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ABSTRACT

Thin cirrus clouds in the tropical tropopause layer (TTL) are warmed through the absorption of infrared

radiation. The response of the cloud and the surrounding atmosphere to this thermal forcing is investigated

through linear theory and nonlinear numerical simulation. Linear solutions for the circulations forced by a

fixed heat source representative of TTL cirrus clouds show ascent in the region of the heating, accompanied by

horizontal flow toward the heat source at the base of the heated layer and horizontal outflow at the top of

the layer. Gravity waves propagate positive temperature perturbations well beyond the lateral edges of the

heated region. Cool layers that also spread horizontally are produced immediately above and below the

heated region.

Numerical simulations with a cloud-resolving model allow the radiative heating to change in response to the

redistribution of the cloud by the evolving velocity field. The basic atmospheric response in the numerical

simulations is nevertheless similar to that generated by the fixed heat source. In the numerical simulations, the

advection of ice crystals by the radiatively forced velocity field also lofts the cloud, while horizontally

spreading its top and narrowing its base. Ice crystal sedimentation is neglected in these calculations, but it

appears that the radiatively induced upward vertical velocities are likely strong enough to maintain clouds

consisting of very small crystals (radii less than 4 mm) against sedimentation for many hours.

1. Introduction

Cirrus is ubiquitous in the tropical atmosphere, par-

ticularly in convective regions. Pfister et al. (2001) used

lidar data from the National Aeronautics and Space Ad-

ministration (NASA) DC-8 and back-trajectory analyses

to argue that tropical cirrus came from two different

sources, large-scale uplift and deep convection, and

had different textural properties depending on the

source. Comstock et al. (2002) used lidar and millimeter-

wavelength radar observations to compile a climatology

of cirrus clouds over Nauru in the equatorial Pacific.

They found that cirrus over Nauru divide into two cate-

gories based on altitude. The higher-altitude cirrus, above

15 km, were in the tropical tropopause layer (TTL) and

relatively featureless compared to the cirrus detected at

lower levels of 8 to 15 km.

Although its exact frequency of occurrence has been

difficult to determine, several observational studies (Wang

et al. 1996; Peter et al. 2003; Dessler et al. 2006; Liu 2007)

have established that thin TTL-level cirrus is common

in the tropics. Mace et al. (2009), for example, recently

analyzed satellite-based Cloud–Aerosol Lidar and In-

frared Pathfinder Satellite Observations (CALIPSO)

lidar data from December 2006 through June 2007 and

found that cirrus with cloud bases above 14 km occurred

between 20% and 30% of the time over many regions

in tropics. TTL cirrus were found to occur most fre-

quently just east of the date line, which was also east of

the region of most frequent deep convection and thicker

upper-tropospheric cirrus.
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The radiative heating of thin TTL cirrus has been

estimated as sufficient to produce temperature increases

of at least 2–3 K day21 (Jensen et al. 1996b; McFarquhar

et al. 2000; Comstock et al. 2002) and could potentially

exert a significant influence on the radiative balance of

the TTL. This heating has been widely appreciated as

having the potential either to warm and dissipate the

cloud or to induce upward motion (Jensen et al. 1996b).

If the heating does induce a persistent ascent of the

cirrus layer, these clouds may play an important role in

the transport of water vapor into the tropical strato-

sphere (Jensen et al. 1996a; Corti et al. 2006). The pos-

sible responses of thin TTL cirrus to radiative heating

and the possible role of cirrus in stratospheric dehy-

dration are similar to that first proposed for thicker cir-

rus directly generated in thunderstorm anvils (Danielsen

1982; Ackerman et al. 1988; Lilly 1988).

