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ABSTRACT

The evolution of mountain-wave-induced momentum flux is examined through idealized numerical simu-
lations during the passage of a time-evolving synoptic-scale flow over an isolated 3D mountain of height 4.
The dynamically consistent synoptic-scale flow U accelerates and decelerates with a period of 50 h; the
maximum wind arrives over the mountain at 25 h. The synoptic-scale static stability N is constant, so the
time dependence of the nonlinearity parameter, £(f) = Nh/U(t), is symmetric about a minimum value at 25 h.

The evolution of the vertical profile of momentum flux shows substantial asymmetry about the midpoint
of the cycle even though the nonlinearity parameter is symmetric. Larger downward momentum fluxes are
found during the accelerating phase, and the largest momentum fluxes occur in the mid- and upper tropo-
sphere before the maximum background flow arrives at the mountain. For a period of roughly 15 h, this
vertical distribution of momentum flux accelerates the lower-tropospheric zonal-mean winds due to low-
level momentum flux convergence.

Conservation of wave action and Wentzel-Kramers—Brillouin (WKB) ray tracing are used to reconstruct
the time-altitude dependence of the mountain-wave momentum flux in a semianalytic procedure that is
completely independent of the full numerical simulations. For quasi-linear cases, the reconstructions show
good agreement with the numerical simulations, implying that the basic asymmetry obtained in the full
numerical simulations may be interpreted using WKB theory. These results demonstrate that even slow
variations in the mean flow, with a time scale of 2 days, play a dominant role in regulating the vertical profile
of mountain-wave-induced momentum flux.

The time evolution of cross-mountain pressure drag is also examined in this study. For almost-linear
cases, the pressure drag is well predicted under steady-state linear theory by using the instantaneous
incident flow. Nevertheless, for mountains high enough to preserve a moderate degree of nonlinearity when
the synoptic-scale incident flow is strongest, the evolution of cross-mountain pressure drag is no longer
symmetric about the time of maximum wind. A higher drag state is found when the cross-mountain flow is
accelerating. These results suggest that the local character of the topographically induced disturbance
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cannot be solely determined by the instantaneous value of the nonlinearity parameter &.

1. Introduction

Stably stratified airflow over mountains produces
gravity waves that transport momentum vertically
(Sawyer 1959; Eliassen and Palm 1960; Bretherton
1969). The vertical divergence of mountain-wave-
induced momentum fluxes has been shown to produce
an important drag on the large-scale atmospheric flow
(Lilly 1972; Palmer et al. 1986; McFarlane 1987), and is
now parameterized in most large-scale models of the
atmospheric circulation. The estimates of orographic
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gravity wave drag currently used in these parameteriza-
tions rely on steady-state descriptions of the mountain-
wave response [see Table 1 in Kim and Arakawa (1995)
for an overview]. Indeed, even most theoretical inves-
tigations of mountain waves, whether numerical or ana-
lytic have focused on the response to steady upstream
forcing either through direct solution of the steady-
state governing equations or as the solution to an initial
value problem in a steady large-scale flow [Smith
(1979) and Durran (1986) provide reviews].

The mountain-wave problem that has received the
most theoretical attention is one in which the large-
scale cross-mountain wind speed U and static stability
N are constant. This paper extends this canonical prob-
lem to include mean flows that change very slowly with
time and horizontal position. As will be demonstrated,
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the magnitude and vertical profiles of mountain-wave-
induced momentum flux in such flows can be very dif-
ferent from those that would be predicted from steady-
state theory using the instantaneous value of the large-
scale wind speed over the mountain crest.

Among those who have investigated mountain waves
in a nonsteady environment, both Crook et al. (1990)
and Nance and Durran (1997) studied the wave re-
sponse to an imposed transition in the background flow
between two steady states. Bell (1975) and Bannon and
Zehnder (1985) obtained solutions to the linearized
two-dimensional governing equations for a periodically
varying mean flow. Their solutions neglect any initial
transients, effectively assuming that the flow has had an
infinite amount of time to adjust to the steady periodic
forcing. This is a situation that may be more appropri-
ate for tidally forced flows in the ocean than episodic
development of mountain waves in the atmosphere.
Bannon and Zehnder give a careful discussion of the
time-varying pressure drag on the topography, but do
not discuss the vertical distribution of the associated
mountain-wave momentum flux. Lott and Teitelbaum
(1993a,b) compute solutions to the linearized two-
dimensional governing equations for mountain waves
in a time-varying mean flow that accelerates from an
initial state of rest. They investigate the dependence of
the wave amplitude and momentum flux profile as a
function of vy, the ratio of the time scale for variations in
the large-scale forcing to the advective time scale for
the cross-mountain flow [defined in (5)].

This paper extends the investigations of Lott and
Teitelbaum (1993a,b) by using a nonlinear numerical
model to compute solutions to an initial value problem
in which a stagnant air mass over an isolated ridge be-
gins to accelerate in a dynamically consistent three-
dimensional synoptic-scale flow. Both small and finite-
amplitude ridges are considered. The use of a dynami-
cally consistent synoptic-scale flow ensures that all
large-scale flow deceleration or acceleration is accom-
panied by appropriate fields of horizontal confluence or
difluence, which turns out to have a nontrivial impact
on the mountain-wave intensity. In the spirit of the
canonical constant-N and -U mountain-wave problem,
our idealized cross-mountain flow includes only the
most basic representation of the variations in the hori-
zontal wind field that must accompany the passage of a
localized barotropic jet over a mountain ridge.

We focus on problems for which the large-scale flow
over the mountain increases from 0 to 20 ms™ ' and
then returns to 0 over a meteorologically relevant pe-
riod of approximately 2 days. The temporal variation
jof the resulting waves is similar to that in the most
slowly evolving (quasi-steady) case examined by Lott
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and Teitelbaum (1993a,b), but the vy for our simulations
is approximately 5 times larger than the y for their
quasi-steady case. Lott and Teitelbaum suggested that
when y > 1, “roughly the momentum flux remains that
predicted by the stationary theory”; yet even though vy
= 100 in our simulations, we find major differences
between the momentum fluxes in the slowly varying
flow and those predicted from steady-state theory.

2. Model equations and experimental design

The mathematics describing the waves and the large-
scale flow are simplified using the Boussinesq and f-
plane approximations. To avoid the numerical compli-
cations associated with solving a Poisson equation for
pressure in terrain-following coordinates, we retain a
prognostic equation for the pressure and solve the com-
pressible Boussinesq system using the nonlinear nu-
merical model previously employed by Epifanio and
Durran (2001).! The governing equations are

DV sy +vp vt @
D[ fk v _g 00 ) ()
DO—VH 2
Dt_ : ) ()
L av.v=o 3
ot anx Cso v=14, ()
where
D_8+ N a+ 8+ J
Dt ot (1o u)8x Yy "oz

Here (x, y, z) is the spatial position vector, k is the
vertical unit vector, and f is the Coriolis parameter.
Symbols with subscript 0 denote constant reference val-
ues; i, is a constant westerly flow in geostrophic bal-
ance with a vertically uniform north—south pressure dis-
tribution —fu,y; P is the Boussinesq pressure perturba-
tion about —fu,y, and v = (u, v, w) is the perturbation
velocity vector with respect to (u,, 0, 0). The potential
temperature is 6; ¢, is the speed of sound; and g is
gravity. Let ¢, be the specific heat of air at constant
pressure and R the gas constant. Define the Exner func-

! Signal propagation at the speed of sound dominates that due
to advection in (3) so that the first two terms could be replaced by
DPIDt without changing the numerical solution in even the most
nonlinear case considered in this paper. Alternatively, if the u,dP/
dx term in (3) is simply dropped, there are minor quantitative but
no qualitative differences in the solution. The particular form
chosen for the advective operator in (3) allows the specification of
a simple exact solution when no mountain is present.



