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ABSTRACT

The impact of transient mountain waves on a large-scale flow is examined through idealized numerical
simulations of the passage of a time-evolving synoptic-scale jet over an isolated 3D mountain. Both the
global momentum budget and the spatial flow response are examined to illustrate the impact of transient
mountain waves on the large-scale flow. Additionally, aspects of the spatial response are quantified by
potential vorticity inversion.

Nearly linear cases exhibit a weak loss of domain-averaged absolute momentum despite the absence of
wave breaking. This transient effect occurs because, over the time period of the large-scale flow, the
momentum flux through the top boundary does not balance the surface pressure drag. Moreover, an
adiabatic spatial redistribution of momentum is observed in these cases, which results in an increase
(decrease) of zonally averaged zonal momentum south (north) of the mountain.

For highly nonlinear cases, the zonally averaged momentum field shows a region of flow deceleration
downstream of the mountain, flanked by broader regions of weak flow acceleration. Cancellation between
the accelerating and decelerating regions results in weak fluctuations in the volume-averaged zonal mo-
mentum, suggesting that the mountain-induced circulations are primarily redistributing momentum. Poten-
tial vorticity anomalies develop in a region of wave breaking near the mountain, and induce local regions
of flow acceleration and deceleration that alter the large-scale flow.

A “perfect” conventional gravity wave–drag parameterization is implemented on a coarser domain not
having a mountain, forced by the momentum flux distribution from the fully nonlinear simulation. This
parameterization scheme produces a much weaker spatial response in the momentum field and it fails to
produce enough flow deceleration near the 20 m s�1 jet. These results suggest that the potential vorticity
sources attributable to the gravity wave–drag parameterization have a controlling effect on the longtime
downstream influence of the mountain.

1. Introduction

It is widely recognized that disturbances generated
by airflow over topography can significantly influence
the atmospheric circulation. These influences fall most
immediately upon locations near the topography, but
over time the influence is often felt indirectly on larger
scales and at remote locations due, for example, to
wave propagation. As a practical matter, topographic
disturbances are often unresolved by numerical models,

and their indirect effects must be parameterized in
terms of the larger scales. Most of what is known about
the processes associated with the effect of topographic
disturbances on larger scales comes from theory and
idealized modeling of steady-state, uniform flows over
localized obstacles. Here we break from this tradition
by including dynamically consistent spatial and tempo-
ral evolution in the large-scale flows that produce the
topographic disturbances and that are subsequently
modified by those disturbances. Our goal is to quantify
where and how such large-scale flows are affected by
the topographic disturbances.

In a broad sense, the characteristics of terrain-
induced perturbations depend on the strength of the
incident flow and the mountain height. For example,
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when the incident flow is weak or the mountain height
is large, windward blocking and flow splitting is typi-
cally observed as well as lee vortex generation and lee
wake formation (e.g., Smolarkiweicz and Rotunno
1989; Schär and Smith 1993a,b; Epifanio and Durran
2001, 2002a,b). If the incident flow is strong enough to
overcome the topography, mountain waves are
launched and they can propagate to great altitude (e.g.,
Queney 1948; Eliassen and Palm 1960).

In this study, we investigate the spatial response in-
duced by breaking gravity waves in numerical simula-
tions for fully three-dimensional dynamics. We focus on
mountains sufficiently high such that persistent wave
breaking takes place throughout the simulation. As
noted by several previous studies (Schär and Durran
1997; Rotunno et al. 1999), potential vorticity (PV)
anomalies can be generated when wave dissipation
takes place. Hence, a portion of the flow response at-
tributed to these PV anomalies can be extracted from
the full response through PV inversion, defined as the
balanced response, and the remaining portion may be
regarded as “unbalanced.” Since these PV anomalies
are embedded in a dynamically consistent synoptic-
scale flow, they can move far downstream of the moun-
tain and remotely influence the flow field that they in-
habit; this effect is measured here by the use of piece-
wise PV inversion.

The paper is organized as follows. Governing equa-
tions, numerical methods, and initial conditions are
specified in section 2. Global and zonal momentum
budgets for a range of mountain heights are given in
section 3. Three-dimensional momentum distributions
are examined in section 4 for a highly nonlinear case;
the contributions to the perturbation zonal momentum
field are quantified in section 5 by PV inversion.
Sources for these PV anomalies are tracked in section 6.
Terrain-induced perturbations in the zonally averaged
zonal momentum field are examined for a range of
mountain heights in section 7. A “perfect” conventional
gravity wave–drag (GWD) scheme is tested in section
8, and conclusions are given in section 9.

2. Model equations and experimental design

Details of model equations and experimental setup
for this study are given in section 2 of Chen et al. (2005,
hereafter CDH). Here we briefly review the physical
and mathematical framework considered in this study
and establish notation for later reference.

We employ the compressible Boussinesq equations
on an f plane as described by

Dv
Dt

� f k � v � �P � g�� � �r

�0
�k � F, �1�

D�

Dt
� H, �2�

� �

�t
� u0

�

�x�P � cs0

2 � · v � 0, �3�

where

D

Dt
�

�

�t
� �u0 � u�

�

�x
� �

�

�y
� w

�

�z
.

Here (x, y, z) are the spatial coordinates, v is the ve-
locity vector (u0 � u, �, w), k is the vertical unit vector,
and f is the Coriolis parameter. Symbols with subscript
“0” denote constant reference values; u0 is a constant
westerly flow. The potential temperature is �, cs0

is the
speed of sound, g is gravity, and F and H represent
friction and diabatic sources, respectively, which are
parameterized in terms of an eddy diffusivity K follow-
ing Lilly (1962); their exact expression is given in CDH.

The pressure gradient force is expressed as the gra-
dient of a potential associated with the pressure field in
the Boussinesq approximation. Let cp be the specific
heat of air at constant pressure, R the gas constant, and
define the Exner function as 	 � (p/p0)R/cp. Divide 

and � into a vertically varying reference state and a
remainder such that 
 � 
r(z) � 
g(y) � 
�(x, y, z, t)
and � � �r(z) � ��(x, y, z, t), where the reference state
(
r, �r) is in hydrostatic balance (cp�r�
r /�z � �g), and

g is a barotropic contribution balancing the mean flow
(cp�0�
g /�y � �fu0). Then the Boussinesq pressure po-
tential in geostrophic balance with u0 may be defined as
Pg � cp�0
g, and the perturbation about Pg as P �
cp�0
� (see Durran 1999, p. 24). In these simulations
�0 � 288 K.