Despite its importance, few previous studies have fo-

cused on determining the dynamical response of thin

TTL cirrus to radiative heating. Perhaps the most thor-

ough investigation of the mesoscale dynamics of these

clouds was conducted by Boehm et al. (1999), who

simulated the evolution of a cirrus layer using a two-

dimensional mesoscale cloud model. They found the

cloud dissipated within several hours because of the

radiative heating, but by choosing an initial cloud that

spanned the full horizontally periodic domain, they elim-

inated possible cloud-scale circulations in which ascent

in the cloudy region is balanced by descent in the sur-

rounding clear air. A different approach was pursed by

Lilly (1988), who described the mesoscale lifting of a

cirrus anvil outflow plume using an analogy to stratified

flow around a rising plate. His characterization of the

resulting flow is similar in many ways to that obtained

via more rigorous analysis in this paper—although, as

will be described later, Lilly did not anticipate the extent

to which thermally generated gravity waves propagate

the disturbance laterally away from the cloud.

In the following we examine the cloud-scale circula-

tions that develop in response to the radiative heating of

thin cirrus. We begin, in section 2, by considering linear

analytic solutions describing the two-dimensional re-

sponse of a stratified atmosphere to a fixed heat source

similar in shape to a layer of thin TTL cirrus. These

solutions are then compared to numerical solutions from

a mesoscale cloud model in section 3. Section 4 contains

the conclusions.

2. Gravity waves forced by a fixed heat source

The response of a stably stratified Boussinesq fluid to

local heating has been previously studied in various con-

texts (Lin and Smith 1986; Nicholls et al. 1991; Pandya

et al. 1993). Here we modify the solution in Pandya et al.

(1993) to obtain expressions for the two-dimensional re-

sponse to localized heating in an unbounded x–z plane.

Coriolis forces are neglected both to allow the compu-

tation of an analytic solution and because our focus is on

motions in the deep tropics.

This two-dimensional framework is rigorously justi-

fied when the variations in all fields along the y coordi-

nate are negligible, which is probably not the case for

actual TTL cirrus. In comparison to the two-dimensional

problem, the three-dimensional disturbance generated

by IR heating in a roughly circular cloud will be quali-

tatively similar near the cloud itself but will decay more

rapidly away from the cloud edge and be much weaker at

very large distances from that center. Nevertheless, we

employ the two-dimensional framework to obtain a

concise analytic solution to the linearized problem and

to economically perform very high-resolution numerical

simulations.

a. Analytic solutions for the vertical velocity

The governing equations for quasi-hydrostatic flow,

linearized about a resting basic state in a two-dimensional

Boussinesq fluid, may be expressed as

›u

›t
1

›P

›x
5 0, (1)

›P

›z
� b 5 0, (2)

›u

›x
1

›w

›z
5 0, (3)

›b

›t
1 N2w 5 Q, (4)

where u is horizontal velocity, w is vertical velocity, P is

the Boussinesq pressure potential, and b is the buoy-

ancy. In an atmospheric context, it is most appropriate

to define P and b in terms of the Exner function pres-

sure P 5 (p/p
0
)R/cp and potential temperature u 5 T/P,

where p is pressure, p0 is a constant reference pressure,

and T is the sensible temperature. Then

P 5 c
p
u

0
(P�P) and b 5

g(u� u)

u
0

,

where overbars denote vertically varying basic-state ther-

modynamic fields in hydrostatic balance and u0 is a constant

reference value. In addition, N2 5 (g/u
0
)(du/dz) is the

square of the Brunt–Vaı̈sälä frequency, Q 5 (g _H)/(c
p
T

0
)

is the thermal forcing for buoyancy, _H is the rate of di-

abatic heating per unit mass, and T0 is a reference

temperature characteristic of the TTL.
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Note that if the system (1)–(4) is nondimensionalized

using the scales u 5 aUû, b 5 aBb̂, P 5 aPP̂, t 5

aT t̂, x 5 aX x̂, w 5 Wŵ, and z 5 Zẑ, the result is

independent of the constant a. Thus, if the vertical co-

ordinate is fixed while the horizontal and time coordi-

nates are stretched by the factor a, any solution in the

original coordinates may be mapped to a solution in

the stretched coordinates by increasing the magnitude of

the u, b, and P fields by a factor of a, while leaving the

amplitude of the w field unchanged.1

A heat source roughly representative of that which

might be produced in a cirrus cloud that is optically thin

in the IR is specified as

Q(x, z) 5 Q
0

a2

x2 1 a2

cos
pz

2H

� �
if jzj , H,

0 otherwise.