SEPTEMBER 2005

tion as 7 = (p/p,)~#, and divide 7 and 6 into a verti-
cally varying reference state and a remainder such that
m =7 (z) + m(y) + 7' (x,y,z,t)and 0 = 0,(z) + 0'(x,
v, Z, t), where the reference state (m,, 6,) is in hydro-
static balance (c,6,0m,/0z = —g), and 7, is a barotropic
pressure perturbation balancing the mean flow
(¢,0007,/dy = —fu,). Then the perturbation Boussinesq
pressure may be defined in an atmospheric context as P
= ¢ 0,7 (see Durran 1999, p. 24). In these simulations
0, = 288 K.

Finally, T and H are the turbulent subgrid-scale
fluxes of momentum and heat, parameterized in terms
of an eddy diffusivity K following Lilly (1962); they may
be expressed in tensor notation as

- 30
T[j = KD;js H/- = Ka—

Here the Prandtl number has been taken as unity,

u;

13
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l]3 axe ’

D=5t o
(X1, X, X3) = (%, ¥, 2), (Uy, Uy, u3) = (u, v, w), and K is
proportional to (1 — Ri)"?, in which Ri is the Richard-
son number

BT (330)

The numerical approximation of (1)—(3) follows the
formulation in Durran and Klemp (1983) except that
the buoyancy force and the potential temperature ten-
dency due to vertical motion acting on the mean strati-
fication are included as part of the implicit differencing
on the small time step.

The initial condition is a dynamically consistent syn-
optic-scale disturbance consisting of the superposition
of a uniform westerly mean flow at speed u, and a

R {(x = xo)° + (ly — L2 -

(x — xo)z,

In these simulations the approximate half-width at half-
height a is 18 km, the aspect ratio B is 5, x, = 225 km,
the height of the ridge 4 is varied between 125 and 1000
m in these simulations.

Initial distributions of P — fu,y and u + u, are shown
in Fig. 1. The computational domain is doubly periodic
over a distance of L = 1800 km in both x and y, with a
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barotropic square wave with horizontal velocities (u,,
v,), amplitude u,, and wavelength L given by

2m(x — Xp) 2y
uyx,y, z) = uy cos —7 |\

L [2mx = xo) | . (2my
u(x, y, 2) = ug sin —7 |sial 7 )

The initial potential temperature field is uniform in the
horizontal and increases with height such that N = 0.01
s~!. The initial perturbation pressure P, is in steady-
state nonlinear balance with respect to the square-wave
horizontal velocities such that

V- [(v,- Vv, + fk X v.] + V2P, = 0, @)

where vy = (u,, v,). In contrast to the symmetry in the
velocity perturbations in the square wave, the nonlinear
balance yields an asymmetric pressure field with stron-
ger lows and weaker highs. In the absence of topogra-
phy, the square wave is an exact solution to the non-
linear governing Egs. (1)—(3) that translates eastward
without changing form in the mean flow at speed u,
that is, the large-scale flow is given by

U= ufx = ugt,y, 1) + g, V= v,(x = ugt, y, 1),
W=0, P,,=Pdx—ugt,y,?t).
Unless otherwise specified, u, = 10m s~ and L = 1800

km, implying that all synoptic-scale fields are periodic
with a period 7 of 50 h.

The mountain is taken to be a uniform ridge of finite
length centered in the region of initially stagnant flow
at (x, y) = (xo, L/2). As in Epifanio and Durran (2001),
it is given by

h [1 + ("r> ]4 it r=4
cos , if r=da;
hy(x,y) = 16 4a

0, otherwise,

where

ly = L2|> (B — Da;
otherwise.

horizontal grid spacing of 6 km. The physically relevant
portion of the computational domain is 16 km deep; this
is topped by a 16-km-deep wave-absorbing layer. A
stretched grid is employed in the vertical with Az = 150
m for z < 10 km, above which Az gradually increases to
500 m over the interval 10 < z < 15 km and remains a
constant 500 m for z > 15 km. The size of the large and
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FIG. 1. Isobars of ' (thin lines, contour interval 5 X 10™%) and
zonal wind speed (thick dashed lines, contour interval 5 m s~ ') of
the initial synoptic-scale flow. The mountain ridge (black shading)
is centered at (x, y) = (225, 900) km.

small time steps is varied depending on the strength of
the mountain-wave response; they are 100 and 10 s,
respectively, for the 250-m mountain.

The lower boundary condition is free-slip along the
topography,
h oh
ox +v y

s

m(xay’}k) = (u +u())

A rigid lid is the appropriate upper boundary condition
for the barotropic large-scale flow, but the rigid lid is
not suitable for mountain waves, which must transport
energy vertically through the upper boundary without
creating spurious reflections. Therefore, a scale-
selective wave-absorbing layer is imposed by adding the
Rayleigh damping terms

—Uz)(v = v

to the right-hand sides of (1) and (2), respectively. Here
v’ represents only the large-scale components of the
evolving velocity field. They are computed at each time
step by Fourier transforming the u and v fields over the
doubly periodic domain at each horizontal level within
the sponge layer, filtering out all modes with wave-
lengths shorter than L/4 = 450 km, and transforming
the filtered results back to physical space. The large-
scale vertical velocity w' is set to 0 for consistency with
the rigid-lid condition (w = 0) at the top of the sponge,
and because the large-scale vertical velocities forced by
the topography are extremely small. The large-scale po-
tential temperature perturbations 6° are also set to 0 for

and —v(z)0
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consistency with w® = 0. The depth of the sponge and
the strength of the damping were empirically tuned to
minimize reflections, starting with values suggested by
the analysis of Klemp and Lilly (1978). The Rayleigh
damping coefficient v is zero below z = 16 km and
increases with height throughout the 16-km deep
sponge layer according to (29) of Durran and Klemp
(1983) with @ = 2.5 X 10 s~

3. Wave and momentum flux evolution

The large-scale flow [which is not exactly parallel to
the isobars due to the enforcement of the nonlinear
balance relation (4)] is strictly westerly along an east—
west line through the center of the mountain (y = L/2),
and at the crest its velocity U,y varies with time such

that
2
U,4(t) = uo[l - cos<7t>}.

Thus, the nonlinearity parameter ¢ = Nh/U decreases
from infinity to a minimum value of NAh/(2u,) during
the accelerating phase (0 =< 7/2), and then subsequently
increases back to infinity during the decelerating phase.

