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ABSTRACT

A parameter widely used to predict topographic flow blocking is the nondimensional mountain height or,
synonymously, the inverse Froude number. Predictions using this parameter are based on the morphology
of flows with uniform upstream static stability and wind speed, which rarely occur in the real world. The
appropriateness of applying this theory in the presence of nontrivial background stability is therefore
investigated using a numerical model. Two methods were considered to estimate the low-level stability,
averaging the Brunt—Viisiléd frequency below the crest and using the bulk change in 6 between the ground
and crest level.

No single best method emerged for estimating the upstream static stability and thereby mapping the
simulations with inversions onto the set of solutions with constant stratification. Instead, the best method
depended on the application at hand. To predict the onset of flow stagnation, averaging the low-level
stability worked best, while to predict low-level flow diversion the bulk estimate of low-level stability was
most appropriate. These results are consistent across a range of inversion thicknesses and strengths. In
addition, it is shown that variations in static stability above the mountain crest have little impact on flow
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blocking.

1. Introduction

The ability to determine if flow impinging a moun-
tain freely rises over the mountain or is blocked and
deviates around the mountain is of great practical im-
portance in regions of complex terrain. In addition to
the impact on pollution dispersion, barrier and flank
jets in the vicinity of the massif are also associated with
blocked flow (e.g., Marwitz 1983; Georgelin and Rich-
ard 1996). The transition from flow over the crest to
blocked flow may also reduce the amplitude of lee
waves generated by the massif, which in turn may re-
duce the wave drag by reducing the height of the to-
pography that the unblocked portion of the flow en-
counters. Stagnant air generated by blocked flow may
also absorb downward-propagating trapped lee waves,
which leads to lee-wave decay (Smith et al. 2002). In
addition, ridge-parallel variations in the blocked flow
can lead to increased precipitation on the windward
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side by enhancing low-level convergence (Rotunno and
Ferretti 2001).

A relatively simple theory introduced by Smith
(1988) for circular mountains and extended by Smith
(1989) to include elliptical mountains with varying hori-
zontal aspect ratio, B = b/a, estimates the conditions
under which blocking occurs using linear theory for air-
flow over an isolated mountain in which both the cross-
mountain wind speed U and Brunt-Viiséld frequency
N are constant upstream. We refer to this as the con-
stant U and stratification (CUS) theory. Neglecting Co-
riolis forces and assuming the motions are incompress-
ible, hydrostatic, and steady, one may show that the
flow is completely determined by two parameters: 8
and € = Nh,/U, the mountain height normalized by a
scale for the vertical wavelength of a linear 2D hydro-
static mountain wave. The parameter € has been re-
ferred to as the inverse Froude number since it is the
ratio of a wave speed to the flow speed; however, more
appropriately, it can be thought of as describing the
nonlinearity of the flow since the perturbation u in the
linear limit is proportional to Nk,. Smith (1989) found
that, as e increases, stagnation in the fluid first occurs
on the windward slope for mountains elongated in the
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direction of the flow (B < 1) and occurs first above the
lee slope in the form of wave breaking for mountains
elongated in the cross-flow direction (8 > 1). Numeri-
cal studies by Smolarkiewicz and Rotunno (1990), Olaf-
sson and Bougeault (1996), and Bauer et al. (2000) have
confirmed the general shape of Smith’s curve for stag-
nation.

In addition to providing insight into the dynamics of
flow blocking, the simplicity of the CUS theory pro-
vides an attractive method to diagnose actual atmo-
spheric states as either blocked or unblocked. The
theory is, however, directly applicable only to very ide-
alized atmospheric structures, which are often quite dif-
ferent from those observed in actual atmospheric
events. To employ the CUS theory, the actual atmo-
spheric structure must be simplified by estimating an
effective constant cross-mountain wind speed U and by
approximating the actual stability profile as constant
with height. Two methods of approximating the con-
stant static stability have appeared frequently in the
literature. In one method, the Brunt—Viisilé frequency
is averaged between the ground and some height aloft
to yield a constant N (e.g., Mass and Ferber 1990; Schu-
macher et al. 1996; Bénech et al. 1998; Medina and
Houze 2003; Jiang et al. 2005). We refer to this as the
averaging method. In the other method the total
change of the potential temperature between the
ground and some level aloft is used to define N (e.g.,
Manins and Sawford 1982; Chen and Smith 1987; Span-
gler 1987; Overland and Bond 1995; Kalthoff et al.
2002). We refer to this as the bulk method. The goal of
this paper is to evaluate how well the CUS theory pre-
dicts blocked flow when such estimates are used.

