nature and
physical significance of BII modes within the context
of the tangent-plane approximation.

The distinction between gravity and acoustic waves
is fundamental in that different physical processes
(buoyancy and elastic restoring forces, respectively) are
responsible for the propagation of each type of wave.
No such distinction sets the BII mode apart from the
inertio–gravity and acoustic modes; rather, as suggested
by Kasahara, the mode appears in the set of normal
modes due to the presence of the rigid upper and lower
boundaries. Yet in contrast to a better known type of
boundary-induced wave, the edge wave (in which the
wave amplitude decays exponentially in the direction
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away from the boundary), the BII mode is simply the
linear superposition of two waves that exist in an un-
bounded domain, and if properly excited, the BII
‘‘mode’’ could exist in the absence of the boundaries.
In contrast, an edge wave such as a Kelvin or Lamb
wave, cannot exist in the absence of a boundary because
its amplitude would grow exponentially along one spa-
tial direction. Moreover, because of its exponentially
varying spatial structure, an edge wave cannot be ex-
actly constructed from the linear superposition of a finite
set of the sinusoidal wave solutions to the unbounded
problem.

2. Mathematics of the BII mode

The relation between the BII mode and more tradi-
tional inertial oscillations may be demonstrated by con-
sidering linear perturbations in a homogeneous rotating
incompressible fluid, as in section 2 of Kasahara (2003).
Assuming a vertical velocity distribution of the form

w 5 W(z) exp[i(mx 1 ny 2 st)], (1)

the vertical structure of W(z) must satisfy

2d W 2i f f n dWV H1
2 2 2dz f 2 s dzV

2 2 2 2 2s (m 1 n ) 2 n f H1 W 5 0. (2)
2[ ]f 2 sV

Here, the notation follows Kasahara (2003), and, in par-
ticular, f V 5 2V sinf and f H 5 2V cosf are the vertical
and horizontal components of the Coriolis force in the
tangent-plane approximation at latitude f.

In an unbounded domain, there are vertically prop-
agating inertial wave solutions to (1) of the form

w 5 exp[i(mx 1 ny 1 lz 2 st)], (3)

provided s satisfies the dispersion relation
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2 2( f l 1 f n) 4(V · k)V H2s 5 5 , (4)
2 2 2m 1 n 1 l k · k

where k 5 (m, n, l) is the wave vector, and V 5 (0,
f H, f V). Hereafter, we focus on the normal modes sup-
ported by a ‘‘horizontal channel’’ extending to infinity
in the x and y directions, but bounded by rigid horizontal
planes at z 5 0 and z 5 zT. Solutions of the form (3)
do not satisfy the top and bottom boundary conditions
in the horizontal channel (w 5 0 at z 5 0 and at z 5
zT), but these boundary conditions can be accommo-
dated by functions of the form

W(z) 5 w sin(kz) exp(iG z),0 2 (5)

where

f f nH VG 5 2 . (6)2 2 2f 2 sV

Substitution of (1), (5), and (6) into (2) yields the fol-
lowing quadratic equation for s 2:

2 2 2 4 2 2 2 2(m 1 n 1 k )s 2 [(m 1 n 1 k ) f V

2 2 2 2 2 2 41 n f 1 k f ]s 1 k f 5 0.H V V

(7)

Thus, as noted by Kasahara, for a given set of (m, n,
k) (with f Hn ± 0) there are two distinct values of | s | ,
and four total roots to (7), associated with two distinct
families of normal modes in the horizontal channel. In
contrast, when there are no boundaries, or when the
angular velocity vector is perpendicular to the bound-
aries ( f H 5 0), there is only one value of | s | at which
oscillations may occur, and that value of | s | is given
by the dispersion relation (4).

In a horizontal channel with f H 5 0, by (6), G2 5 0,
so l 5 k, and the structure of each normal mode may
be decomposed into the superposition of two vertically
propagating waves with frequencies and wavenumbers
(s, m, n, l) for the wave with upward phase speed, and
(s, m, n, 2l) for the wave with downward phase speed.
This familiar situation, in which normal modes are con-
structed as the superposition of vertically propagating
waves, still holds when f H ± 0, but there are then two
distinct ways to create suitable superpositions of ver-
tically propagating waves, and as a consequence, two
different values of | s | at which the normal modes may
oscillate.