Figure 2 shows the perturbation horizontal velocity
field (u + u, — U,q) in a vertical cross section along y
= L/2 at various times throughout the flow evolution.
These waves are forced by a 250-m-high mountain, so
the minimum value of & is 0.125 and the waves are
approximately linear throughout the period of strong-
est wave activity. As the wind across the ridge in-
creases, waves develop and propagate upward. There is
a pronounced asymmetry in the wave response between
the accelerating and decelerating phases of the back-
ground flow. Note in particular, the differences be-
tween Figs. 2b and 2e, which correspond to 2 times at
which the mean cross-mountain flow and the values of
¢ are identical. The downstream—upstream variations in
the position of the waves shown in Fig. 2 is similar,
though less pronounced, than that evident in Fig. 7 of
Lott and Teitelbaum (1993a). Larger downstream-—
upstream shifts were obtained by Lott and Teitelbaum
because they considered a more rapidly varying large-
scale flow for which the stationarity parameter

= =216 5
Y=, ; ®)

as compared with y = 100 here.”
2 Lott and Teitelbaum define vy on the basis of the maximum

wind, which introduces a factor of 2 difference between in the
numerical values given here and those reported in their paper.
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FI1G. 2. Vertical cross sections at y = L/2 showing the perturbation horizontal velocity forced by a 250-m-high ridge at times (a) 10,
(b) 15, (c) 20, (d) 25, (e) 35, and (f) 45 h. The time normalized by the period of the large-scale flow (#/7) is given in the lower left of

each panel.

The Rossby number for the cross-mountain flow U,/
(fa), which rises to 11 at ¢ = 7/2, is sufficiently large that,
as a first approximation, the direct influence of rota-
tional effects on the wave dynamics may be neglected
during the period when the mountain waves are most
active. The minimum ratio of the characteristic hori-
zontal and vertical scales in these waves (Na/U,y) is
nine, so at all times the waves are approximately hy-
drostatic. Thus, if the waves were steady and three-
dimensional effects are neglected near the center of the
finite ridge, the group velocity would be directed
straight upward and all the energy in the disturbance
would be confined over the mountain. As apparent in
Fig. 2, despite the slow time scale of the mean-flow
variation, the waves are generally not close to steady
state.

The mean-flow variations are sufficiently gradual in
space and time, and the mountain is sufficiently low,
that the basic properties of the waves shown in
Fig. 2 can be understood using the Wentzel-Kramers-
Brillouin (WKB) approximation for linear two-dimen-
sional, nonrotating, hydrostatic Boussinesq gravity

waves. For a basic state with constant stability N and
horizontal wind speed U,4 > 0, mountain waves of the
form expli(kx + mz — wt)] satisfy the dispersion rela-
tion

®= (UZd—ﬁ>k. (6)

m

Here k and m are assumed positive so that the wave
energy propagates upward and upstream relative to the
large-scale flow, as may be verified by noting that

dw Jw N Nk
€ = (Corr ) =\ Gk am | =\ Va0 2 ) ™)

Using (6) and (7), the stationarity parameter y may be
alternatively interpreted as the ratio of the time scale
for variations in the large-scale forcing to the time scale
for vertical propagation of the mountain wave, since
the time required for a steady mountain wave in a mean
flow of strength u, and horizontal scale 2m/a to propa-
gate one vertical wavelength is

2a/m  2mm  2m(N/u)  a

c Nk =~ NQmla)  uy

8z
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The slow variations of the large-scale flow may be ex-
ploited using ray-tracing theory to follow individual
wave packets after they are launched by the mountain.
As will be demonstrated later in connection with Fig.
10f, the wave-induced cross-mountain pressure drag in
this simulation at any given time ¢, is very close to that
which would be computed using linear theory for
steady-state waves in the uniform wind U,4(%;). A wave
packet launched at time ¢; is therefore initialized with
the same properties as a steady linear 2D mountain
wave in a mean westerly flow at speed U, = U,q(t)).
Following a wave packet in the x—z plane of symmetry
at y = L/2, ray tracing theory (Lighthill 1978) predicts
that

D k ow

g _
Dt~ ox’ ®)
and
ng B ow 9
Dt 9z’ ©)
where
b, _ 2 +¢c,-V
Dt ot GV

Since the background flow and stratification are con-
stant with height, dw/dz = 0, and the initial vertical
wavenumber for the steady mountain wave N/U; is con-
served following the packet. Substituting this initial
wavenumber for m in (6) and (7), it follows that for a
packet launched at time ¢

o = (Upy — Uk, (10)

and

U?
c, = <U2d— U,-,ﬁk). (11)
The preceding may be used to explain many of the
features evident in Fig. 2. The horizontal group velocity
of each wave packet is initially zero, but increases with
time up to t = 7/2; thus wave energy appears down-
stream of the mountain in Figs. 2a—d. During the de-
celerating phase almost all waves eventually develop
negative ¢, , so that the disturbance shifts back over the
mountain in Fig. 2e and even appears upstream of the
ridge in Fig. 2f. The vertical wavelength of the distur-
bance near the mountain is smaller when U, is small
(see particularly Figs. 2a,f) and increases to a maximum
at t = 7/2 (Fig. 2d). In a linear hydrostatic steady-state
mountain wave, the horizontal wavelength is deter-
mined by the topography independent of the cross-
mountain wind speed, and very near the surface the
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dominant horizontal wavelength appears to be constant
with time. In the upper part of the domain, on the other
hand, the dominant horizontal wavelength is relatively
short early in the accelerating phase (Fig. 2b) and
gradually lengthens throughout the remainder of the
simulation.

Two factors contribute to the changes in horizontal
wavelength aloft. First as implied by (11), the shorter
waves propagate upward faster (larger c, ), so early in
the accelerating phase the longer wavelength compo-
nents have not had sufficient time to reach higher alti-
tudes. The second factor is that the horizontal wave-
length of each packet is modified by the changes in the
background flow. In particular, substituting (6) into (8)
yields

Dk _ Uz

Dt ox ’ (12)

implying that the horizontal wavenumber of the pack-
ets increases during the accelerating phase. Conversely,
k decreases for t+ > /2 as the mountain waves are
stretched by a background flow whose speed increases
with distance downstream of the mountain. Although
not apparent in the snapshots in Fig. 2, the phase lines
appear to move up and to the right during the acceler-
ating phase and then reverse, moving down and to the
left during the decelerating phase. For an individual
wave packet, the phase lines move at the phase speed ¢,
in the direction normal to the wave vector K, such that

K ® (k, m)
S K] - (k2 + m2)1/2 (k2 + mz)m

k
= Uy — Ui)m(k, m).

Thus, when the environmental wind exceeds the speed
of the flow at the time the packet was generated, its
phase moves downstream and upward. This takes place
during the accelerating phase (¢ < 7/2). On the other
hand, late in the decelerating phase almost all packets
are in an environment for which U,; — U; < 0 and the
phase lines move upstream and toward the ground.

Now consider the momentum flux transported by the
mountain waves. Let (F) denote the integral of the func-
tion F over a horizontal plane spanning the periodic
computational domain,

L L
(F) = J’ j F dx dy,
o Jo
3

and let p, be a constant reference density of 1 kg m .
Figure 3b shows the z — ¢ distribution of the vertical
flux of x-component momentum (p,uw) for the simula-
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FiG. 3. Horizontally integrated momentum flux (p,uw) as a
function of time and height for a mountain with # = 250 m in a
large-scale flow for which (a) (U, V) = (10,0) m s~ !, (b) the flow
is periodic and given at t = 0 by the pattern in Fig. 1, and (c) (U,
V) = (20, 0) ms~". The contour interval is 4 X 10® N, and gray-
scale shadings, ordered by increasing intensity, indicate values less
than —8 X 108, —16 X 10 and —24 X 10% N.