Ideally one would like a simple theory for upstream
blocking that could be accurately applied to finite-
amplitude situations with arbitrary vertical profiles of
wind speed and stability, but no such theory currently
exists. Therefore, we will test the CUS model on a more
restricted class of problems in which the velocity of the
undisturbed cross-mountain flow is uniform, but the
static stability profile contains significant variations in
the form of a near-mountaintop stable layer capping a
weakly stratified layer near the ground. Typical deep
tropospheric values for the static stability will be speci-
fied above the inversion. This type of static stability
profile is chosen for two reasons. First, this structure
represents a maximum realistic perturbation about the
constant-N profiles assumed in CUS theory; the perfor-
mance of both the averaging and bulk methods improve
as the variations in the low-level stability become more
gradual, so cases involving elevated inversions provide
the most discriminating test. Second, such inversions
are present in many important atmospheric applica-
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tions; situations in which a weakly stratified layer
capped by a near-mountaintop stable layer impinged on
a mountain barrier have been observed in the Rocky
Mountains (Brinkmann 1974), the Sierras (Marwitz
1983), and the Alps (Bousquet and Smull 2003). In ad-
dition, upstream blocking and lee vortex formation pro-
duced by mountainous islands often occurs when strong
inversions capping a layer of weak static stability are
present below mountaintop level (Schir and Smith
1993).

In section 2, we begin by describing the strategies for
approximating the actual static stability profile to ob-
tain the parameters required for application of the CUS
theory. The numerical model is also described in sec-
tion 2. Section 3 is devoted to examining the morpho-
logical differences between cases with and without in-
versions. In section 4 we consider two ways to charac-
terize the degree of blocked flow: the minimum wind
speed on the windward slope and the percent of mass
initially upstream of the mountain that deviates later-
ally around the mountain. We also examine whether
the bulk method or the averaging method is better
suited to estimate the low-level stability. The sensitivity
of our results to the stability above mountain top is
investigated in section 5. Finally, in section 6 we present
our conclusions.

2. Experimental setup

a. Estimating soundings

To apply the CUS theory to a sounding with nonuni-
form Brunt-Viisila frequency, some method to esti-
mate the static stability must be employed. We consider
two such methods: an average stability estimate and a
bulk stability estimate. In the averaging method the
low-level stability is estimated as
ho

1
N,y =—

- dz . 1
o |, N(z) dz 1)

In the bulk method the total change of 6 between the
ground and A, is used to characterize the stability,

8 Gho = boo

NB B 000 h 0 ’

)
where 6, is the reference potential temperature at the
ground and 6, is the potential temperature at /. This
is equivalent to averaging N> between 0 and h, and
taking the square root.

b. Upstream soundings

All soundings contain an inversion at or below the
level of the mountain crest. Figure 1 shows the 6 profile
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F1G. 1. Upstream soundings of 6. Solid line indicates the actual
sounding for the (a) below-mountaintop inversion and (b) moun-
tain-top inversion for the case 4, = 1000 m. The dashed and dash—
dot lines are the 6 profiles obtained with the bulk and averaging
methods of the stability below the level of the mountain top.

of two such soundings. In this first set of soundings, the
inversions will be described by the position of their tops
relative to the top of the mountain. The layer is either
“below mountain top” (inversion centered at % h,, Fig.
1a) or “at the “mountain top” (inversion centered at 7
hy; Fig. 1b). The stability is constant in all three layers
and independent of A, Like the inversion height, the
inversion thickness in our first set of experiments also
scales with h, and is Y4 h,. This scaling minimizes the
number of control parameters by ensuring that N, and
Nj are independent of /. The Brunt—Viisalé frequen-
cies above and below the inversion are N, = 0.010 s !
and N, = 0.002 s~ ', respectively. Apparent in Fig. 1 is
that vertical profiles with constant N, underestimate
the Brunt—Viisilad frequency aloft, whereas those with
constant Ny overestimate it. To minimize the magni-
tude of the deviation of N, and Ny from the reference
profile the Brunt—Viiséld frequency within the inver-
sion is set to N; = 0.020 s~ ! for the below-mountaintop
inversion and N, = 0.025 s™' for the mountaintop in-
version.

A second set of soundings are also considered in
which the height of the center of the inversion is held
fixed while its thickness and the mountain height are
varied. The 6 profiles, as well as the mountain heights
for these simulations, are shown in Fig. 2. Three inver-
sion thicknesses are considered: 125, 250, and 500 m,
with stabilities of N, = 0.035s™%, N, = 0.025 s !, and
N; = 0.017 s~ !, respectively. These stabilities are cho-

Fi1G. 2. Upstream soundings of 6 for the second set of soundings
considered. The middle of the inversion is fixed at (a) 600 m, (b)
1000 m, and (c) 1400 m. Three inversion thickness are considered
125, 250, and 500 m. The four mountain heights for each experi-
ment are also shown.

sen so that the increase in the potential temperature
across the inversion is identical in all cases. These ad-
ditional soundings provide further test for both the av-
eraging and bulk methods.