(
(5)

Here, 2H is the depth of the heating and a is the half-

width at half amplitude. In the following we set H 5

250 m and take a as either 20 or 100 km; these choices

yield a 500-m-thick cloud whose total width is roughly

100 or 500 km. The buoyancy forcing in the center of the

cloud is Q0 5 1.75 3 1026 m s23; choosing T0 5 193 K,

this value of Q0 corresponds to a sensible heating rate
_H/cp of 3.0 K day21, which approximates the 3.1 K day21

heating estimated for TTL cirrus by Comstock et al.

(2002) and matches the 3.0 K day21 recently determined

from data collected on a flight through TTL cirrus off

the east coast of Nicaragua by A. Bucholtz et al. (2009,

unpublished manuscript, hereafter BHM). The heating is

symmetric about x 5 0; the distribution of _H/cp in the

right half-plane is shown in Fig. 1. There are no initial

perturbations and the heating is turned on instanta-

neously at t 5 0.

Pandya et al. (1993) considered a situation relevant to

deep convection in which a relatively deep and narrow

region of heating is adjacent to a rigid lower boundary.

Using our notation, their solution satisfies w(x, 2H, t) 5 0.

When modeling TTL cirrus, it is more appropriate to

simply neglect the effects of the earth’s surface and com-

pute the circulation in an unbounded vertical plane.

Modifying the approach described in Pandya et al.

(1993) to account for this different lower boundary

condition, the vertical velocity forced by (5) becomes

w(x, z, t) 5
Q

0
ma

N3t
Re

l2

1 1 l2
(e�lm

. coshlm
,

�

1 l cosm
,

)

�
, (6)

where

l 5
gNt

m
, m

.
5 m max(jzj, H),

m
,

5 m min(jzj, H), (7)

in which

m 5
p

2H
, g 5

a 1 ix

a2 1 x2
.

Analytic solutions for u and b are not available; values

are obtained numerically by substituting the solution for

w into (3) or (4), respectively.

b. The evolving perturbation fields

The circulations that develop in response to this

heat source are shown in Fig. 2 for the case a 5 100 km,

N 5 0.016 s21 at times t 5 15 and 30 h. There is hori-

zontal inflow toward the origin for z , 0, upward motion

inside the heating region, and horizontal flow away from

the origin for z . 0. The perturbations, including po-

tential temperature perturbations u9 5 u� u(z), are

seen to spread laterally away from the region of heating.

Note in particular that warming occurs over a much

wider region than the width of the heat source itself.

Provided that the amplitude is sufficiently small, the

disturbances forced by heating in a stratified fluid are

linear gravity waves. The angle f between the vertical

coordinate and the rays along which gravity waves

propagate is given by v 5 N cosf, where v is the wave’s

frequency. For t . 0, the frequency of the thermal

forcing is steady and will therefore tend to force dis-

turbances for which f 5 908. Thus, except at the leading

edge of the disturbance, where the influence of the initial

FIG. 1. Sensible heating rate QT0 /g for the case a 5 100 km,

contoured at an interval of 0.5 K day21.

1 This result also generalizes to the 3D case, but not when Coriolis

forces are included.
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FIG. 2. Gravity wave response for the case a 5 100 km at t 5 (left) 15 and (right) 30 h. Contoured fields are (a),(b) w in mm s21, (c),(d)

u in m s21, and (e),(f) perturbation potential temperature in K. Positive values are shaded and contoured by solid lines; negative values are

contoured by dashed lines.
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transients is most pronounced, the signal propagates

almost horizontally away from the region of heating.