0 125 25 0

tion shown in Fig. 2. A pronounced difference between
the momentum fluxes in the accelerating and deceler-
ating phases of the large-scale flow is visible in Fig. 3b,
with much stronger momentum flux occurring during
the accelerating phase. The strongest momentum fluxes
are found in the layer 10 = z = 16 km around ¢ = 20 h.
Moreover, during the period 11 = ¢ = 26 h, the mo-
mentum fluxes decrease (become more negative) with
height through the lowest 5 km, implying that over a
15-h period gravity wave drag is exerting an accelera-
tive force on the mean flow throughout this layer.
The situation shown in Fig. 3b is very different from
that obtained when the mean flow is instantaneously
started from rest and then held at a constant value.
Examples of the momentum fluxes in two such con-
stant-wind cases are shown in Figs. 3a,c, which are for
simulations identical to that in Fig. 3b except that the
background flow is constant with V' = 0 and U = 10 (the
time mean of U,y) or 20 m s~ ' (the maximum of U,y).
Both time axes in Figs. 3a,c terminate at a nondimen-
sional time Ut/a = 50 identical to that associated with
the accelerating phase of the slowly evolving flow in
Fig. 3b. The maximum momentum flux generated by
the waves in the slowly evolving flow is stronger than in
the cases with constant background flow. This is ex-
pected for the case with U = 10 ms~! because the
magnitude of the momentum flux in steady linear
mountain waves is proportional to the speed of the
mean flow, but {p,uw) in the slowly evolving flow is also
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1.4 times stronger than that in the case with U =
max(U,q) = 20 ms™'. Also, in contrast to the case for
a slowly evolving flow, the vertical gradient of {p,uw) in
both of the constant-wind cases is negative at all levels
during the period of mountain-wave development, so
the net wave-induced forcing on the mean flow is ev-
erywhere decelerative. Finally, the waves approach
steady state, and the momentum flux becomes almost
uniform with height at relatively early nondimensional
times in both of the constant-wind cases.

The evolution of the momentum flux shown in Fig.
3b is also rather different from what might nominally be
expected from steady-state mountain-wave theory. Ac-
cording to linear theory, the cross-mountain pressure
drag and the pseudomomentum associated with wave
packets generated by the topography increase as the
cross-mountain wind increases. One might therefore
suppose that near the surface the vertical momentum-
flux gradient would be positive (momentum flux be-
coming less negative with height) until the time of
maximum wind, and then turn negative for ¢t > 7/2 as
the cross-mountain flow relaxes back to zero. Clearly,
this is not the behavior shown in Fig. 3b.

4. Analysis of the momentum flux distribution

The processes responsible for creating the highly
structured momentum flux distribution in Fig. 3b will
be examined in the context of linear theory. To better
assess the agreement between our theoretical construc-
tions and the results of the numerical model we con-
sider a slightly more linear problem in which the moun-
tain height is reduced to 125 m, for which the nonlin-
earity parameter ¢ is 1/16 at the time of maximum
wind.> The momentum flux {p,uw) distribution for this
case (Fig. 4a) looks similar to that for the 250-m case
(Fig. 3b), except that regions of positive momentum
flux appear for ¢ > 45 h.

The positive momentum fluxes in Fig. 4a are pro-
duced by a weak large-scale component of the moun-
tain-wave response that projects onto the large-scale
flow. Recall that (U, V) is the large-scale velocity field
that would be present if there was no mountain, and
define a mesoscale velocity field u" such that u'(x, y, z,
1) = u(x, y, z,t) + uy — Ulx, y, t). The total vertical
momentum flux is the sum of the large-scale flux
(poUw) and the mesoscale flux (pyu’'w). These large-

3 A simulation in which the mountain height is reduced to 12.5
m generates fields of the perturbation variables that are almost
identical to those in the h = 125 m case, except their amplitude is
reduced by a factor of 10, which confirms that the 125-m-high
mountain is producing an essentially linear result.
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F1G. 4. Horizontally integrated momentum flux as a function of ¢ and z for the 4 = 125 m
simulation: (a) (pouw), (b) {p,Uw), (c) {pou'w), and (d) idealized reconstruction by using
ray-tracing theory. The contour interval is 10® N; positive values are dashed and gray shadings,
ordered by increasing intensity, indicate values less than —2 X 10%, —4 X 10%, and —6 X 10°® N.
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scale and mesoscale contributions to the momentum Fourier modes over our doubly periodic domain, the
flux are plotted as a function of z and ¢ in Figs. 4b,c. large-scale flux is produced entirely by the interaction
Clearly all the positive flux is produced by the large- of the synoptic-scale flow itself with the gravity wave
scale contribution. Because of the orthogonality of the having the same square-wave structure (k = [ = 27/L)
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as the synoptic-scale flow.* The large-scale momentum
flux is most significant when the mountain is low, be-
cause (p,Uw) scales like the mountain height 4, whereas
the mesoscale flux scales like 4% thus the large-scale
contribution is less apparent in Fig. 3b. Throughout the
remainder of this section, we focus on the mesoscale
momentum flux (p,u'w), which is produced entirely by
the mountain waves themselves and dominates the total
momentum flux in more nonlinear problems.

Figure 4d shows a reconstruction of the vertical mo-
mentum flux distribution obtained through WKB ray
tracing and the conservation of wave action using an
approach that will be described shortly. The agreement
between the model result (Fig. 4c) and this reconstruc-
tion is rather good, implying that these theoretical tools
can be used to understand both the marked difference
in momentum fluxes in the accelerating and decelerat-
ing phases of the flow and the reversal of the vertical
momentum flux gradient in the lower troposphere
around hour 15.

Wave packets generated at the mountain propagate
upward through a large-scale flow U = (U, V, 0) that
changes slowly with respect to x, y, and . The wave
action density 4 associated with each packet is gov-
erned by the relation

04
— + V- (4c,) =0,

at (13)

where 4 = E/o;0 = o — U-K is the intrinsic fre-
quency, and Z is the wave energy density (Bretherton
and Garrett 1968; Whitham 1974). For hydrostatic
Boussinesq internal gravity waves

Po [ —3 b
_ o 2y
‘E 2 u’ + N )
where u’ = (u + uy — U,v—V,0),b" = g(6 — 6,)/6,,
N? = (g/6,)d6,/dz, and the overbar denotes an average
over one cycle of the wave. The rays along which wave

packets propagate away from the crest of the mountain
at time ¢; are the solutions to

dx_
dt

(14)

c (15)

g0
subject to the initial condition x(¢;) = (x,, L/2, 0). Be-
cause of the y symmetry of the flow, those packets with
y wavenumber / equal to zero remain in the y = L/2
plane, and since most of the waves forced by the B = 5
ridge have wave fronts approximately parallel to the y