¢. Numerical model

No analytic solution exists for the finite-amplitude
flow of a constant N and U atmosphere around a 3D
mountain; therefore, we must turn to a numerical
model to evaluate the flow behavior. We also use the
numerical model to simulate the cases with inversions
in the upstream flow. The numerical model follows
Durran and Klemp (1983) and Epifanio and Durran
(2001). The model is based on the inviscid, three-
dimensional, nonrotating, compressible Boussinesq
equations of motion. It is fully nonlinear, nonhydro-
static and employs a free-slip lower boundary. The first-
order closure scheme of Lilly (1962) is used to param-
eterize subgrid-scale turbulence. At the top boundary a
linear radiation condition based on Klemp and Durran
(1983) and Bougeault (1983) and modified by Durran
(1999) for local evaluation is used. To prevent unphysi-
cal maxima and minima from developing in the 6 field
near the edges of the inversion a flux-limited advection
scheme (LeVeque 1996) is used to advect 0 in cases
with inversions. A more economical centered fourth-
order advection scheme is used in all of the cases with
constant upstream stability.

The topography used in the model is an elongated
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TABLE 1. Values of h,, inversion heights, and inversion thick-
nesses for each value of 8 used in this study.

Inversion Inversion
B thickness (m) height (km) h, (km)
1 Ya hy % hy 14,1.6,1.8,2.0
1 Ya hy s hy 1.8,2.0,2.2,2.4
2,4 Ya hy 7 hy 0.8,1.0,1.2,14
2,4 Va hy s hy 1.0,12,14,1.6
2 125, 250, 500 0.6 0.8,0.9, 1.0, 1.1
2 125, 250, 500 1.0 1.1,12,13,14
2 125, 250, 500 1.4 1.6,1.7,1.8,1.9

ridge with a uniform-height center section, used by Epi-
fanio and Durran (2001), defined as

h .
1—2 [1+ cos(mr)]!, if r=1

h(x, y) = (©)

0, otherwise,

where

(B—1a

B (o
(&)

2
} , if |y[>(B—1a
otherwise.

)
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The different mountain heights, inversion heights,
and inversion thicknesses are summarized in Table 1.
The undisturbed upstream wind speedis U = 10 m s~ .
The flow is in the hydrostatic limit because a is chosen
such that N,a/U = 10 where N, is the stability aloft. To
limit spurious gravity waves the model is initiated by
gradually increasing u from rest to U over a time inter-
val —4 = Ua/t = 0. We run the model until Ut/a = 25,
at which time the upstream flow features are nearly in
steady state.

The three nested grids shown in Fig. 3 are used in all
simulations to make the integration more computation-
ally efficient. The location of the upper-right and lower-
left corners of each nest relative to the mountain center,
located at the origin, are also shown. The largest nest
extends 36a in each direction from the mountain center.
The second finest mesh extends —12a upstream and 18a
downstream of the mountain center. The lateral edges
of the second finest mesh are *15a from the mountain
center. The finest mesh extends —5a upstream and 15a
downstream with the lateral edges lying *7a from the
mountain center. The horizontal grid spacing is A =
0.1a on the finest mesh and increases by a factor of 3 for
each larger mesh. The vertical grid spacing is Az
hy/32 for z < 3 h, and then stretches to Az = U/(4Ny)).
This ensures that the inversion will be well resolved
with at least eight grid points while allowing the inte-

(364, 36a)

0.9a

A =

(18a, 15a)

0.3a

(15a, 7a)

A =
A =0.1a

0
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v b by by by b b b by by by g Loy
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FIG. 3. Location and size of the three nested grids. The values at the upper-right and
lower-left corners are distances from the corner to mountain center.
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gration to be computationally efficient. The top bound-
ary is
99U
“ToaN, ™
To not violate the CFL condition the large time step on
the finest mesh is Az = 0.025 a/U and increases by a
factor of 3 on each larger mesh.

3. Flow morphology with varying upstream
soundings

In this section the qualitative behavior of the solution
with an upstream inversion is compared to the corre-
sponding solutions from CUS theory obtained using
both averaging and bulk methods.

a. Upstream structure

Figure 4a shows the u component of velocity and 6
contours in an x—z cross section along the centerline of
the mountain at a nondimensional time of Ut/a = 25 for
a simulation in which B = 4, h, = 1400 m, and the
upstream sounding is the below-mountaintop inversion
profile shown in Fig. 1a. Note that, due to upstream
influence, the inversion has been displaced about 300 m
upward at the left edge of the figure. Figure 4a shows
that upstream of x = —1.9a the flow field below the
inversion is relatively independent of z. Downstream of
x = —1.9a a region of reversed flow extends horizon-
tally to x = —0.9a where it intersects the mountain.
Figure 5a shows the x—y distribution of the u compo-
nent of surface wind speed for the same below-
mountaintop inversion case shown in Fig. 4a. The re-
gion of reversed flow is marked by the heavy white
contour and runs laterally along the mountain slope to
y = *3.2a which is slightly beyond the uniform-height
section of the ridge.