One simple way to appreciate that all the normal
modes in the horizontal channel are the superposition
of vertically propagating waves is to note that, according
to (5), those normal modes are the sum of two waves
of the form (3) with vertical wavenumbers l 5 G2 6 k.
Indeed substituting l 5 G2 1 k into the dispersion re-
lation (4) and using (6), one may obtain the quartic
polynomial relation (7). Thus, although there are two
pairs of normal modes in the horizontal channel, and
each pair oscillates at a different frequency, both pairs

are superpositions of inertial wave solutions for an un-
bounded domain.

3. A conceptual approach to BII modes

The physical influence of the rigid boundaries on the
solution, and the reason that two values for | s | arise
when f H ± 0, may be better understood by writing (4)
in the form

2 2 2s 5 4V (cosu) , (8)

where u is the clockwise angle between the angular
velocity vector V and the wave vector k. To obtain a
simple graphical diagram, consider two-dimensional
waves in the y–z plane, so that the wave vector is re-
duced to (n, l). Without loss of generality, we focus on
the case in which f V, f H, n, and s are all positive. The
normal modes in the horizontal channel are the super-
position of pairs of vertically propagating waves whose
wave vectors 1) have identical meridional components
n, and 2) form angles with V whose cosines are iden-
tical.

Let l be the angle between V and the vertical; note
that l 5 p/2 2 f is also the colatitude. The two families
of normal modes consist of the ‘‘conventional’’ super-
position of vertically propagating waves for which | u |
$ l and a ‘‘new’’ superposition of such waves, corre-
sponding to Kasahara’s BII modes, for which | u | , l.

The structure of a conventional mode is illustrated in
the left column of Fig. 1. For a given n there exist pairs
of wave vectors (n, l1) and (n, l2) with identical values
of s forming angles a and p 2 a with respect to V.
In order for the downward-pointing wave vector to have
n . 0, one finds that l 1 (p 2 a) , p, or equivalently,
l , a. To avoid double counting solutions, we also
demand that a , p/2. The specific pairs that can serve
as normal modes to this problem are those for which l1

and l2 allow satisfaction of the rigid-plane boundary
conditions w 5 0 at z 5 0 and z 5 zT. Let the vertical
velocity field be determined by the superposition

sin(ny 1 l z 2 s t) 2 sin(ny 1 l z 2 s t)1 2

(l 2 l )z (l 1 l )z1 2 1 25 2 sin cos ny 1 2 s t .[ ] [ ]2 2

With loss of generality, assume l1 . l2 as in Fig. 1; then
the rigid boundary conditions will be satisfied provided
that

2sp
l 2 l 5 , s 5 1, 2, . . . . (9)1 2 zT

Note that the y trace speeds (s/n) of each vertically
propagating wave and of the normal mode are all iden-
tical.

Conventional modes exist even when l 5 0, that is,
when f H 5 0. In contrast, the new modes shown in right
column of Fig. 1 are only present when l ± 0. In this
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FIG. 1. (a), (b) Wave vectors k 5 (n, li) for pairs of vertically
propagating waves that may be superimposed to form a normal mode
in a horizontal channel rotating at angular velocity V about an axis
tilted off the vertical at angle l. One rigid horizontal boundary is
indicated by the dashed gray line. Panel (a) emphasizes that all k
have the same meridional component n, and (b) illustrates that the
cosine of the angle between k and V is the same for all wave vectors.

FIG. 2. (a), (b) Phase lines (heavy lines) and wave vectors (thin
arrows) for the individual waves that superimpose to form a normal
mode in a horizontal channel in which the angular velocity vector V
is not normal to the rigid boundaries. Phase lines and wave vectors
for waves with upward group velocity are plotted using solid lines;
dotted–dashed lines are used for the waves with downward group
velocity. The gray short-dashed lines indicate the upper and lower
boundaries of the horizontal channel. Only the mode shown in (a)
can exist in the limit f H → 0.

case there are pairs of wave vectors (n, l3) and (n, l4)
forming angles 6b with V, and there is the geometric
constraint that 0 , b , l. As in the conventional case,
all such pairs of vertically propagating waves have the
same n and oscillate at the same s. The actual pairs of
vertically propagating waves that can serve as normal
modes in the horizontal channel are those for which the
vertical wavenumbers satisfy