* This was verified by Fourier transforming the vertical velocity
to isolate the large-scale square-wave contribution w, ; and com-
paring the virtually identical distributions of (p,Uw, ;) and (p,Uw).
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FIG. 5. Ray paths for packets launched at hourly intervals from
the ridge crest with initial wavenumber K (a) projected onto the
z—t plane and (b) projected onto the x—z plane (dotted lines la-
beled according to the time they were launched). In (b) the sym-
bols connected by solid lines show the location of previously
launched packets at t = 15, 20, and 25 h, and the origin (x = 0) is
shifted to coincide with the ridge crest.

axis, we temporarily focus on waves with / = 0. The
maximum momentum flux in two-dimensional (x-z)
waves forced by the ridge cross section parallel to the x
axis, hy(x, L/2), occurs approximately at wavenumber k
= 13 (27/L) or wavelength A ~ 138 km. Rays for pack-
ets initialized at ¢, = 6, 7, ..., 50 h with wave vectors
corresponding to steady two-dimensional mountain
waves in a mean flow U,, that is, with K = (lg, 0, N/U),
are illustrated in Fig. 5. Rays for r = 5 h are associated
with packets of weakly forced waves that do not trans-
port significant momentum, and these rays are omitted
for clarity.

The projection of each ray onto the z — ¢ plane is
plotted in Fig. 5a. Rays emanating from the surface
early and late in the simulation ascend at a shallow
angle because the vertical group velocity UZk/N is small
if wave packets are initialized while the large-scale
winds are weak. Conversely, rays rise at a steep angle
near the time of maximum wind (¢ = 25 h). The rela-
tively small vertical group velocities of rays launched
shortly after + = 6 h eventually increase due to the
variations in k along the ray path as implied by (8). Lott
and Teitelbaum (1993a,b) presented diagrams similar
to Fig. 5a to explain variations in wave amplitude and
position in a slowly varying flow. Here we use Fig. 5a to
help explain the mesoscale momentum flux distribution
shown in Fig. 4c. The onset of significant momentum
flux at some vertical level in Fig. 4c is closely associated
with the arrival of the curve formed by the left edge of
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the union of the ray paths in Fig. Sa. Furthermore, the
transition from high to low momentum flux that occurs
as mean-flow acceleration gives way to deceleration is
well correlated with the transition between the conver-
gence of ray paths in the z — ¢ plane for ¢ < 7/2 and
divergence for ¢t > /2.

Wave action tends to accumulate aloft during the
period of flow acceleration because packets launched
later in the acceleration phase have larger vertical
group velocities and overtake those launched earlier.
Such behavior is illustrated in Fig. 5b, which shows the
position in the x—z plane of packets launched from the
ridge crest with initial wavenumber K at various times.
The thin dotted lines show the trajectory of each indi-
vidual packet and are labeled with the time in hours at
which the packet was launched. The symbols connected
by solid lines show the position of all previously
launched packets at a given instant in time, the squares,
for example, indicate packet positions at ¢+ = 15 h. Note
that packets launched at 10, 11, and 12 h all arrive at a
height of roughly 5.5 km at + = 15 h. Figure 5b also
shows that the vertical convergence of wave packets is
partially compensated by horizontal divergence, so that
the wave action density at any given point never be-
comes unbounded.

A second factor influencing the z — ¢ distribution of
momentum flux shown in Fig. 4c is the difference in the
wave action between various wave packets arising from
the differences in cross-mountain wind speed at the
time each packet was launched. Given the wave action
density just above the mountain as a function of wave-
number and time, one may use (13) to compute a WKB
approximation to the distribution of (4) (z, ) numeri-
cally, and connect the result with the z —  momentum-
flux distribution as follows. First consider the relation
between momentum flux and wave action for a single
wave packet. Let M = pyu'w denote the mesoscale mo-
mentum flux averaged over one cycle of the wave, and
note that for hydrostatic Boussinesq gravity waves with
vertical velocity R{w, exp[i(kx + ly + mz — wr)]},

wp m? _om af 16
E= Po 2 k2 + 12 - k ] ( )
which implies that for these waves,
mM m*M
A= -7 ="">5 5, (17)

ko Nk(k* + P)"?’
where the last equality is obtained from the dispersion
relation for waves propagating upward [implying sgn(k)
= sgn(m)] and westward relative to the mean flow

N(k2+12)1/2
b=0—Uk—Vi=————
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The distribution of (2) (z, ) is estimated by launching a
series of wave packets from the mountain crest at regu-
lar time intervals 8¢ and following them upward from

x(t;) = (x,, L/2,0) by integrating (15) along with the ray
tracing relations for our particular large-scale flow

Dk 0U v s

Dt ax ax’ (18)

D, . ou v 19

Dt ay ay’ (19)

Dem _ 20

The initial wave activity of each packet is assumed to lie
within a thin horizontal slab of thickness ¢, 6r extending
throughout the horizontal domain. Using (17) the vol-
ume-integrated wave activity at wavenumber (k, /) in
the slab just above the surface at the time #; at which a
packet is launched is approximately

mz(Mk, ,)chSI

e = G + oy

where (94, ) is the (k, [)th component of the two-dimen-
sional Fourier transform of the mountain-wave mo-
mentum flux for linear steady-state flow at speed U,.
The slab containing the packet is followed upward
assuming that the top of the slab moves at the group
velocity of the ray launched at ¢, and the bottom moves
at the group velocity of the ray launched at ¢; + &¢. Let
Y denote a volume whose boundary § moves at the
group velocity. Integrating (13) over 9/ using the diver-
gence theorem and the generalized Leibniz theorem,
one may obtain the integral form of the wave action
conservation law (which is directly analogous to the
Lagrangian relation for mass conservation)

O—J —dV+f ds - cﬂ—lD)t<J’q/ﬂldV>. (21)

For the horizontal slab containing the packet moving
upward at the group velocity, (21) reduces to

D <J’LJ’LJ’Z1
—£ Adz dx d >:0,
Dt 0 0 Zp Y

where z, and z, denote the heights of the top and bot-
tom of the slab. Thus at some later time ¢, the horizon-
tally integrated wave action for the packet launched at
t; satisfies

(A Mz, = (A Mz, — [{Ak. e 0t)i=,

As the slab containing the packet reaches each vertical
level on a z — ¢ grid, the wave activity density is con-

(22)

Zbl]t:rf = Zbl]t:ti =
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verted back to a momentum flux using (17) and the
packet values of k& and / as determined from (18) and
(19), and that momentum flux is distributed via a finite
volume formalism in the discretized time domain. Fi-
nally the momentum fluxes associated with all packets
at a given ¢ and z are summed to obtain (M) (z, ?).

The result of this WKB momentum flux reconstruc-
tion is plotted in Fig. 4d, which is in reasonably good
agreement with the full numerical result shown in Fig.
4c. Note in particular that the WKB reconstruction ex-
hibits the same pronounced enhancement of the verti-
cal momentum flux during the accelerating phase of the
synoptic-scale flow and the same region of low-level
momentum flux convergence around ¢ = 15 h diag-
nosed from the numerical simulation.