The propagation of the disturbance results not from

advection but rather from gravity wave dynamics. The

positive potential temperature perturbation expands

laterally beyond the region of significant diabatic heat-

ing due to adiabatic warming forced by subsidence, such

as that at x 5 300 km in Fig. 2a. Negative temperature

perturbations, which also expand horizontally, are sim-

ilarly generated by adiabatic cooling above and below

the heat source. The gravity wave phase speed for linear

waves is independent of the wave amplitude (and the

strength of the velocity perturbations). The gravity wave

phase speed for hydrostatic waves of half-wavelength

equal to the 2H depth of the heated region is 2NH/p,

which is 2.5 m s21 for the case shown in Fig. 2.2

Lilly (1988) used stratified flow around a rising flat

plate as a heuristic model for the mesoscale lifting of a

cirrus cloud. Many of the features of his schematic Fig. 8

are qualitatively captured by the solutions shown in

Fig. 2, including layers of horizontal inflow and outflow

at the bottom and top of the cloud and layers of adia-

batically cooled air just above and below the cloud. Lilly

did not, however, correctly depict the positive temper-

ature perturbations in the cirrus layer or their lateral

propagation well away from the cloud edge, and he also

did not anticipate that most of the horizontal inflow and

outflow is vertically confined to the layer containing the

cloud itself.

At any given point in the domain, the perturbations

gradually approach a steady state. The steady-state

vertical velocity field, which can be obtained either from

(4) or as the t / ‘ limit of (6), is

w
ss

(x, z) 5
Q(x, z)

N2

5
Q

0

N2

a2

x2 1 a2

cos
pz

2H

� �
if jzj , H,

0 otherwise.

8<
:

(8)

Using the preceding and the incompressible mass con-

tinuity Eq. (3), one can show that

u
ss

(x, z) 5
Q

0

N2

pa

2H

arctan
x

a

� �
sin(mz) if jzj , H,

0 otherwise.

(

(9)

The steady-state vertical velocity field has the same

shape as the heating, and its amplitude only depends on

the magnitude of the heating and the Brunt–Väisälä

frequency. The magnitude of the steady-state horizontal

velocity has the same dependence on Q0/N2 but is also

inversely proportional to its depth 2H. In addition, at

equivalent nondimensional horizontal distances x/a, uss

is proportional to the width of the cloud.

Figure 3 shows how w(0, 0, t) and T(0, 0, t) approach

steady state for the case shown in Fig. 2. From (6), the

vertical velocity at the origin is

w(0, 0, t) 5
Q

0

N2

l

1 1 l2
e�pl/2 1 l
� �

. (10)

FIG. 3. Solid lines show the approach to steady state of (a) vertical velocity w (mm s21) and (b) sensible tem-

perature perturbation T9 (K) as a function of time. Dashed lines are the steady-state solutions. The dashed–dotted

line in (b) shows the temperature perturbation that would result from a local temperature increase of 3.0 K day21.

2 The 20.35- and 1.75-K contours propagate at about this speed

(cf. Figs. 2e,f), although other contour lines in Fig. 2 translate at a

range of different speeds because the vertical structure of the dis-

turbance is not a single monochromatic wave and because the

disturbance is intensifying as well as simply propagating.
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As illustrated in Fig. 3a, the time required to approach

steady state is roughly 2 days. In reality, TTL cirrus form

gradually on a finite time scale and may never be subject

to transients as large as those in our initial value prob-

lem. Nevertheless for very wide clouds (on the order of

500 km, which corresponds to the choice a 5 100 km),

the steady-state approximation w 5 Q/N (Corti et al.

2006) may not be accurate over a significant fraction of

the cloud’s lifetime.

The steady-state temperature perturbation at the or-

igin T9ss(0, 0) can be computed from the buoyancy per-

turbation by integrating Eq. (4),

b
ss

(x, z) 5

ð‘

0

(Q�N2w) dt, (11)

and using (10) to produce

b
ss

(0, 0) 5
Q

0
am

N

ð‘

0

1

1 1 l2
1� le�pl/2
� �

dl ’ 2.15
Q

0
a

NH
.