2sp
l 2 l 5 , s 5 1, 2, . . . .3 4 zT

What happens to these new modes in the limit that
f H → 0? As l → 0 and the rotation vector becomes
nearly vertical, b → 0, s → 2V, and the ratio of the
horizontal to the vertical wavenumbers n/l approaches
zero for both of the vertically propagating waves that
superimpose to form the new-type modes. According to
the incompressible continuity equation, the ratio of the
vertical to the meridional velocity perturbations must
also approach zero as n/l → 0 in these two-dimensional
waves. Thus, the f H → 0 limit of the new BII modes
may be regarded as the family of inertial oscillations,
which trivially satisfy (2) because W 5 0.

In order for each pair of vertically propagating waves

to superimpose to form a physically realizable normal
mode for a domain bounded by rigid upper and lower
boundaries, one member of each pair should have up-
ward group velocity while the group velocity for the
other member is downward. Following the convention
that n and l have arbitrary sign, but s . 0 (to avoid
redundant representations of the same wave), the fol-
lowing expression for the group velocities in the un-
bounded case may be obtained from (4):

]s ]s f l 2 f nH Vc 5 , 5 sgn(k · V) (l, 2n).g 2 2 3/21 2 [ ]]n ]l (n 1 l )

For the cases shown in Fig. 1, n . 0, and the sign of
the vertical group velocity is given by

sgn[(k · V)i · (k 3 V)], (10)

where i is the unit vector parallel to the x axis. According
to (10), the group velocities of the waves shown in Fig.
1 with vertical wavenumbers l1 and l4 are upward, while
those of the other two are downward. Thus, the physical
realizability condition is satisfied for both the conven-
tional and the new modes.

The structure of the two different types of normal
modes is further illustrated in Fig. 2, which shows rep-
resentative phase lines for the vertically propagating
inertial waves considered in Fig. 1. The plane rigid
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FIG. 3. Squared frequency of plane waves making up the normal
modes of a stratified Boussinesq fluid rotating at angular velocity V
about an axis tilted at angle l from the vertical in a horizontal channel
plotted as a function of the clockwise angle between the wave vector
and the vertical when N 2/(4V2) 5 3 and l is 308.

boundaries of the horizontal channel are indicated by
the short gray dashed lines, and the angular velocity and
wave vectors are plotted in the y–z plane just as in Fig.
1. Lines of constant phase, which are perpendicular to
the wave vectors, are plotted as heavy lines with a solid
or dotted–dashed pattern matching that used to display
the corresponding wave vector. The phase lines shown
may be considered extrema that are 1808 out of phase,
so that the individual waves superimpose to form nodal
surfaces at each boundary. The waves with upward
group velocity are represented by solid lines, those with
downward group velocity are shown with dotted–dashed
lines.

4. BII modes in stratified flow

The graphical analysis in Fig. 1 can easily be gen-
eralized to include density-stratified fluids with buoy-
ancy frequency N. For simplicity, the focus is limited
to waves in the meridional y–z plane. Let g be the clock-
wise angle from the vertical to the wave vector k. As
before, define l to be the clockwise angle between the
vertical and the angular rotation vector V, and let u 5
g 2 l be the clockwise angle from V to k. The dis-
persion relation for vertically propagating plane waves
in a rotating Boussinesq fluid satisfies (3.21) of Kasa-
hara (2003), or equivalently,

2 2 2 2 2s (g) 5 N sin (g) 1 4V cos (g 2 l). (11)

Without loss of generality we consider only positive
meridional wavenumbers n . 0, for which any choice
of vertical wavenumber l will give 0 , g , p. Normal
modes for a horizontal channel bounded by rigid planes
at z 5 0 and z 5 zT are obtained by superimposing pairs
of vertically propagating waves with the same s and n,
but with l’s that differ by an integer multiple of 2p/zT.