Figures 4b and 5b show numerical simulations for a
case identical to that in Figs. 4a and 5a except that the
upstream static stability profile is constant with the 6
profile given by the averaging method shown (dash-
dotted line in Fig. 1a). In this case the nonlinearity
parameter is

Naho
€q = U

=1.14.

Note that the flow reverses further upstream than in the
below-mountaintop inversion case and there is more
vertical wind shear below z = 1 km.

A third simulation, identical to the first two except
that the upstream thermodynamic profile is that given
by the bulk method (dashed line in Fig. 1a), is shown in
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FIG. 4. The u component of the wind along the centerline y =
0, shown in shading and white contours at Utla = 25 for a h, =
1400 m, B = 4 mountain and an upstream wind speed of U = 10
m s~ '. The contour interval for u is 2 m s~ ! with the zero contour
drawn heavy; 6 contours are shown in black with contour interval
2 K. The solution for the (a) below-mountaintop inversion and
solutions for corresponding constant-N soundings with stability
obtained by (b) averaging the low-level stability and (c) making a
bulk-method estimate of low-level stability.

Figs. 4c and 5c. The nonlinearity parameter for this
simulation,
Ngh
€5 = % = 1.66,

is greater than that obtained using the averaging
method. Apparent in the bulk method solution is that,
along the centerline, the region of reversed flow is de-
tached from the mountain surface (Fig. 4c). Inspection
of the surface u field (Fig. 5c) shows that the reversed
flow only extends to the surface away from the center-
line. In this simulation the extent of the region of re-
versed flow at the surface fluctuates slowly with time.



JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 65

24
22
20
18
16
14

F1G. 5. The u component of the wind at the surface shown in shading and white contours at Ut/a = 25 for a h, = 1400 m, B = 4
mountain with upstream wind speed of U = 10 m s~ . The contour interval is 2 m s~ ' and the zero contour is indicated by a heavy white
line. The v component is shown in black contours with a 2 ms™! interval, the zero contour omitted. The case for the (a) below-
mountaintop upstream inversion and corresponding constant-N soundings obtained by (b) averaging and (c) making a bulk estimate

of the upstream stability.

Also plotted in Fig. 5 is the v component of surface
wind in black contours. The magnitude of the v com-
ponent exceeds 2 ms~ ! upstream of x = —5a in both
the below-mountaintop inversion and bulk-method-
estimated cases while the 2 m s~ ' contour only extends
upstream to x = —4a in the averaging case. This up-
stream extension of the cross-stream wind component
acts to divert flow laterally around the mountain, as will
be examined in more detail in the next section. Overall,
the simulation using the averaging method better re-
produces the flow structure in the elevated inversion
simulation throughout the blocked region upstream of
the mountain.

b. Leeside structure

Figures 4 and 5 also show significant differences
downstream of the crest between the three cases. The
averaging method produces stronger downslope winds
than those produced by the original sounding with an
upstream inversion, whereas the downslope winds gen-
erated in the bulk-estimate case are much weaker. The
differences in the leeside structure are even more pro-
nounced for flow over a slightly higher, 1600-m-high
mountain. Figure 6 shows the vertical vorticity and
horizontal wind vectors at the surface in the lee of both
the B = 1 and 4 mountains. Figures 6a and 6d show the
reference solution when a mountaintop inversion is
present in the upstream 6 profile, clearly the wake re-
gion for the B = 4, 1600-m mountain is much larger

than the B = 1 case; however, the strength of the ver-
tical vorticity is similar for both. For both mountain
shapes, the wake structure in the solution with the bulk
method estimated sounding (Figs. 6¢ and 6f) resembles
the mountaintop inversion case much better than that
for the averaging method (Figs. 6b and 6e). Indeed,
there is only a very weak wake in the averaging-method
solutions. The bulk method leads to a stronger wake
because Nz exceeds N, and thereby maps the flow with
the upstream inversion to a constant-stability flow with
larger nonlinear parameter (eg = 1.98 in comparison to
€y = 1.22).