The initial condition is a dynamically consistent syn-
optic-scale disturbance consisting of the superposition
of a uniform westerly mean flow at speed u0 and a
barotropic square wave with horizontal velocities (us,
�s), amplitude u0, and wavelength L given by

us�x, y, z� � u0 cos�2��x � x0�

L � cos�2�y

L �,

�s�x, y, z� � u0 sin�2��x � x0�

L � sin�2�y

L �.

The initial potential temperature field is horizontally
uniform and increases with height such that the Brunt–
Väisälä frequency (N) is constant:

N2 �
g

�0

d�r

dz
� 10�4 s�2.
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The initial perturbation pressure potential Ps is ob-
tained through a steady-state nonlinear balance inver-
sion of the square-wave horizontal velocity field. The
horizontal distribution of Pg � Ps is shown in Fig. 1a.
Note that the mountain is initially located in a region of
stagnant flow.

In the absence of the topography, the square wave is
an exact solution to the nonlinear governing Eqs. (1)–
(3), which translates eastward without changing form in
the mean flow at speed u0, that is, the large-scale flow
is given by

U � us�x � u0t, y� � u0, V � �s�x � u0t, y�,

W � 0, PLS � Ps�x � u0t, y�. �4�

In this study, u0 � 10 m s�1 and L � 1800 km, implying
that all synoptic-scale fields are periodic with a period 

of 50 h. In particular, as shown in Fig. 1b, the synoptic-
scale cross-mountain wind speed over the ridge crest
rises from 0 to 20 m s�1 and then returns to 0 as t
increases from 0 to 
.

The isolated ridge is centered in the region of initially
stagnant flow at (x, y) � (x0, L/2). As in Epifanio and
Durran (2001) and CDH, it is given by

hs�x, y� � �
h

16 �1 � cos��r

4a��4

, if r � 4a;

0, otherwise,

where

r2 � ��x � x0�2 � � |y � L �2 | � �� � 1�a�2, if |y � L �2 | � �� � 1�a;

�x � x0�2, otherwise.

The approximate half-width at half-height is a � 18 km;
the y–x aspect ratio is � � 5, x0 � 225 km, and the ridge
maximum ridge height h0 varies between 12.5 and 1500
m in these simulations.

The computational domain is doubly periodic over a
distance of L � 1800 km in both x and y, with a hori-
zontal grid spacing of 6 km unless otherwise specified.
The physically relevant portion of the computational
domain is 16 km deep. This layer is topped by a 16-km-
deep wave-absorbing layer with Rayleigh damping ap-
plied to perturbations of small scales such that the
large-scale flow is unchanged. The lower boundary con-
dition is free slip along the topography.

3. Global and zonal momentum budgets

In an earlier study, CDH demonstrate that the char-
acteristics of transient mountain waves embedded in an

evolving synoptic-scale flow can greatly deviate from
those of the steady-state solution. One surprising result
presented by CDH is that due to wave packet accumu-
lation, the momentum flux in the mid- and upper tro-
posphere tends to be strongest when the mean flow is
increasing. This feature, which would not have been
anticipated under the current GWD parameterizations,
imposes a surprising zonal mean flow acceleration in
the lower troposphere. Here we extend this research by
examining the influence of the waves on the domain-
averaged flow and the zonal-mean momentum field for
mountain heights ranging from 12.5 to 1500 m.

Figure 2 shows the evolution of the normalized pres-
sure drag across mountains of different heights. The quan-
tity plotted in Fig. 2 is D�, the mesoscale component1 of

1 The component of the pressure drag due to the square wave is
removed.

FIG. 1. (a) The isolated ridge (shown in black) in relation to the
initial synoptic-scale flow shown by isolines of Pg � Ps (contour
interval of 150 m2 s�2). The dashed rectangle shows the location
of the nested fine grid described in section 4. (b) The synoptic-
scale zonal flow as a function of time at the crest of the mountain.
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D � �
1

D l
�

0

L �
0

L

P
�hs

�x
dx dy |

z�hs
,

where Dl is the drag for the steady-state linear solution
for the same mountain with U � 20 m s�1 and V � 0,
and hs(x, y) represents the topography. Also plotted as
a function of time is D for the linear steady-state solu-
tion with wind speed equal to the instantaneous value
of U(t) at the mountain crest. Let � � Nh0 /U(x0, 0, 
 /2)
be the minimum value of the nondimensional mountain
height, which during a given simulation is attained at
the time of maximum wind. For mountain heights of
125 m or less (� � 0.0625), the simulated pressure drag
closely follows the linear steady-state solution and ex-
hibits the same sinusoidal variation as U(t) (Fig. 2a). As
discussed in CDH and evident in Fig. 2b, for mountain
heights in the range 250 � h � 1000 m (0.125 � � �

0.5), the drag is enhanced during the period of mean
flow acceleration because the vertical group velocity of
the mountain-wave packets increases as the speed of
the mean flow increases. When wave packets launched
later in the accelerating flow overtake those launched
earlier, there is an accumulation of wave action aloft
that enhances the downward momentum flux and, in
the nonlinear case, also increases the cross-mountain
drag. This is also evident in the time–altitude distribu-
tion of horizontally averaged momentum flux shown in
Fig. 3a.

Although there is still some enhancement during the
acceleration phase, the maximum drag for the highest
mountains (h 	 1250 m, � � 0.625), occurs just after the
time of maximum wind (Fig. 2c), as does the area-
integrated momentum flux (Fig. 3c). The wave packet
accumulation mechanism is not dominant for these
higher mountains because, as shown in Fig. 3d, they are
high enough to force low-level wave breaking during
the entire period of significant cross-mountain flow. We
expect that if a typical midlatitude westerly wind shear
was added to the large-scale flow, the waves forced by
the 1.5-km-high mountain would not break during the
period of maximum cross-mountain flow and the wave-
accumulation mechanism would again become signifi-
cant. Nevertheless, throughout this paper we limit our
attention to barotropic flows in order to examine the
effects of wave breaking in the simplest possible con-
text.2

a. Linear regime, h � 250 m (� � 0.125)

We turn now to the budget for the absolute momen-
tum m � u � f�, where � is the north–south displace-

2 This is also the context (flows with constant N and U ) in which
wave breaking has been most extensively studied for steady mean
flows.