One additional factor influences the acceleration—
deceleration asymmetry in the z — ¢ distribution of the
momentum flux in Figs. 4c,d, and this factor, which is
included in the WKB reconstruction, is the change in
the momentum flux carried by individual packets along
each ray path. Since wave action is conserved following
each packet, (17) implies that any changes in k and [/
produced through stretching or compression of the
waves by variations in the large-scale velocities U and V
will be associated with changes in M. (Since there are
no vertical variations in the large-scale structure, m is
constant.) The changes in {p,u'w) are much more sen-
sitive to changes in k than to changes in / because of the
extra factor of k in the denominator of (17) and because
the elongation of the ridge parallel to the y axis implies
that k > [ for those modes that carry the most momen-
tum flux. While the synoptic-scale flow over the moun-
tain is accelerating, U/ox < 0 and the first term on the
right of (18) acts to increase k along the ray path. The
other term in (18), involving dV/dx, is small because V'is
small for all x in the east—west strip of the domain con-
taining the mountain. The increase in k during the ac-
celerating phase produces an increase in M that signifi-
cantly enhances the total momentum flux during the
accelerating phase. In fact, some of the wave packets
involved in the WKB reconstruction undergo so much
compression during the accelerating phase that the
WKB assumption for these packets is violated because
the ks begin to change significantly within a single hori-
zontal wavelength. The maximum increase in k for
these packets was therefore limited according to the
criterion described in the appendix.

The relative importance of mean-flow-induced com-
pression and stretching on the overall momentum flux
distribution can be assessed by considering another nu-
merical simulation with a spatially uniform time-
dependent large-scale flow in which U = U,4(t), V = 0.
This large-scale flow is geostrophically balanced with
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FIG. 6. Horizontally integrated momentum flux as a function of
t and z for a mountain with 2z = 125 m (a) from the spatially
uniform simulation and (b) reconstructed using WKB ray tracing
and the conservation of A Contour interval and shading as in
Fig. 4.

respect to a hypothetical north-south pressure gradient
that increases and relaxes back to zero over a period of
50 h. The large-scale flow over the crest of the moun-
tain is identical to that generated by the translating
square wave, but since there are no spatial variations in
U and V (or N), individual wave packets conserve k, [
and m, and by (17), M is also conserved. The z — ¢
distribution of {p, uw) from this simulation is shown in
Fig. 6a. Although the asymmetry between the momen-
tum flux in the accelerating and decelerating phase and
the tendency for the location of the maximum momen-
tum flux to shift above the surface are both apparent in
this spatially uniform simulation, the maximum mo-
mentum flux is substantially weaker (only 80% ) of that
in the simulation with the translating synoptic-scale
square wave (Fig. 4c).

WKB ray tracing can also be used to reconstruct the
z — t distribution of (p,u'w) in the spatially uniform
simulation using the procedure just described except
that 4 is replaced by 2 in the underlying conservation
relation (13). As evident from Fig. 6, this reconstruction
gives a very good approximation to the flux from the
numerical simulation.

One final way to assess the influence of mean flow
stretching and compression on the mountain waves in
the simulation with the translating square wave is by
comparing plots of perturbation horizontal velocity for
this case with corresponding plots from the spatially
uniform simulation [the case U = U,q4(¢), V = 0]. Fig-
ures 7a,c show vertical cross sections of «" along the line
y = L/2 at t = 17.5 h from the translating-square-wave
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Fi1G. 7. Vertical cross sections u’ at y = L/2 forced by a 125-m-high ridge in the translating
square-wave simulation at times (a) 17.5 and (b) 40 h, and in the spatially uniform simulation
at (c) 17.5 and (d) 40 h. The contour interval is 0.15 m s~ '; the zero contour is omitted.

and the spatially uniform simulations, respectively. Al-
though there are substantial similarities, particularly
throughout the lower levels, near the upper boundary
larger perturbation amplitudes and shorter wavelength
perturbations are clearly discernible in the translating-
square-wave simulation. Conversely, during the decel-
erating phase at t+ = 40 h, the translating-square-wave
simulation (Fig. 7b) has longer waves and weaker per-
turbation amplitudes near the upper boundary than
does the spatially uniform case (Fig. 7d). These differ-
ences are consistent with the conservation of wave ac-
tion and the tendency of k to increase (or decrease)
when the packets are in regions with aU/ox < 0 (or
aUlox > 0).

5. Slower evolution and higher ridges

The preceding results suggest the vertical profile of
mountain-wave-induced momentum flux in a flow
evolving on a 2-day time scale can be very different
from that predicted using steady-state theory and the

instantaneous flow velocities above the mountain. How
slow does the large-scale evolution need to be before
the steady-state assumption becomes accurate? Some
indication can be obtained by increasing the spatial
scale of the square wave so that it takes longer to sweep
across the mountain.

Figure 8 shows estimated z — t distributions of
(pou'w) for three cases of flow over a 125-m-high ridge
in which the period of the synoptic-scale system is 100,
150, and 200 h (corresponding to stationarity param-
eters y = 200, 300, or 400). These fluxes are only esti-
mates since they were constructed using WKB theory
and the conservation of wave action rather than direct
numerical simulation because it is too computationally
expensive to increase the domain to the size required
for complete simulations. Both the y = 200 and y = 300
cases show strong evidence of nonsteadiness, including
significant asymmetries between the momentum fluxes
during the accelerating and decelerating phases of the
synoptic-scale flow, with enhanced momentum fluxes
aloft when the cross-mountain flow is increasing (Figs.
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Fic. 8. WKB estimate of {(pou'w) for a 125-m-high ridge as a function of ¢ and z for
synoptic-scale periods of (a) 100 h (y = 200), (b) 150 h (y = 300), and (c) 200 h (y = 400).

Contour interval and shading as in Fig. 4.

8a,b). As in the y = 50 case discussed previously, when
the momentum fluxes aloft are enhanced, the low-level
fluxes are convergent and provide forcing to accelerate
the large-scale flow. Even when y = 400, corresponding
to synoptic-scale evolution over a period greater than
eight days, there is still some asymmetry between the
accelerating and decelerating phases in the momentum
fluxes aloft (Fig. 8c). The results shown in Fig. 8 suggest
that mean-flow variations may exert a nontrivial influ-
ence on mountain-wave-induced momentum fluxes on
essentially all meteorologically relevant time scales.

The character of the momentum flux generated by
higher ridges is illustrated in Fig. 9, which shows z — ¢
plots of {pou'w) normalized by the flux for the linear
solution for the same mountain in a uniform steady
flow with U = U,4(t = 25) =20ms 'and V = 0. In all
cases y = 100. The minimum value of the nonlinearity
parameter € = Nh/U,4 ranges from 0.125 for 7 = 250 m
to 0.5 for 2~ = 1 km. Around hours 15 to 20 during the
accelerating phase of the synoptic-scale flow, the mo-
mentum fluxes aloft are significantly larger than those
predicted by the linear steady-state model. When /& =
250 m (Fig. 9a), the flux exceeds the maximum linear
steady-state flux (which would not occur until = 25 h)
by more than 25%. As the height of the ridge increases,
this enhancement becomes much stronger, increasing
to more than 125% when 4 = 1000 m (Fig. 9d). In
contrast, there is very little nonlinear enhancement dur-
ing most of the deceleration phase.