4. Parameter space mappings

We now turn our attention from a few representative
cases to the behavior over a wider range of parameter
space. As discussed earlier, the CUS model is described
by two parameters: €, the mountain height scaled by the
vertical wavelength of a linear hydrostatic mountain
wave, and B, the ratio of cross-stream to along-stream
mountain scales.

a. Windward flow deceleration

1) MINIMUM WIND, IN ACTUAL CUS CONDITIONS

Smith and Grgnds (1993) determined the minimum
surface wind speed on the windward slope as a function
of € in series of nonlinear numerical simulations but,
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F1G. 6. The solution for uniform flow impinging on an %, = 1600-m mountain at Ut/a = 25 for a (a)—(c) B = 1 mountain and (d)—(f)
B = 4 mountain. Solutions are (a) and (d) for the mountain top inversion, (b) and (e) for constant upstream stability obtained by the
averaging method, and (c) and (f) for constant upstream stability obtained by the bulk method. Contours show the surface vertical

vorticity with a contour interval of 0.002 s~

tively). Horizontal wind vectors at the surface are also shown.

since their primary focus was on the flow field prior to
wave breaking, the results do not extend to the large
values of e required in this study. Figure 7 shows our
estimate of the normalized minimum surface wind
speed on the windward slope «,,/U as a function of e for
B =1, 2, and 4. The data in Fig. 7 were obtained from
numerical solutions in which /i, was systematically in-
creased while N was set to one of four possible values.
The four different values of N used in these experi-
ments are the pairs N, and Ny, calculated from (1) and
(2) for the below-mountaintop inversion and mountain-
top inversion soundings (see Fig. 1). The range of e for
an individual family of simulations with identical values
of N and different mountain heights overlaps the range
of e for other families so that the extent to which all the
results for a given mountain shape collapse onto the
same curve is an empirical measure of the universality
of our result. As apparent in Fig. 7, all simulation re-
sults for a given B are closely fit by a single curve,
indicating that similar values of €, with different values

, no zero contour (solid and dashed lines represent positive and negative values, respec-
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F1G. 7. Minimum windward-side u velocity with constant up-
stream stability at a nondimensional time of Ut/a = 25 for flow
overa (a) B =1, (b) B =2, and (c) B = 4 mountain. Filled points
indicated reversed flow. Also plotted is the fifth-order polynomial
that fits the data in a least squares sense.
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Fi1G. 8. Minimum u component of wind on the upstream side of
the ridge as a function of € at Ut/a = 25. The curves are for the
constant-stability upstream sounding (dashed), the upstream be-
low-mountaintop inversion with the averaging-method estimate
of stability (downward triangles), and the upstream below-
mountaintop inversion with the bulk-method estimate of stability
(upward triangles) for a (a) B = 1, (b) B = 2, and (c) B = 4
mountain. Filled triangles indicate cases for which the flow re-
verses on the windward slope.

of N and h,, give similar results. The small degree of
scatter about the best-fit curve is primarily due to a
slight nonsteadiness in the upstream flow at Ut/a = 25,
which was manifest as a small oscillation in the strength
of the minimum wind. The phase of this oscillation var-
ied among the various simulations, leading to a small
amount of scatter about the best-fit curves. The
strength of the oscillations, and the degree of scatter,
increase with S.

2) APPLYING THE CUS MODEL TO CASES WITH
INVERSIONS

The minimum wind speed on the windward slope
found in the CUS theory (Fig. 7) is compared with the
minimum wind speed from the below-mountaintop in-
version and mountaintop inversion solutions in Figs. 8
and 9, respectively. Estimates of € ~ €, using (1) are
depicted with downward-pointing triangles, whereas es-
timates € ~ ey using (2) are indicated with upward-
pointing triangles. Best-fit third-order least squares
polynomials are also plotted for the €, and eg datasets.

If either parameter space (€4, B) or (eg, B) perfectly
mapped the dependence of u,,/U as a function of
mountain height onto the predictions of CUS theory,
then the data points for that mapping should coincide
with the dashed curves in Figs. 8 and 9. Although nei-
ther approach is perfect, the averaging method clearly

0.5

: ~
ol - - ij\
= =Constant Stability

=4 Bulk Estimate
-0.5 =%~ Average Estimate

. .
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.6

FI1G. 9. As in Fig. 8 except for the mountaintop inversion.

works better than the bulk method. The bulk-method
estimate of the stability, Ny, is larger than the N, ob-
tained using the averaging method and, as conse-
quence, the curves plotted using eg lie to the right of
those plotted using €,.

The averaging method works best when 8 =2 or B =
4 and the inversion is at mountaintop level. For ex-
ample, when B = 4, iy, = 1200 m, and the inversion is at
mountaintop level, the minimum wind speed on the
upstream slope is approximately 0.2U. The averaging
method of e, for this case is about 0.9, whereas the
bulk-method estimate is roughly € = 1.5. The mini-
mum wind speed in a true CUS solution with € = 0.9,
corresponding to the averaged value, is about 0.2U,
agreeing with the actual numerical result for the case
with the elevated inversion. On the other hand, when
€ = 1.5, corresponding to the bulk method, the mini-
mum wind speed in a true CUS solution is about
—0.1U, which is significantly decelerated from the
winds that actually occur in the elevated inversion case.