FIG. 2. Time evolution of normalized mesoscale pressure drag (D�). The normalization is done by
dividing each value by the pressure drag for the linear steady-state solution for a uniform 20 m s�1 flow
over the same 3D ridge: (a) the quasi-linear regime with drags for mountain heights of 12.5 and 125 m,
(b) the moderately nonlinear regime with drags from mountain heights of 250–1000 m, and (c) the highly
nonlinear regime with mountain heights of 1250 and 1500 m.
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ment of an air parcel from its initial location and a
constant multiplicative factor of �0 is omitted from m
for notational simplicity. Using the relations � · v � 0
(which is very closely approximated by the numerical
solutions to our “compressible Boussinesq” system)

and D� /Dt � �, the x-component of (1) may be ex-
pressed in the following form:

�m

�t
�

�m�u � u0�

�x
�

�m�

�y
�

�mw

�z
�

�P

�x
� Fx . �5�

FIG. 3. Time–altitude distribution of area-integrated momentum flux ��0uw� normalized by the
flux for the linear steady-state solution driven by the maximum cross-mountain flow of 20 m s�1:
(a) h � 1000 m and (c) h � 1500 m. Domain maximum subgrid-scale diffusivity as function of t and
z: (b) h � 1000 m and (d) h � 1500 m. The three gray shades represent intensities for momentum
flux at thresholds of 0.5, 1.0, and 1.75, and for subgrid-scale diffusivity at 8, 16, and 24 m2 s�1.
The contour intervals for momentum flux and diffusivity are 0.25 and 4 m2 s�1, respectively.
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Let �F � denote the integral of the function F over a
horizontal plane spanning the periodic computational
domain,

�F� � �
0

L �
0

L

F dx dy,

and let [F ] denote the volume integral over the entire
domain beneath the damping layer (which begins at z �
16 km):

�F � � �
hs

16 km

�F� dz.

Integrating (5) over this volume, noting that the hori-
zontal fluxes integrate to 0 by periodicity, and neglect-
ing subgrid-scale diffusive fluxes at the top and bottom
of the volume, one obtains

d �m�

dt
� ��

0

L �
0

L

mw dx dy |z�16 km

� �
0

L �
0

L

P
�hs

�x
dx dy |z�hs

,

� ��mw� |z�16 km � DlD. �6�

This expression implies that the rate of change of the
domain-integrated absolute momentum is equal to the
difference between the flux of absolute momentum
through the top boundary and the pressure drag on the
topography.

Each of the three terms in (6) is plotted as a function
of time for the 250-m mountain simulation in Fig. 4a.3

One might expect a symmetric response in d[m]/dt, with
negative (positive) values during the first (second) half
of the period when the pressure drag would likely be
greater (less) than the momentum fluxes aloft as the
cross-mountain flow increases (decreases) with time.
These expectations are confirmed during the first 12 h,
when the absolute momentum tendency equals the
pressure drag, before significant wave activity reaches
the upper boundary. The expected behavior is inter-
rupted when the momentum flux aloft suddenly ex-
ceeds the pressure drag, and d[m]/dt becomes positive
around hour 17. Just 3 h later, and still several hours
before the peak in surface pressure drag, the momen-
tum fluxes at the upper boundary reach their peak. By
27 h these fluxes become weaker than the pressure drag

3 The north–south displacement was computed by integrating
the auxiliary equation d� /dt � � during the numerical simulation.

FIG. 4. Domain-integrated absolute momentum budget for the h � 250 m simulation as a
function of time: (a) d[m]/dt (solid), pressure drag (dashed), and absolute momentum flux
through the top of the domain (dot–dashed) and (b) absolute momentum (solid), zonal
momentum (dashed), and f� (dot–dashed).
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and d[m]/dt is again negative. Near the end of the simu-
lation, weak downward momentum fluxes are still
present at the upper boundary, while the pressure drag
drops to 0 and even becomes negative during a brief
period of reversed cross-mountain flow, so d[m]/dt
switches back to positive. As mentioned above, the
time asymmetry in the evolution of the absolute mo-
mentum is due to wave packet accumulation during the
period of mean-flow acceleration (CDH).

A similar scenario is depicted in the evolution of [m],
[u], and [ f�] over one synoptic period (Fig. 4b). Both
[m] and [u] are initially positive despite the square-
wave structure in the initial velocity field because the
volume of air displaced by the mountain, in which u is
approximately �10 m s�1, is not included in the domain
average. There is a net decrease in [m] over one period
of the flow despite the virtual absence of subgrid-scale
mixing in this simulation. This decrease is due to tran-
sients in our initial value problem. When the simulation
is continued for another 50 h, there is still a net loss of
[m] over the second cycle in the large-scale flow, but the
loss is only about half that generated during the first
cycle.

It should be emphasized that although no permanent
wave–mean flow interaction takes place in the essen-
tially nondissipative 250-m-high mountain simulation
shown in Fig. 4, temporary interactions induce rela-
tively long-lived domain-averaged decelerations. Here
we consider these long-lived impacts by extending the
solutions to cover a second period of the basic state,
and examining the vertical profile of time- and space-
averaged vertical absolute momentum flux. For any
level above the mountain, the area-integrated absolute
momentum on the entire x–y plane satisfies

��m�
�t

� �
�

�z �mw�,

and the change in the area-integrated absolute momen-
tum after one cycle of the large-scale flow (from t � t0
to t0 � 
) is determined by


�m� � �m��t0 � �� � �m��t0� � �
�

�z �t 0

t 0��

�mw� dt.

The vertical profile of normalized absolute momentum
flux �mw�/(D�D�) averaged over the first and second
50-h periods of the synoptic-scale flow is plotted in Fig.
5. Consistent with a gradual approach to a purely peri-
odic solution, the vertical gradient in the flux is weaker
during the second period of the flow. Nevertheless, the
vertical divergence associated with these absolute mo-
mentum flux profiles implies that, even without wave
breaking, the time- and space-averaged cross-mountain

flow will decelerate over both periods (more than 4
days). Ultimately those gravity waves not associated
with a strictly time-periodic solution should propagate
vertically through the upper boundary of the domain,
and the net change in [m] over each synoptic-scale pe-
riod should drop to 0.