(12)

Because the pressure perturbations are very small com-

pared to the mean hydrostatic pressure, T9 5 Pu9 5

(Pu0b)/g [ T0b/g, which using (12) yields a value of

T9ss(0, 0) 5 1.85 K (indicated by the horizontal dashed

line in Fig. 3b). As shown in Fig. 3b, the temperature

perturbation approaches steady state more slowly than

the velocity perturbation. It is also apparent in Fig. 3b

that after roughly 5 h the rate of increase in temperature

at the center of the heating region begins to deviate

significantly from that which would be realized if all

heating contributed to a local rise in temperature, the

difference between the solid curve and dotted–dashed

line in Fig. 3b being due to heat transport by gravity

waves. For example, 60 h of heating at a rate of

3.6 K day21 would, absent other factors, lead to a local

temperature increase of 9 K, whereas the actual tem-

perature increase over the same period is just under 2 K.

Lilly (1988) arrived at an expression for the steady-

state temperature perturbation [his Eq. (4.6)] having the

same functional dependence on the environmental pa-

rameters Q0, a, N, and H as that in (12), although he

estimated that a heating rate of about 21 K day21 would

produce only a 0.3 K steady-state temperature pertur-

bation.3 Compared to our results, Lilly obtains a much

weaker response from much stronger thermal forcing,

primarily because his 25-km-wide cloud is much smaller

than the 500-km-wide specimen considered in our ex-

ample. In addition, his cloud is thicker and is embedded

in a layer of weaker static stability. Finally, Lilly took the

constant of proportionality c as unity in his Eq. (4.6),

whereas the equivalent quantity evaluated from (12) is

roughly 3.

Let ts be the time scale required for the vertical ve-

locity to approach steady state at some fixed point within

the heating layer, (x, z) where jzj# H; this time scale can

be estimated as follows: Suppose � is a small parameter

(�� 1) such that

w(x, z, t
s
) 5 (1� �)w

ss
(x, z). (13)

The simplest expression for ts is obtained at the origin.

From (8), (10), and (13) we have

w(0, 0, t
s
) 5

Q
0

N2

l
s

1 1 l2
s

e�pl
s
/2 1 l

s

� �
5 (1� �)

Q
0

N2
,

(14)

where ls 5 Nts/ma. [Recall that l was given by (7).]

Assuming ts is sufficiently large that we can neglect

e�pls/2 compared with ls, then (14) implies ls ’ �21/2,

or

t
s
’

am

N�1/2
5

ap

2HN�1/2
. (15)

This result is consistent with the assumption that e�pls/2

can be neglected when � is sufficiently small.

Using similar reasoning and noting that for ts suf-

ficiently large

l3
s

1 1 l2
s

5
l

s

1/l2
s 1 1

’ l
s
� 1

l
s

,

one may show that the time scale required to approach

steady state elsewhere in the heating layer (jzj , H) is

t
s
(x, z) ’

m(a2 1 x2)1/2

N�1/2
5

p(a2 1 x2)1/2

2HN�1/2
. (16)

Thus, it takes longer to approach steady state if the heat

source is wider or shallower, or if the atmosphere is less

stable. According to (16), the farther the horizontal

distance to the center of the heat source (the larger jxj
is), the longer it takes to reach steady state. Out toward

the edge of the cloud at x 5 2a, the time scale to ap-

proach steady state is a factor of
ffiffiffi
5
p

longer than at the

origin.

3 Lilly gives values for potential temperature perturbations and

heating rates, which at the pressure altitude of TTL cirrus are

roughly twice the values for sensible temperature given here.
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c. The domain-integrated energy budget

The total energy budget (per unit mass) for the pertur-

bation fields satisfies

›

›t

u2

2
1

w2

2
1

b2

2N2

 !
1

›

›x
(Pu) 1

›

›z
(Pw) 5

Qb

N2
.