The averaging and bulk estimates are further tested
by considering their performance using inversions of
different thicknesses and different elevations relative to
the height of the peak Figs. 10a, 10b, and 10c show the
minimum wind speed solution for a B = 2 mountain
when the inversion thickness is fixed at 125, 250, and
500 m, respectively. The dashed lines in Fig. 10 repre-
sent an inversion centered at 600 m (Fig. 2a), the solid
lines are for an inversion centered at 1000 m (Fig. 2b),
and the dash-dot lines indicate a 1400-m-high inversion
(Fig. 2¢). The bulk estimate, € ~ €5, shows a large sen-
sitivity to the height and thickness of the inversion,
whereas the values of € ~ €, obtained with the aver-
aging method vary little and remain close to the solu-
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F1G. 10. Minimum u# component of wind on the upstream side of
the B = 2 ridge as a function of € at Ut/a = 25. The inversion
thickness is (a) 125 m, (b) 250 m, and (c) 500 m. The curves
represent the solution for the constant-stability upstream sound-
ing (heavy dashed), an inversion centered at 600 m (thin dashed),
an inversion centered at 1000 m (thin solid), and an inversion
centered at 1400 m (thin dash-dot). The upward- (downward-)
pointing triangles are the actual data points obtained using the
averaging (bulk) estimate of the stability.

tion from the CUS theory. Not surprisingly, the aver-
aging method performs worst when the inversion is
thinnest (125 m, Fig. 2a). When the same increase in 6
is spread across the wider inversions (Figs. 2b and 2c),
the profile of N is more nearly constant with height, and
the averaging method gives better results. Interestingly,
the bulk method only begins to give adequate results in
the case with the thickest, lowest inversion (the thickest
inversion in the profiles in Fig. 2a). In summary, the
averaging method gives the best estimate of the mini-
mum wind speed on the upstream slope.

3) STAGNATION ON THE WINDWARD SLOPE

Related to the minimum windward-side wind speed
is the presence of flow reversal on the windward slope.
Windward side stagnation is synonymous with an isen-
tropic surface being pierced by the mountain surface
(Smith 1988). The critical parameter & at which stagna-
tion first occurs is given by the roots of the curves
shown in Fig. 7.

Plotted in Fig. 11 is the relative error between the
critical € for stagnation in the constant-stability cases
and the averaging or bulk estimates of the critical esti-
mate of € in the inversion cases. The downward-
pointing triangles and upward-pointing triangles in Fig.
11 are

€, — € ép —

€
ASA: ” ) ASB: e 5
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FIG. 11. The relative difference between the critical e for stag-
nation in the constant-stability cases and the critical values of e
from the averaging (downward-pointing triangles) or bulk (up-
ward-pointing triangles) estimated from a sounding with an up-
stream inversion: (a) below-mountaintop inversion and (b) an
inversion at the mountain top.

respectively. Here €, and &z are the estimates of € at
stagnation using (1) and (2), respectively, to estimate
the low-level stability when there is an inversion and &
is the critical € at stagnation in the CUS theory.

Consistent with the previously discussed prediction
of the minimum wind speed, the averaging method
gives better predictions than the bulk method for the
critical e for stagnation. Note that the relative errors for
both the averaging and bulk methods are relatively in-
dependent of B, suggesting that the dependence of the
stagnation point on 3 in the CUS theory is unaffected
by the presence of an inversion.

b. Low-level flow diversion

While the flow deceleration and development of re-
versed flow on the windward slope is of interest in its
own right, in many practical applications estimates of
Nhy/U are used to assess the extent to which the low-
level flow is directed around, instead of over, an ob-
stacle (e.g., Chen and Smith 1987). In the following we
will asses the extent to which the CUS theory can be
used to estimate the degree of flow diversion when in-
versions are present in the upstream flow. The low-
level flow diversion is calculated using the control vol-
ume shown in Fig. 12. The volume extends from x = 0
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FI1G. 12. Schematic of the control volume for the low-level flow diversion calculation.

at the ridge crest to x = —12qa at the upstream inflow
boundary (and uses data on the second grid to extend
the volume well upstream of the mountain). The lateral
sides of the volume extend upstream from the edge of
the uniform-height section of the ridge crest at y =
+(B — 1)a. The top of the control volume is a level
surface located at z = hy. If ¢, dg, ¢,, and ¢ are the
integrated mass fluxes over each surface shown in Fig.
12, then mass conservation requires

by = (bp — dr) + &7

Assuming flow through the upstream face is the sole

source of mass into the volume (since it dominates the

mass entering the volume through any of the other

faces), the flow diversion may be defined as the ratio
¢ — dr

FD :¢—U. 5)

Since the uniform-ridge section of the f = 1 mountain
has zero width, this calculation was done only for B =
2 and 4.