Further details about the time variations in the mean
zonal and meridional flows may be diagnosed by aver-
aging of the horizontal momentum equations in x and y,
recalling that the horizontal domain is periodic and ne-
glecting subgrid-scale diffusive fluxes:4

��u�
�t

� f��� � �
�

�z �uw�, �7�

����
�t

� f�u� � �
�

�z ��w�. �8�

Combining (7) and (8) yields an equation governing the
behavior of the zonal-mean flow:

4 Even in the presence of wave breaking, the diffusive fluxes do
not play a major role in the global momentum budgets.

FIG. 5. Vertical profile of �mw� averaged over one period of the
synoptic-scale flow and normalized by the mesoscale cross-
mountain pressure drag averaged over the same period for h �
250 m. The solid line shows the average over the first period and
the dot–dashed line shows the average over the second period.
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�2�u�

�t2
� f 2�u� � �

�

�t

�

�z �uw� � f
�

�z ��w�. �9�

Homogeneous solutions of (9) take the form of cos( ft)
and sin( ft), suggesting that the evolution of �u� may
project onto inertial oscillations (Lott 2003). Evidence
of such a response is given in Fig. 6, which shows that
the distributions of the zonal and meridional mean flow
oscillate with a period of roughly 17.5 h, corresponding
to the inertial period (�2� /f ). The origin of this oscil-
lation appears to relate to the increase of westerly mo-
mentum around hour 15 due to the wave-accumulation
process; the meridional wind then decelerates in re-
sponse.

b. Nonlinear regime, h � 1.5 km (� � 0.75)

Since the dynamics of the synoptic-scale flow pre-
scribed in this study are well understood in the absence
of a mountain, the spatial flow response induced by the
mesoscale mountain may be examined by defining dif-
ference fields (i.e., departures from the flow fields from
the control solution in the absence of the mountain).
Velocity and PV difference fields are defined as

u� � u � u0 � U, �� � � � V, w� � w,

q� � q � Q � �� � v � f k̂� · �� � Q,

where Q is the Ertel PV of the large-scale flow:

Q � ��V

�x
�

�U

�y
� f� ��r

�z
.

As will be discussed in section 7, q� may be produced
through purely adiabatic and nondissipative processes
due to internal dynamics (e.g., gravity waves), but here
we focus on the strong signal in q� arising from nona-
diabatic processes in breaking gravity waves over a 1.5-
km-high mountain.

Comparing the zonally averaged q� and u� fields plot-
ted in Fig. 7 shows a compact region with reduced zonal
momentum near the mountain surrounded by broader
and weaker regions of acceleration. This pattern is in
good qualitative agreement with the zonally averaged
PV field that features negative (positive) PV on the north
(south) side of the mountain; we defer a quantitative
analysis of this relationship until later in the paper.

4. Three-dimensional structure of the
mountain-induced perturbations

To expose the processes and locations responsible for
the large-scale changes apparent in the previous sec-
tion, relevant aspects of the full three-dimensional

FIG. 6. Time–altitude distribution for h � 250 m of the (a) mean zonal velocity �u�, and (b)
meridional velocity ��� at contour intervals of 7.5 � 10�4 m s�1; dashed contours denote
negative values.
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structure of the solutions are now explored. In the fol-
lowing, we focus on the 1.5-km mountain because, ex-
cept for the first few hours when the flow is blocked,
turbulent mixing persists in the low- to midtroposphere
throughout the simulation, causing PV production as
well as intense wave–mean flow interaction.

Several previous studies (Schär 1993; Schär and Dur-
ran 1997; Rotunno et a1. 1999) have demonstrated that

PV anomalies may be produced in the lee of a moun-
tain in the presence of wave dissipation. The PV evo-
lution is governed by

Dq

Dt
� �� � v � f k̂� · �H � �� � F� · ��, �10�

which indicates that the turbulent subgrid-scale fluxes
of momentum F and heat H are responsible for PV

FIG. 7. The zonal average of q� (color shading) and u� (black lines) as a function of y and z for h � 1.5 km at
times: (a) 20, (b) 30, (c) 40, and (d) 50 h. The contour intervals for q� and u� are 108 K m�1 s�1 and 0.5 m s�1,
respectively. Red (blue) shades denote positive (negative) PV and solid (dashed) lines represent flow acceleration
(deceleration). The location of the mountain range is indicated by a thick line beneath the x axis. The contribution
from the background PV has been removed from the zonal-averaged PV.
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generation. However, the model also uses a numerical
filter that suppresses grid-scale noise to prevent non-
linear numerical stability. For the highly nonlinear case
considered here, a horizontal resolution of 6 km is not
adequate since the PV production associated with the
numerical filter is comparable to that associated with
terms representing the physical generation of PV
through subgrid-scale mixing. We therefore employ a
two-level interactive grid nest in which a fine grid is
placed over the mountain with a horizontal resolution
of 2 km, so that nonphysical PV production is reduced
to less than 10% of the physically based production. The
fine mesh, whose extent is shown in Fig. la, occupies the
region 105 � x � 545 km and 540 � y � 1260 km.

The spatial distribution of u� at z � 3 km is plotted in
Fig. 8, for the same times as in Fig. 7. Near the moun-

tain the u� field is dominated by a strong gravity wave
signal. There are, however, larger-scale perturbations
that move coherently far downstream of the mountain.
At the end of the cycle, t � 50 h, a broad region with
flow deceleration is centered at (x, y) � (1400, 900) km
(Fig. 8d) and the strongest flow deceleration exceeds
�5 m s�1. The region of strong flow deceleration is
almost collocated with the 20 m s�1 jet in the large-scale
flow, implying that after one complete cycle this jet is
significantly slowed down due to the presence of the
mountain. Conversely, patches of flow acceleration are
also found, mostly north and south of the main region
of flow deceleration. This is consistent with the zonal-
average field shown in Fig. 7.

Throughout the simulation, PV is generated by per-
sistent turbulent mixing in the lee of the mountain (see

FIG. 8. The u� field forced by a 1.5-km mountain, in color shading with a contour interval of 1 m s�1, on an x–y plane
at z � 3 km at times: (a) 20, (b) 30, (c) 40, and (d) 50 h. Blue (red) shades denote flow deceleration (acceleration).
The background velocity field (U, V ) is denoted by black arrows.
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Fig. 3d). Unlike the simple PV dipole found behind
circular mountains in earlier studies by Schär and Dur-
ran (1997) and Rotunno et al. (1999), the wake for this
elongated ridge is flanked by extrema of opposite sign
in the PV field surrounding a more complex distribu-
tion of smaller-scale PV anomalies within the interior
of the wake (Fig. 9). Away from the mountain, the flow
is nearly inviscid and adiabatic, and the PV anomalies
are passively advected by the synoptic-scale flow field.5

Three pairs of organized PV anomalies appear in the
wake of the mountain; they are labeled as (1A–1B),
(2A–2B), and (3A–3B) in Fig. 9. Pair (1A–1B) first
appears around hour 20 during the accelerating phase
of the synoptic-scale flow. These anomalies are subse-
quently separated meridionally by the difluent flow as
they move downstream of the mountain. Pair (2A–2B)
appears around hour 30, which is a time of deep turbu-
lent mixing (Figs. 3d and 12c). This PV dipole possesses
a deeper structure than the first pair (not shown) and,
as will be shown in section 5, pair (2A–2B) turns out to
be responsible for the major flow deceleration located
far downstream of the mountain at the end of the cycle.
Pair (3A–3B) appears around hour 40, during a time of

5 The subsequent locations of PV anomalies initially generated
near the mountain are well predicted by trajectory calculations
derived from the background large-scale velocity field (U, V ).