The maximum value of the subgrid-scale eddy diffu-
sivity over each horizontal plane in the domain is also
plotted in Fig. 9 (dashed contours). When # = 250 m,
there is no subgrid-scale mixing except at low levels

near the very end of the simulation. For all the other
cases, significant values of low-level subgrid-scale mix-
ing occur during those periods of large-scale flow ac-
celeration and deceleration when the local value of ¢ is
large, except that there is no mixing very early in any
simulation because mountain waves have not yet devel-
oped in the blocked flow. Not surprisingly, the period
of time over which subgrid-scale mixing is active, and
the maximum strength of that mixing, increases with
increases in the mountain height. In the cases with
higher mountains, the mixing extends to higher alti-
tudes and persists closer to the time of maximum cross-
mountain winds during the accelerating phase of the
synoptic-scale flow.

The results in Fig. 9 demonstrate that, at least for
mountain heights up to 1 km, nonlinear processes rein-
force the tendency for accelerating synoptic-scale cross-
mountain flows to generate enhanced momentum
fluxes aloft and low-level momentum flux convergence.
Also of note is that around ¢ = 20 h in the 1000-m-high-
mountain case (Fig. 9d), the magnitude of the momen-
tum flux is larger above the wave-breaking region (at z
= 7 km) than below (at z = 1 km)!

Another perspective on the influence of nonlinear
processes is provided in Fig. 10, which shows the evo-
lution of the normalized cross-mountain pressure drag

1NN
D=-— P
Dl 0 0

where D, is the drag for the steady-state linear solution
for the same finite-length ridge with U = U,4(t = 25)
and V = 0. There are two contributions to D, a meso-
scale component D’ produced by the pressure pertur-
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F1G. 9. Momentum flux (p,u'w) normalized by the flux for the linear steady-state solution
driven by the maximum cross-mountain flow of 20 ms~! (shading and solid contours) and
domain maximum subgrid-scale diffusivity (dashed) as a function of # and z for ridges of height
(a) h = 250, (b) 500, (c) 750, and (d) 1000 m. The contour interval for the momentum flux is
0.25, with shading ordered by intensity at thresholds of 0.5, 1.0, and 1.75. Contour intervals for
the diffusivity are (a) 0.4, (b) 1.4, (c) 2.5, and (d) 5 m?*s ™.

bations induced by the interaction of the flow with the These asymmetries arise because the synoptic-scale
topography, and a synoptic-scale component D, result- pressure is in nonlinear balance with the square wave in
ing from asymmetries in the background pressure field the velocity field, so the lows are stronger than the
about coordinate axes through the center of the ridge. highs and the background pressure drag on the topog-
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Fi1G. 10. Time evolution of normalized pressure drag (D: full pressure drag, D: synoptic-scale pressure
drag, D': mesoscale pressure drag). The normalization is done by dividing each value by the pressure
drag for the linear steady-state solution generated by a uniform 20 ms™' flow over the same 3D ridge.
Plots of drags for mountain heights of (a) 125, (b) 250, (c) 500, (d) 750, and (e) 1000 m, and (f) D' for

all five cases and the linear solution are compared.

raphy north of the centerline at y = L/2 does not cancel
the drag south of that line. Therefore, as evidenced by
the dashed lines in Figs. 10a—e, D, oscillates with a pe-
riod one-half that of the synoptic-scale flow. Figure 10
also shows that the contribution of D; to the total pres-
sure drag D (dash—dotted curve) drops rapidly as &
increases, since D /D' scales like 1/A.

Figure 10a shows plots of D, D', and D, for the simu-
lation with 2 = 125 m. Linear theory for steady-state
mountain waves predicts that the pressure drag should
be proportional to the cross-mountain wind speed, and
this is the case for the 125-m high mountain: the meso-
scale drag D’ (solid curve) is a roughly sinusoidal func-
tion of time and is in phase with U,4(f). Indeed as

shown in Fig. 10f, the magnitude of D’ is very close to
that predicted using the linear steady-state model and
the instantaneous cross-mountain wind speed. This jus-
tifies our method for determining the initial momentum
fluxes carried by each wave packet in the WKB recon-
structions of the momentum flux distribution in Figs.
4d, 6b, and 8.°> On the other hand, when 4 = 500 m, a

5 Bannon and Zehnder (1985) found that the pressure drag in
their time-dependent linear solution could deviate significantly
from predictions computed using the instantaneous wind in a lin-
ear steady-state model, but they considered situations with much
smaller Rossby numbers and much faster time evolution, and they
did not solve an initial-value problem.
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FI1G. 11. Three x—z cross sections along the centerline of the mountain showing zonal velocity perturbation (u")
in thick lines, and the potential temperature field in thin lines for # = 500 m, for r = (a) 15, (b) 18.75, and (c) 35

h. The contour intervals are 1 ms™! and 2 K.

significant enhancement of the drag, relative to that
predicted by steady-state linear theory, occurs around ¢
= 15 h. Some hint of this enhancement is also visible in
the 250-m simulation. No significant enhancement is
seen when the same value of & occurs during the decel-
eration phase at ¢+ = 35 h. Note that the instantaneous
value of Nh/U is identical at + = 15 and 35 h, but the
pressure drag is 35% higher during the acceleration
phase.

The nonlinear enhancement of the drag around ¢ =
15 h over the 500-m-high mountain is not produced by
wave breaking, which is not occurring, but rather by the
accumulation over the mountain of nonlinear packets
that were launched earlier in the acceleration phase
when & was greater than Na/U (¢t = 15) = 0.42. Figure
11 shows contours of perturbation potential tempera-
ture and isentropes of full potential temperature along
a vertical cross section at y = L/2 for the 500-m moun-
tain simulation at ¢ = 15, 18.75, and 35 h. At = 15 (Fig.
11a), the isentropes in the zone of flow deceleration
between z = 2 and 4 km show the characteristic non-
linear steepening found in previous solutions to Long’s
equation (Smith 1977; Lilly and Klemp 1979). At the
other two times, the isentropes in the lowest zone of
decelerated flow are considerably less steep. The
steeper isentropes at ¢t = 15 h are associated with
warmer potential temperature perturbations in the lee
trough and, through the hydrostatic relation, lower lee-
side pressure perturbations that are responsible for the
increased drag.

Further nonlinear enhancement of the pressure drag
and the asymmetry between the accelerating and decel-
erating phases of the mean flow is evident in Figs. 10d,e,
which are plots of the drag over mountains 750 m and
1 km high. As suggested by the contours of subgrid-
scale mixing shown in Figs. 9c,d, significant wave break-

ing occurs in both of these simulations, and except
around the time of maximum wind, this provides the
mechanism by which the drag is enhanced relative to
that predicted by linear theory (Peltier and Clark 1979).
In both cases, the first period of enhanced drag (see
also Fig. 10f) terminates when wave breaking ceases in
response to the strengthening cross-mountain flow (at ¢
=17.5h when h = 750 m and at t = 20 h when & = 1
km). Similarly, the modest nonlinear enhancement of
the drag later in the decelerating phase is primarily due
the redevelopment of breaking waves aloft.