1) FLOW DIVERSION WITH UNIFORM UPSTREAM
STABILITY

The flow diversion as a function of € for the true CUS
model is shown in Fig. 13 for the B = 2 and 4 moun-
tains. This estimate was constructed using the same
overlapping families of simulations that produced the
data for Fig. 7 and, as before, a “universal” least
squares fifth-order polynomial was fit to the data
points. Figure 13 shows that the resulting polynomials
fit the data very well for both the 8 = 2 and 4 mountains.

2) COMPARISON WITH THE INVERSION CASE

Figure 14 shows how the averaging and bulk esti-
mates of the flow diversion for the below-mountaintop

0.8
(@)
0.7
0.6
0.5

0.4

Flow Diversion

0.3

0.2

B=2

(b)

0.1
€

016 1 1.4 I ll.8 | 2:2

06 1 14 18 22
€

Fi1G. 13. Flow diversion for the (a) B = 2 and (b) B = 4 mountains when the stability is
constant upstream. The curve is the least squares best-fit fifth-order polynomial. Reversed
flow is indicated by filled data points while nonreversed flow is indicated by open data points.
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F1G. 14. Flow diversion around the mountain as a function of € at Ut/a = 25 fora B =2
mountain with the (a) below-mountaintop inversion and (b) mountaintop inversion and a
B = 4 (c) below-mountaintop inversion and (d) mountaintop inversion. The upwind- and
downward-pointing triangles indicate the low-level stability was estimated with the bulk and
averaging methods, respectively. The curve is the best-fit least squares fifth-order polynomial
of the data. The flow diversion for the CUS theory is shown with a dashed line for reference.

inversion and mountaintop inversion cases compare
with the e dependence of the true CUS solution. The
downward-pointing triangles indicate data points for
which the low-level stability was estimated using the
averaging method, while the upward-pointing triangles
indicate that the low-level stability was estimated using
the bulk method. Filled triangles indicate the presence
of reversed flow on the upwind slope. Each set of tri-
angles is connected by a solid curve representing the
least squares third-order polynomial fit of the data. The
CUS curves from Fig. 13 are also plotted as dashed lines
in Fig. 14 for reference.

As apparent in Fig. 14, the bulk method is a better
predictor of the low-level flow diversion. The bulk
method allows an especially good estimate of the flow
diversion in the below-mountaintop inversion simula-
tions. The degree to which the bulk method correctly
maps the flow diversion in solutions with elevated in-

versions onto the true CUS behavior decreases with
increasing e.

The averaging and bulk estimates were further tested
with the additional combination of soundings and
mountain heights indicated in Fig. 2 (i.e., the same
simulations used to construct the minimum wind speed
curves in Fig. 10). In these additional tests (not shown),
the bulk method gave the best prediction of low-level
flow diversion and showed little sensitivity to height
and thickness of the inversion, while the averaging
method gave poorer results.

Although the averaging method is superior to the
bulk method for estimating the minimum wind speed
from the constant stratification model, it is inferior for
the estimation of flow diversion. The superiority of the
bulk method is linked to the upstream distribution of
the y-component velocity perturbations. As discussed
in connection with Fig. 5, when constant wind speed



1046

and stability simulations are performed with N = N4, v
perturbations in excess of 2 ms~! stop at x = —4a,
whereas they extend well past the upstream boundary
of the fine mesh when either N = Ny or an elevated
inversion is present. Since the y component of the wind
controls the mass flux through the lateral boundaries of
the control volume, it is not surprising that the flow
diversion is better approximated by the bulk method.

5. Sensitivity to N aloft

To investigate the sensitivity of our solutions to
variations in stability aloft, a series of simulations were
conducted in which the Brunt-V4isild frequency above
the inversion was halved (N, = 0.005 s~!) and doubled
(Ny = 0.020 s~') from the value in the previously de-
scribed simulations (N, = 0.010 s ). This range of N is
much greater than the actual variation in the average N
throughout any deep layer in the earth’s middle and
upper troposphere. The stability within and below the
inversion was left unchanged and was identical to that
in the mountaintop inversion cases for the previously
investigated mountain heights of 4, = 1000, 1200, 1400,
and 1600 m. The B = 2 simulations were then repeated
using these higher and lower values of upper-level sta-
bility.

The variations in the low-level flow structure up-
stream of the mountain were generally quite insensitive
to these changes in the upper-level stability. This is
illustrated in Fig. 15, which shows a vertical cross sec-
tion along the centerline of the 1600-m mountain for
the three different values of N. In each case, the winds
are slightly reversed over a similar region above the
upper portion of the windward slope (inside the heavy
white contour). The upwind extent of the 2, 4, and 6
m s~ ! isotachs among the three cases is also remarkably
similar, although there is a slight increase in the size of
the region of reversed flow in the case with the weakest
stability aloft.