FIG. 9. The Ertel PV difference field forced by a 1.5-km mountain, in color shading with a contour interval of 10�7

K m�1 s�1, on an x–y plane at z � 1.5 km at times: (a) 20, (b) 30, (c) 40, and (d) 50 h. Blue (red) shadings denote
negative (positive) PV. The background velocity field (U, V ) is denoted by black arrows. Here (1A–1B), (2A–2B), and
(3A–3B) denote three major groups of PV anomalies generated during the simulation.

2388 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 64

Fig 9 live 4/C



flow deceleration and confluence in the synoptic-scale
wind field. Unlike the previous two PV pairs, the am-
bient wind is too weak to allow (3A–3B) to separate
from the mountain, and their movement is dominated
by their mutual interaction, which forces them to move
westward toward the mountain. In fact, the reverse flow
associated with (3A–3B) eventually overwhelms the
background flow, turning the eastern slope of the
mountain into the windward side, and the pressure drag
switches signs at 47.5 h (Fig. 2c). A similar reversal in
the pressure drag is also found near t � 50 h for the 1-
and 1.25-km-high mountains (Figs. 2b,c).

5. Potential vorticity inversion

As suggested by Fig. 7, the spatial distribution of the
perturbation zonal momentum field seems to be in
good agreement with what is implied by the perturba-
tion PV field. This motivates us to quantify the agree-
ment through PV inversion. The full difference velocity
field is divided into balanced and unbalanced portions.
The balanced part, u�b � (u�b, � �b), is defined here
through PV inversion using geostrophic balance as the
balance constraint. We apply doubly periodic lateral
boundary conditions in the horizontal, and homoge-
neous (inhomogeneous) Neumann conditions at the top
(bottom) boundaries; the lower boundary condition is
derived from the perturbation surface potential tem-
perature.

Rather than invert the quasigeostrophic potential
vorticity, we opt instead for inverting a scaled version of
the Ertel PV, which allows for error in recovering the
mass field. In this case, the streamfunction � satisfies

q�

��r ��z
�

�2


�x2 �
�2


�y2 �
f 2

N2

�2


�z2 , �11�

and

u�b � �
�


�y
, ��b �

�


�x
. �12�

Successive overrelaxation (SOR) is used to solve (11)
for �; terminating when successive iterations generate
no changes in the velocity field larger than 10�5 m s�1.

The inverted zonal velocity field at z � 3 km is pre-
sented in Fig. 10 for the same times shown in Figs. 7–9.
The u�b field is in good agreement with the full u� field
(cf. Fig. 8), especially far from the mountain. The good
agreement between u�b and u� implies that a large por-
tion of the difference fields can be understood by PV
dynamics, although as expected, u�b fails to capture the
strong gravity waves generated in the immediate vicin-
ity of the mountain.

At 20 h, the good agreement between Figs. 8a and
10a confirms that the region of flow deceleration cen-
tered at (450, 900) km is in balance with the PV anoma-
lies created early in the cycle, denoted as (1A–1B) in
Fig. 9a. At 30 h, (1A–1B) continue to be associated with
the leading edge of the spatial response in the pertur-
bation velocity, which has progressed to x � 900 km
(Figs. 8b, 9b, and 10b). Closer to the mountain, the
balanced response (u�b) is characterized by intense flow
deceleration along the centerline (Fig. 10b), with
patches of flow acceleration immediately downstream
of the flanks of the mountain. These regions of intense
u�b are associated with PV anomalies (2A–2B) evident
in Fig. 9b. PV anomalies (2A–2B) continue to produce
significant flow deceleration/acceleration centered at
(900, 900) km at 40 h (Figs. 8c, 10c) and at (1400, 900)
km at 50 h (Figs. 8d, 10d). At these later times, the
influence of (1A–1B) is limited to the northern and
southern edges of the domain and is characterized by
two patches of strong flow acceleration. It is interesting
to note that no strong flow deceleration is present at
50 h close to the mountain (see Figs. 8d and 10d) as
might be expected to occur in association with with PV
dipole (3A–3B) shown in Fig. 9d. This is because the
vertical structure of (3A–3B) is too shallow to create
anomalies that penetrate up to z � 3 km. The influence
of (3A–3B) is therefore limited to lower levels.

At 50 h the balanced response is mostly due to PV
anomalies (2A–2B), which were generated shortly after
the time of strongest cross-mountain flow (hours 25–
30). Initially, the strongest PV perturbations associated
with (2A–2B) are found between z � 1.5 and 6 km (see
Fig. 7b) and the vertical average of the perturbation PV
field between these two levels is plotted at t � 50 h in
Fig. 11a. Due to this vertical averaging, both (1A–1B)
and (3A–3B) almost vanish since these anomalies are
shallow and mainly confined below the mountain
height (1.5 km). To separate the influence of (2A–2B)
from other PV anomalies, we employ piecewise PV in-
version, considering only those PV perturbations resid-
ing in the layer between z � 1.5 and 6 km and within
the box outlined by the thick black line in Fig. 11a; all
other PV anomalies are discarded and homogeneous
boundary conditions are employed. The result (Fig.
11b) is in excellent agreement with the full difference
field (Fig. 8d) in the region of flow deceleration and
acceleration centered at (1400, 900) km, confirming
that the intense PV anomalies created near the moun-
tain between 25 and 30 h play a key role in producing
the main large-scale velocity perturbations at the end of
the cycle. There are, nevertheless, some differences in
u�b recovered by the full PV inversion and by piecewise
PV inversion. For example, the two patches of flow
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acceleration located at the northern and southern
boundaries found in Fig. 10d but not in Fig. 11b are
associated with the PV anomalies generated at the early
stage of the cycle (1A–1B). There also exists a region
with flow deceleration downstream of the mountain,
centered at (500, 900) km (Fig. 10d), which is missing in
the flow field recovered by piecewise PV inversion be-
cause it is associated with PV anomalies generated
much later in the cycle that remain well upstream of the
boxed region in Fig. 11a.