The enhancement of the drag at the time of maxi-
mum wind apparent in Figs. 10d,e is not, however, as-
sociated with wave breaking. Rather the enhanced drag
is due to a transient increase in the amplitude of the
laminar waves aloft roughly similar to that illustrated in
Fig. 11. At the time of maximum wind in the 7 = 1 km
case, ¢ = 0.5, and the drag generated by the slowly
varying nonlinear flow is 1.55 times that produced by
the steady linear solution. This may be compared with
the factor of 1.22 by which the drag for the steady ¢ =
0.5 solution is enhanced relative to the linear solution
for the same 3D ridge [calculable from Fig. 2a in Epi-
fanio and Durran (2001)] and the factor of roughly 1.2
by which the drag in Long’s solution for the e = 0.5 case
is increased relative to the linear solution for 2D flow
over a Witch-of-Agnesi mountain (Lilly and Klemp
1979).

6. Conclusions

Mountain-wave momentum fluxes in a slowly varying
synoptic-scale flow have been shown to be dramatically
different from those that would be determined using
steady-state models and the instantaneous vertical dis-
tributions of N and U, even when the large-scale winds
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evolve on a time scale as slow as 2 to 4 days. These
results were established through direct numerical simu-
lation and theoretically using WKB ray tracing theory
and the conservation of wave action.

The synoptic-scale flow, which in the absence of the
topography exactly satisfied the nonlinear governing
equations, consisted of a barotropic square wave on an
f plane superimposed on a uniform westerly current.
Over the mountain, the winds were initially calm. As
the square wave translated eastward, the cross-
mountain winds increased to a maximum halfway
through the simulation, and then returned symmetri-
cally to zero. During the period of accelerating cross-
mountain flow the momentum flux aloft greatly ex-
ceeded that predicted by steady-state theory. No such
enhancement was observed during the decelerating
phase.

Two factors, wave-packet accumulation aloft and
the intensification of the flux within the packets,
were responsible for enhancing the momentum fluxes
in the accelerating cross-mountain flow. Wave packets
accumulated above the mountain because the vertical
group velocity of each packet is proportional to the
large-scale cross-mountain flow at the time it was
launched, and therefore packets launched later in the
acceleration phase tended to overtake those launched
earlier. The momentum flux carried by each packet in-
tensified to conserve wave action as it propagated
through the region where the large-scale velocities in-
creased westward (dU/ox < 0) and its east-west wave-
length decreased. Note that this second factor, involv-
ing changes in the momentum flux transported by in-
dividual packets, is not due simply to flow transience,
but rather to horizontal variations in the large-scale
velocity field characteristic of any localized barotropic
jet.

For almost linear problems the simulated cross-
mountain pressure drag generated by a finite three-
dimensional ridge in a slowly evolving barotropic flow
closely followed that which would be predicted by
steady-state linear theory using the instantaneous value
of the synoptic-scale cross-mountain wind. Only the
momentum flux aloft deviated significantly from the
predictions of the steady-state model. For mountains
high enough to preserve a moderate degree of nonlin-
earity when the synoptic-scale cross-mountain flow was
strongest (corresponding to minimum values of Ni/U =
0.25 or greater), the cross-mountain pressure drag
ceased to be symmetric about the time of maximum
wind, and the enhancement of the momentum flux aloft
during the period of large-scale flow acceleration in-
creased relative to that produced by lower mountains.
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One consequence of these asymmetries about the time
of maximum wind is that the character of the topo-
graphically induced disturbance at time ¢; could not be
determined solely by the local value of the parameter
NR/U(t;).

Another unanticipated result, obtained both from
the simulations and the WKB momentum-flux recon-
structions, is that there was a period of about 15 h while
the cross-mountain flow was accelerating during which
momentum flux convergence developed in the lower
troposphere due to the enhanced wave activity aloft,
and this convergence temporarily accelerated the do-
main-averaged low-level flow. In the simulations with a
1-km-high mountain, the vertical momentum flux gra-
dient responsible for this acceleration was even large
enough to dominate the effects of wave breaking, so
that for a period of several hours, the momentum fluxes
above the region of breaking were larger than those
below.

One continuing goal of this research is to determine
the response of the synoptic-scale flow to the mesoscale
perturbations generated by the topography. The moun-
tain-induced response may be revealed by computing
difference fields between these simulations and the un-
disturbed translating square wave, since the latter is an
exact nonlinear solution of the governing equations.
Details about the dynamical character and spatial struc-
ture of the synoptic-scale response, as well as the time-
and domain-averaged momentum budgets will be pre-
sented in a subsequent paper.
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APPENDIX

The WKB Ray Tracing Algorithm

A key assumption in WKB ray tracing is that the
wavenumber vector varies slowly in space so that a lo-
cal phase function may be defined. Following the dis-
cussion in Lighthill (1978, p. 310), a physical quantity ¢
in the waves can be expressed in the form of

qlx,y,z,t) = Ox,y, z, ) explialx, y, z, )],  (Al)
where Q is a positive slowly varying amplitude and « is
a phase angle. Expanding « around position x, = (x,
Yo» Z0) at time ¢, yields
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where all derivatives are evaluated at (x,, f,). WKB
theory requires that (A2) is adequately represented by

Ja Ja

a(xy + AX, 1, + Af) =~ a(xg, ty) + Axa + Ay @
VL. A3
2oz T (A3)

for all Ax and Ar within a few wavelengths and wave
periods of (xy, t;). Defining

Ja K Ja Ja Ja
ox 7 ay at

s (Ad)

—w,

consider variations in « that lie along a ray path, in
which case

Ax = chAt, Ay = cgyAt, Az = chAt. (A5)
Substituting (A4) and (AS) into (A2), the change in «
along a ray path may be written as
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(A6)

where D,/Dt = d/ot + ¢, - V is the material change fol-
lowing the group velocity. For the WKB approximation
to hold, the second- and higher-order terms in (A6)
must be small compared with the first-order terms. In
our calculations, the only significant violations involve
rapid variations in « with respect to x. Consequently,
our focus is on the second term of the right-hand side of
(A6), which should satisfy

. At Dk
Ikl 2 Dt

. (A7)

Recalling that Ar = Ax/c,, along a ray path and requir-
ing (A7) hold for Ax as large as one wavelength, that is,
|Ax| = 27/k, (A7) becomes

m Dk

Cor Dt

m Ak
Coy Al

Ak
Ax

|k|* > ~ =x

bl

where Ak is the change in k along the ray over time At.
Therefore, if the solution to (18) fails to satisfy

the variation of k along the ray is limited such that
01
|Ak] = — |kI"|Ax].
T

When the finite ridge is Fourier decomposed on the
1800-km periodic domain, the modes associated with
roughly a dozen x-component wavenumbers (k) domi-
nate the momentum flux spectrum. Because there are
only a relatively small number of rays associated with
modes having these ks, the z — ¢ distribution of the
reconstructed momentum flux is rather noisy, with a
significant percentage of the flux concentrated along
individual ray paths. This noise was eliminated by in-
creasing both the x and y dimensions of the domain by
a factor of four, so that near its maximum, the momen-
tum flux was distributed over a more continuous Fou-
rier spectrum. Ray tracing theory was then applied to
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all waves in this more continuous spectrum, except that
waves for which 2m(k* + [?)"? = L/5 were eliminated
because their wavelengths are too long relative to the
variations in the synoptic-scale flow to satisfy the WKB
approximation.
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