In contrast, much more significant sensitivities are
seen in the shooting flow on the downstream side of the
ridge; these appear to be related to changes in the wave
breaking regions aloft. The strength and downstream
extent of the wave breaking, and of the shooting flow,
decreases with decreasing stability aloft. Changes in the
stability aloft also influence the lee vortex structure
such that the extrema in the surface vertical vorticity
increase with increasing NV, along with the spatial com-
plexity of the wake geometry (not shown).

For a more quantitative evaluation of the influence
of Ny we return to the metrics previously used to de-
scribe flow blocking in section 4. The three curves in
Fig. 16a show the normalized minimum surface wind
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4

F1G. 15. The u component of the wind along the centerline y =
0, shown in shading and white contours at Ut/a = 25 for an h, =
1600 m, B = 2 mountain and an upstream wind speed of U = 10
m s~ ! with a mountaintop inversion. The contour interval for u is
2 m s~ ! with the zero contour drawn heavy; 6 contours are shown
in black with contour interval 2 K. The Brunt—Viisila frequency
above the inversion is (a) N = 0.005 s™!, (b) N = 0.010 s~ !, and
(c) N =0.020s7%.

speed on the windward slope (u,,/U) as a function of
mountain height for each of the three values of Ny,.
With the exception of the 1400-m mountain, the depen-
dence on N, is minimal, and therefore the sensitivity of
the results shown in Fig. 9b to upper-level stability is
also small.

Low-level flow diversion, defined by (5), is plotted as
a function of mountain height for the three different
values of Ny in Fig. 16b. Flow diversion shows little
dependence on the stability above the inversion, even
for the 1400-m-high mountain, for which the sensitivity
of the upstream flow deceleration to N, was greatest.
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Fi1G. 16. The (a) minimum windward-side «/U and (b) flow di-
version as a function of 4, for a = 2 mountain with a mountain-
top inversion and upstream wind speed of U = 10 m s~ '. The
stability above the inversion varies between N = 0.005 s~' (up-
ward triangles), N = 0.010 s~ (circles), and N = 0.020 s~ (down-
ward triangles).

As a consequence, the sensitivity of the flow diversion
results shown in Fig. 14b to N, is minimal.

6. Conclusions

When N and U are constant, a relatively simple pa-
rameter space controls the flow impinging upon an iso-
lated mountain. The CUS theory is not, however, di-
rectly applicable in the real world where actual atmo-
spheric conditions differ from the idealized model.
Nevertheless, the simplicity of its parameter space has
led many authors to apply results from CUS theory in
real-world situations to estimate the basic morphology
of the orographically modified flow. We have therefore
conducted a series of numerical simulations with up-
stream inversions to assess the applicability of the CUS
theory under more realistic conditions. The soundings
considered represent a maximum realistic low-level
perturbation to the uniform stability assumption in the
constant stratification theory and, as such, a stringent
but physically relevant test of each theory.

We considered two distinct indicators of low-level
blocking: the minimum wind speed on the windward
slope and the fraction of the incoming mass flux that
deviates laterally around the mountain. Our results in-
dicate that neither the averaging or the bulk method
provides a single best technique to estimate the low-
level stability for use with the constant-stratification
theory. On one hand, the averaging method yields a
value of e for which the CUS solution more closely
matches the upwind minimum wind speed of flows with
elevated inversions (and the bulk method gives a larger
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value of €, for which the CUS solution exhibits too
much flow deceleration). On the other hand, the value
of € obtained from the bulk method corresponds to a
CUS solution matching the degree of flow diversion in
the elevated inversion cases much better than the solu-
tion associated with the e obtained by averaging (and
the smaller value of e given by the averaging method
significantly underpredicts the mass actually deflected
around the mountain in the elevated inversion cases).
This suggests additional parameters must be considered
to properly understand flow blocking when low-level
variations in static stability are present upstream. How-
ever, one possible candidate, the stability above the
inversion, had only a small effect on the minimum
windward side wind speed and the flow diversion. In
the end, the optimal method chosen to predict flow
blocking depends on the desired application. To predict
the onset of flow reversal the averaging method is the
best method, but to predict low-level flow diversion the
bulk method is best.

We have only considered the applicability of the
CUS theory under variations in upstream static stabil-
ity. Additional factors that influence the potential for
flow blocking include surface friction, terrain shape, la-
tent heating, and vertical variations in the low-level
wind speed. The influence of variations in these param-
eters on the CUS theory remains unknown and is left
for future research.
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