These results show that extensive regions of signifi-
cant geostrophically balanced large-scale perturbations
in the zonal momentum field can be generated by
breaking mountain waves. Yet as evident from (12),
since our domain is periodic, the horizontal integral of
these perturbations is 0. As will be discussed in section

8, most gravity wave–drag parameterizations focus on
capturing the influence of the mountain on area-
averaged u� and may therefore dramatically underesti-
mate the strength and structure of the synoptic-scale
geostrophically balanced response.

6. Potential vorticity sources

As demonstrated in the previous section, PV anoma-
lies originating between 25 and 30 h, labeled as (2A–
2B) in Fig. 9, exert an important influence on the large-
scale flow. Here we explore the source of these PV
anomalies. During the period of accelerating cross-
mountain flow, a region with turbulent mixing develops
near the ground, but remains relatively shallow (Figs.
12a,b). As the large-scale cross-mountain flow begins to

FIG. 10. Same as in Fig. 8, but the contoured field is the balanced zonal velocity u�b, obtained by inverting the full
Ertel PV difference field.

2390 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 64

Fig 10 live 4/C



decelerate, the waves launched by the mountain at ear-
lier times begin to propagate upstream, leading to en-
hanced horizontal temperature gradients in the main
mountain-wave trough and wave breaking in a region
of weaker static stability farther downstream. As is evi-
dent in Fig. 12c, at 30 h a deep layer of turbulent mixing
is present between the ground and about 5 km. This
region of turbulent mixing is deepest between hours 25
and 30 (Fig. 3d), precisely the time during which the
deepest PV anomalies (2A–2B) develop. Shortly there-
after the wave-breaking region collapses into a shal-
lower layer (Fig. 12d).

The aggregate effect of turbulent mixing in the lee of
the mountain may be related to the generation of PV by
examining the distribution of the perturbation Ber-
noulli function B on isentropic surfaces. The local rate
of change of Ertel PV is given by the divergence of the
vector field J (Schär 1993):

�q

�t
� � · J � 0,

where

J � �� � �B, �13�

and in our Boussinesq system:

B �
1
2

�v � u0i� · �v � u0i� � P � Pg � g
� � �r

�0

�
1
2

N2z2.

For steady flows, (13) implies that J is parallel to the
intersection of surfaces of constant B and �. Although
our solutions are not completely steady, the evolution
of the large-scale flow is slow enough to allow the quali-
tative application of (13). Figure 13a shows the distri-
bution of B averaged over the isentropic surfaces be-
tween 292 and 298 K (roughly between the elevations
of 1.5 and 3.5 km) at hour 30. A pronounced deficit in
the Bernoulli function appears in a roughly triangular
region in the lee of the mountain.

The gradients of B on this averaged isentropic sur-
face are proportional to the PV flux, which in general is
the sum of both advective and nonadvective fluxes. As
discussed in Schär and Durran (1997) the decrease in B
at the upstream edge of the wave-breaking region is
associated with a nonadvective flux of PV directed
southward, roughly parallel to the ridgeline. The gradi-
ents of B within the central portion of the wake are
associated with a mix of advective and nonadvective PV
fluxes that tend to homogenize the patches of PV gen-
erated by intense, but intermittent episodes of wave
breaking over the lee slope. Downstream of the moun-
tain, along the outside edges of the wake, the turbu-
lence abates and the gradients in B are associated with
purely advective PV fluxes. The positive (negative)
fluxes at the southern (northern) edges of the wake are
associated with positive (negative) PV perturbations
embedded in the strong downstream flow along the
edges of the wake (Fig. 13b). Between hours 25 and 30,

FIG. 11. (a) The perturbation Ertel PV field forced by a 1.5-km mountain at t � 50 h, averaged between z � 1.5 and
6 km with a contour interval of 10�7 K m�1 s�1; (b) u�b, denoted by color shading with a contour interval of 1 m s�1,
and u�b, denoted by black arrows (maximum vector length is 5 m s�1), recovered by piecewise PV inversion by using
the perturbation PV field from z � 1.5–6 km residing in the region in (a) denoted by a thick black line. Blue (red)
shadings denote negative (positive) values.
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wave breaking continually supplies PV to the upstream
edge of each of these PV perturbations. After the depth
and intensity of the wave breaking is reduced, these PV
perturbations are carried downstream as the anomalies
(2A–2B).

7. Zonally averaged momentum

We return now to a zonally averaged perspective and
explore the perturbation momentum fields u� and u�b as
a function of mountain height. Figure 14 shows y–z
plots of the zonal average of u� generated by ridges
ranging in height from h � 125 m to 1.5 km. In order
that the results shown in all panels are of similar mag-
nitude assuming a nearly linear response in mountain

height, the contour interval in these plots scales with h
with one exception: for legibility, it was necessary to
increase the contour interval in the 1.5-km mountain
case by a factor of 1.5 relative to the linear scaling.
Three distinct patterns are visible in the zonally aver-
aged u� field. One is a residual gravity wave signature
emanating from the edges of the ridge (and also from
perturbations created early in the simulation that have
been transported near the northern and southern
boundaries of the domain). The gravity wave signal
scales almost linearly with mountain height for h � 500
m, and is still apparent in the h � 1 km case. Since
gravity waves carry zero linear PV, the residual gravity
wave signature is absent in the zonally averaged u�b field
(Fig. 15).

FIG. 12. Four x–z cross sections along the centerline of the mountain showing the potential temperature in thin
lines for h � 1.5 km at t � (a) 15, (b) 23.75, (c) 30, and (d) 33.75 h, respectively. The contour interval is 2.5 K and
regions with subgrid-scale diffusivities exceeding 12 m2 s�1 are denoted by gray shading.
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The other two signatures in the zonal averages of u�
are very similar to those in u�b, indicating that both are
balanced responses to the mountain-induced circula-
tions. One pattern is symmetric in y and the other an-
tisymmetric. The symmetric pattern, which is most evi-
dent when the mountain is high (h � 1 or 1.5 km),
exhibits strong deceleration throughout the middle
third of the domain, with weaker acceleration to the
north and south. The symmetric signal is the balanced
response to wave dissipation and the generation of a
PV dipole in the lee of the mountain (cf. Fig. 7d). Wave
breaking is clearly a nonlinear process and this nonlin-
earity is responsible for the faster-than-linear intensifi-
cation of the symmetric zonal momentum perturbations
between the h � 1 and 1.5 km cases. The maximum
zonally averaged mean-flow deceleration is about 2
m s�1 (relative to the unperturbed mean of 10 m s�1) in
the h � 1.5 km case.