Writing (11) in the equivalent form

1
2 2s 5 N (1 2 cos2g)

2
21 2V (1 1 cos2g cos2l 1 sin2g sin2l)

demonstrates that s 2 is a p-periodic sinusoidal function
of g. In the interval 0 , g , p, there will be a single
maximum of s 2 at some angle gmax and a single min-
imum value at some other angle gmin. These extrema
occur when

2ds
2 20 5 5 N sin2g 2 4V

dg

3 (sin2g cos2l 2 cos2g sin2l), or
224V sin2l

tan2g 5 . (12)
2 2N 2 4V cos2l

Between gmin and gmax, there will be a unique angle g c

at which s 2(g c) 5 s 2(0) 5 . The only exceptions,2f V

which we will not consider further, are if V is vertical
(the case l 5 0) or horizontal (l 5 p/2), in which case

one extremum is on the boundary of the interval. Let
g, be the smaller of gmin and gmax, and g. be the larger
of these two angles. The points s 2(g,), s 2(g c), and
s 2(g.), are plotted in Fig. 3 for the case in which l 5
p/6 and N 2/(4V2) 5 3.

Now consider how a normal mode in the horizontal
channel may be constructed from pairs of vertically
propagating waves with a given meridional wavenumber
n. Let the two plane waves that make up a candidate
mode make clockwise angles 0 , g1 , g 2 , p to the
vertical. Since the two plane waves must have equal
frequencies, there are always two possible types of
bounded modes analogous to those shown in Fig. 1. The
first type has 0 , g1 , g, , g 2 , g c, as illustrated
by the downward-pointing triangles in Fig. 3. The sec-
ond type has g c , g1 , g. , g 2 , p, and is represented
by the upward-pointing triangles in Fig. 3. For either
type of mode, as g1 ranges over all permissible values,
the wavenumber differences l1 2 l2 5 n[cot(g1) 2
cot(g 2)] will vary from 0 (when both plane waves would
have the extremal frequency) to ` (when one plane wave
has nearly vertical wavenumber and the other has angle
g c). Thus, for any n and nonzero integer s, one can
always find exactly one pair of angles g1 and g 2 within
each mode class (or equivalently, one pair of vertical
wavenumbers l1 and l2) that satisfies the boundary con-
dition (9).

In the geophysically relevant case N k 2V, s 2 will
have a maximum close to N 2, and the corresponding
normal mode is a rotationally perturbed buoyancy os-
cillation with a wave vector pointing slightly above the
horizontal (gmax slightly less than p/2). The minimum
frequency, corresponding to a nearly pure inertial wave
perturbed by stratification, will occur for gmin slightly
less than p; in particular, (12) implies p 2 gmin 5
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O(V2/N 2). The crossover angle g c between conven-
tional and BII modes is less than gmin by a similarly
small amount. Thus, the new BII modes all consist of
plane waves with wave vectors that point nearly straight
down, and as pointed out by Kasahara and others, these
modes resemble inertial oscillations.

5. Conclusions

The preceding analysis generalizes to other simple
types of waves in the presence of ‘‘tilted’’ rigid upper
and lower boundaries. In particular, vertically propa-
gating internal gravity waves in a nonrotating ( f H 5 f V

5 0) Boussinesq fluid satisfy the dispersion relation

2 2 2s 5 N sin g,

where g is again the angle between the vertical coor-
dinate and the wave vector. In the familiar case where
the rigid boundaries are horizontal, for each set of wave-
numbers (m, n, k) there are only two normal modes,
both oscillating at the same | s | . If however, the bound-
ary is tilted with respect to the vertical, so that the
gravitational restoring force is no longer normal to the
boundaries, two sets of normal modes may be con-
structed for each (m, n, k) in precisely the same way
illustrated in Fig. 1, except that the vector labeled V
should be relabeled as N.

Returning to the interpretation of the BII modes in
Kasahara (2003), we would assert that, from a dynam-
ical standpoint, these modes are essentially identical to
the usual inertial modes appearing in the f H 5 0 case.
The BII modes are simply a second way that vertically

propagating inertial waves can be superimposed to sat-
isfy the boundary conditions when the earth’s angular
velocity vector is not normal to the boundaries. In Bous-
sinesq stratified flow both the ‘‘inertio–gravity’’ and
‘‘boundary-induced inertial’’ normal modes are the su-
perposition of two vertically propagating inertio–gravity
waves. The frequencies and wavenumbers for these two
types of modes can be very different, but in comparison
with the dynamical difference between acoustic and
gravity waves, the dynamics that underlie inertio–grav-
ity and BII modes are essentially the same. Finally, the
influence of boundaries on BII modes is less profound
than that for ‘‘edge waves’’ in which the presence of
the boundary introduces waves with spatial structures
not permitted in the unbounded domain.
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