In contrast, the antisymmetric signature in the zon-
ally averaged u� and u�b is most apparent when the
mountains are too small to generate much wave break-
ing (h � 500 m). In the antisymmetric case there is
acceleration south of the mountain and deceleration to
the north. Since there is essentially no dissipation for
h � 125 m, a different mechanism is required to account
for the asymmetric response. It appears that this pat-
tern is generated by a PV anomaly associated with
warm surface temperatures that form to the lee of the
mountain early in the simulation when air parcels ini-

tially over the mountain having high potential tempera-
ture are advected downstream by the accelerating flow.
This warm anomaly moves off the mountain following
the leading edge of the large-scale jet, and induces a
cyclonic circulation that tends to move the downstream
(upstream) large-scale PV pattern northward (south-
ward). The resulting transport tends to produce posi-
tive zonally averaged q� near the north–south center of
the domain, and the acceleration–deceleration patterns
induced by such an anomaly are qualitatively in accord
with those observed.

Note that although the balanced response over the
mountain quickly becomes anticyclonic, the circulation
induced by the mountain anticyclone remains fixed
relative to the evolving flow. Therefore, the sign of the
PV advection induced by the mountain anticyclone os-
cillates on the same time scale as the large-scale flow,
and little net PV transport is produced by this feature
over the full 50-h cycle.

8. A “perfect” GWD parameterization experiment

Here we explore how well the spatial flow response
presented earlier may be reproduced by a simple, yet in
many respects “perfect,” GWD parameterization
scheme. Most current GWD parameterizations attempt
to estimate the vertical profile of the horizontally av-
eraged momentum fluxes ��0u�w�� and ��0��w��, and
then include the vertical divergence of these fluxes as

FIG. 13. (a) The average perturbation isentropic Bernoulli function B at t � 30 h between � � 292 and 298 K in color
shading for B � 50 m2 s�2 with a contour interval of 25 m2 s�2, and regions with average subgrid-scale diffusivity
greater than 12.5 m2 s�2 are denoted by thick black lines. (b) The 292–298-K average perturbation Ertel PV at t � 30
h with a contour interval of 5 � 10�7 K m�1 s�1. The mesoscale mountain is denoted by thin black lines. Blue (red)
shadings denote negative (positive) values. The bold black line in (b) represents a subjectively selected region with a
large Bernoulli function deficit. The thin black lines are topographic contours at elevations of 500 and 1000 m.
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forcings in the u and � momentum equations, respec-
tively. The exact values of ��0u�w�� and ��0��w�� are
available during our simulations, so it is possible to
store these fluxes and then to impose them in a second
simulation without a mountain. This amounts to a per-

fect GWD parameterization in the sense that we do not
need to make any approximations to arrive at the cor-
rect momentum flux profiles, and as a consequence, the
z–t dependence of �u� and ��� in the no-mountain case
will closely match that in the original simulation.

FIG. 14. The zonal average of u� at 50 h as a function of y and z for h � (a) 125, (b) 250, (c) 500, (d)
1000, and (e) 1500 m. The contour intervals for the five panels are 0.01, 0.02, 0.04, 0.08, and 0.18 m s�1,
respectively. The thick black line along the x axis denotes the position of the mountain range.
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The momentum flux profiles for the h � 1.5 km case
were saved and then imposed in a second no-mountain
simulation with a coarser horizontal resolution of 18
km. As such, this represents a test of gravity wave drag
parameterizations on a scale similar to that currently
being approached by very high-resolution global atmo-
spheric models. Assuming the mountains are located in

a compact region whose area is A, the (Boussinesq)
GWD forcing (Fx, Fy) exerted on each grid cell within
the mountainous area is specified as

Fx�z, t� � �
1
A

��u�w��
�z

, Fy�z, t� � �
1
A

����w��
�z

,

FIG. 15. Same as in Fig. 14, but for the balanced perturbation zonal velocity u�b.

JULY 2007 C H E N E T A L . 2395

Fig 15 live 4/C



except that below mountain-top level, the flux diver-
gence is specified as constant with height and equal to
the difference between the momentum flux at moun-
tain-top level and the surface pressure drag; Fx and Fy

are added to the right side of (1).
In our parameterized-drag simulation, all grid boxes

in which the maximum terrain elevation exceeded h0/2
were included in the region over which the total drag
force was distributed. (This region is marked by the
rectangles in Figs. 18a–d and extends two 18-km grid
cells in the x direction and 10 cells in the y direction.)
Both w� and the fluxes �0u�w� and �0��w� were very
small outside the immediate neighborhood of the
mountain, so concentrating these stresses inside the in-
dicated region is consistent with the original simulation
that included the actual 1.5-km-high mountain.

The time–altitude dependence of �u� for the original
simulation of with the 1.5-km mountain on a uniform
6-km mesh is compared in Fig. 16 with the same quan-
tity computed on a uniform 18-km mesh without a
mountain in which the preceding GWD parameteriza-
tion is imposed. Clearly this parameterization does al-
low one to almost perfectly recover the time and space
variations �u� that are generated by the actual moun-
tain. This perfection is lost, however, if one examines

the spatial structures in u rather that the average over
the full horizontal domain.

The zonally averaged u� and q� fields for the no-
mountain simulation with parameterized GWD are
shown in Fig. 17 for times t � 20, 30, 40. and 50 h; these
may be compared with the equivalent fields from the
original 1.5-km simulation plotted in Fig. 7. There is
qualitative similarity between the two cases, including a
localized region of deceleration above the ridge, with
weaker acceleration farther to the north and south. The
GWD parameterization also captures the relatively
shallow vertical structure of the perturbations that have
been advected well north and south of the mountain.
However, except at the final time (50 h), this scheme
tends to seriously underestimate the intensity of the
flow deceleration over the mountain.6 For example, this
parameterization scheme is unable to produce the dra-
matic loss of momentum over the mountain at 30 h

6 Durran (1995) also found that the imposition of perfect mo-
mentum flux profiles in a two-dimensional no-mountain simula-
tion produced weaker x-averaged u� perturbations than those in
the original simulation containing the mountain from which the
fluxes were diagnosed.

FIG. 16. Time–altitude distribution of �u�� (contour interval of 1.5 � 10�2 m s�1) for (a) a
simulation with a 1.5-km-high mountain at 6-km horizontal resolution, and (b) a no-mountain,
parameterized-GWD simulation at 18-km horizontal resolution.
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found in the true solution (cf. Fig. 17b with 7b) and the
PV field is also much weaker.7

The spatial structure of the regions of flow accelera-
tion and deceleration at z � 3 km in the parameterized-
GWD case are plotted in Fig. 18 and may be compared
with their equivalents for the h � 1.5-km case in Fig. 8.
Again there are several qualitative similarities, but the
GWD parameterization underestimates the magnitude
of the response. Curiously, in contrast to the zonally

averaged results, the worst underestimation occurs at
t � 50 h, where the control simulation with the 1.5-km-
high mountain generates u� (and also u�b) perturbations
as strong as �6.1 m s�1 near the downstream end of the
large-scale jet, while the maximum deceleration in the
no-mountain, parameterized GWD case is �1.8 m s�1.

One might suppose that the most difficult challenge
for GWD parameterization lies in the estimation of the
vertical profiles of momentum flux, since both moun-
tain-wave generation and dissipation can be highly non-
linear processes. Although the correct specification of
��0u�w�� and ��0u�w�� will guarantee the correct evolu-
tion of the domain averaged velocity fields, �u� and ���,
as evident in Figs. 17 and 18, this is not enough to
guarantee correct reproduction of the strength and

7 These comparisons hold even if the fields from the control
(h � 1.5 km) simulation are spatially filtered to the 18-km reso-
lution of the GWD experiment. Since there are still 100 grid in-
tervals in both x and y after such filtering, the momentum fields in
the control simulation are virtually unchanged.

FIG. 17. Same as in Fig. 7, but for the u� obtained using a perfect GWD parameterization. The thick
black line along the x axis denotes the region over which the drag force was applied.
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structure of the large-scale response, at least for models
with grid spacing on the order of 15–40 km.

As noted in section 5, most of the GWD-induced
large-scale velocity perturbations are in geostrophic
balance and therefore make no contribution to �u� and
���. Within the context of our perfect GWD parameter-
ization, PV generation is proportional to the curl of the
drag, in particular,

�q

�t
� . . . � ��Fy

�x
�

�Fx

�y � ��

�z
� �

�Fx

�y

��r

�z
.

The balanced response is therefore sensitive to the spa-
tial distribution of the wave drag, and this distribution
is another factor that should be specified in more com-
plete GWD parameterizations. Figure 19 illustrates

FIG. 19. (a),(b) Possible spatial distributions of GWD forcing
producing identical values of ��0u�w�� and �u�, in which the PV
generation, and therefore the strength of the regions of local ac-
celeration and deceleration, are much stronger in (b) than in (a).
The arrows indicate (Fx, Fy) vectors with their tails terminating at
the centers of five hypothetical grid points located along a poorly
resolved isolated ridge.

FIG. 18. Same as in Fig. 8, but for the u� obtained using a perfect GWD parameterization. The rectangle indicates
the extent of the 20-gridpoint region over which the drag force was applied.
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how different spatial distributions of the drag can gen-
erate very different PV anomalies while preserving the
same domain-averaged drag. Rather than attempt to
estimate the spatial distribution of the drag it may be
possible to directly parameterize the generation of PV
anomalies, perhaps in connection with an estimate of
the Bernoulli-function deficit in the lee of the terrain
(Schär and Durran 1997). The formulation of such pa-
rameterizations are, however, beyond the scope of this
paper.

9. Summary and conclusions

We have examined the impact of transient mountain
waves on the momentum and potential vorticity fields
in a barotropic, horizontally periodic large-scale flow.
Although the strongest features and most important
impacts occurred when the mountain was high enough
to create breaking waves during almost the entire simu-
lation, even mountains too small to force any wave
breaking exerted some influence on the large-scale
flow. In the small-amplitude (h � 250 m) case, this
influence appears to arise from transients in our initial
value problem. The time-averaged momentum flux car-
ried through the upper boundary by mountain waves
did not come completely into balance with the time-
averaged pressure drag during either of the first two
50-h cycles. As a consequence the domain-averaged ab-
solute momentum decreased during each cycle of the
large-scale flow, although considerably less absolute
momentum was lost during the second cycle. In addi-
tion, a region of warm air blows off the mountain when
the flow starts to accelerate, and the resulting patch of
warm air at the lower boundary appears to induce a
cyclonic circulation over the mountain, thereby produc-
ing an asymmetric response in which the zonally aver-
aged u� strengthens south of the ridge and weakens to
the north.

In the case with a 1.5-km-high mountain, wave break-
ing occurred throughout most of the simulation and
significantly reduced the zonally averaged momentum
in a region whose north–south extent was roughly 3
times that of the mountain itself. This central zone of
flow deceleration was flanked by zones of weaker
mean-flow acceleration farther to the north and south.
The differences in the zonally averaged u� field were
consistent with the differences in the zonally averaged
Ertel potential vorticity field q�.

Except for gravity wave signals near the mountain,
the three-dimensional structure of u� was also in ap-
proximate geostrophic balance with q�. This was veri-
fied by inverting the PV field under the assumption of
geostrophic balance. At the end of the cycle (t � 50 h)

near the level of strongest wave breaking (z � 3 km)
both u� and u�b exhibited similar patterns, with flow
deceleration in excess of �5 m s�1 near the exit of the
(initially 20 m s�1) barotropic jet. Regions of accelera-
tion in excess of 2 m s�1 were also present north and
south of the jet exit region.

Piecewise PV inversion verified that these u� pertur-
bations were associated with a pair of positive and
negative PV anomalies generated on the northern and
southern flanks of the mountain between hours 25 and
30, which was the period of deepest and most intense
wave breaking. After generation, these PV anomalies
were advected well downstream of the mountain by the
large-scale flow.

Consistent with the fact that the domain integral of
the geostrophic velocities is 0 over the periodic domain,
and that u� is well approximated by u�b throughout most
of the domain, �u�� was much smaller than the extrema
in u� itself. As a consequence, gravity wave–drag pa-
rameterizations that focus on estimating changes in the
mean flow associated with the vertical divergence of
��0u�w�� may fail to properly capture the strength and
structure of the large-scale response. This was con-
firmed by a simulation in which the mountain was re-
moved but the correct z–t dependence of ��0u�w�� and
��0��w�� was imposed over the region previously occu-
pied by the mountain. Although this “perfect” GWD
parameterization yielded the correct values for �u��, it
underestimated the strength of the extrema in large-
scale u� field. The problems with the perfect GWD
simulation suggest that future gravity wave–drag pa-
rameterization schemes should consider PV-generation
properties in addition to global momentum budgets.
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