(17)

The first two terms in the time derivative are the

perturbation kinetic energy (KE); the last term is the

perturbation potential energy (PE) (Gill 1982, p. 139). If

(17) is integrated over a sufficiently large domain at any

finite time, the divergence of the energy flux ›xu 1 ›zw

is zero because the disturbance has not yet reached the

boundary. The integral of the terms in (17) over such

a domain, which will be denoted by h i, is shown as a

function of time in Fig. 4a. The slight difference between

the curves for the time-integrated domain-averaged

energy input and for hKEi 1 hPEi is due to the place-

ment of the boundaries of the domain for the budget

computations at a finite distance from the heat source.

(The integrals in Fig. 4 are computed over the domain

22000 # x # 2000 km, 22 # z # 2 km.) The largest

response to the heating appears in hPEi; hKEi is roughly

half the size of hPEi and, consistent with the very hy-

drostatic nature of the response, is dominated by con-

tributions from the horizontal velocity field.

The domain-integrated buoyancy field, along with

the other terms in (4) that make up the thermodynamic

energy budget, is plotted in Fig. 4b. Although potential

energy perturbations dominate the total energy budget,

as apparent in Fig. 4b, after about hour 20 most of

the heating produces vertical motions rather than ad-

ditional increases in hbi. Indeed, after hour 30, hbi starts

to decline.4 It may appear odd that the potential energy

associated with buoyancy accounts for the largest frac-

tion of the energy input (Fig. 4a) whereas hbi accounts for

only a small fraction of the total heating. The domain-

integrated buoyancy hbi remains much smaller than

hb2i because after the initial transient, negative buoy-

ancy perturbations develop above and below the heated

layer (Figs. 2e,f). These expanding regions of negative

buoyancy largely offset any tendency for the expanding

region of positive buoyancy within the heated layer to

increase hbi.

3. Numerical simulations of radiatively heated
TTL cirrus

The linear model presented in the preceding section

does not account for the changes in the shape of the

cloud that would be produced as ice crystals are trans-

ported by the velocity fields induced by the radiative

heating. To capture the feedback of the cloud-induced

circulation on the geometry of the cloud, we turn to a

numerical model. The numerical model used in this

study solves the nonhydrostatic governing equations in a

two-dimensional x–z plane.

FIG. 4. Terms making up the domain-integrated (a) energy budget and (b) thermodynamic budget plotted as a function of time for

the case a 5 100 km.

4 In the particular domain we use to compute hbi, it eventually

approaches a steady-state value of about 0.6 3 107 m3 s22.
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We focus on thin TTL cirrus, which, being detectable

by lidar but not mm radar, likely consist of very small

crystals (Comstock et al. 2002). The smallness of the

crystals led us to simplify the model by assuming cloud

ice has zero fall speed relative to the surrounding air.

Having neglected sedimentation, we also neglect other

cloud microphysical processes such as changes in crystal

radius due to deposition or sublimation, which in turn

eliminates the sensitivity of our results to the environ-

mental humidity. (We are in the process of removing

these limiting approximations by extending the model to

include a bin microphysical scheme with sedimentation

and explicit coupling between each ice crystal’s size and

its radiative properties.)

The model’s numerical formulation is similar to the two-

time-step compressible formulation presented in Durran

and Klemp (1983) except that an almost-monotonicity-

reserving positive definite advection scheme (Blossey and

Durran 2008) is used for the advection of the potential

temperature and moisture variables (which in the present

case reduce to just cloud ice). The other significant ad-

dition to the model is the radiation scheme, which is

described below.

a. Evaluating the radiative forcing

We do not include motions due to large-scale tropical

waves or to the mean atmospheric circulation in our

simulations. Consistent with our neglect of the large-

scale radiatively driven mean descent in the upper tro-

posphere and mean ascent in the lower stratosphere, we

also neglect the background radiative heating due to

atmospheric gases like water vapor, carbon dioxide, and

ozone. Our focus is solely on the absorption of radiation

by ice crystals.

Because TTL cirrus are optically thin in both the solar

and the infrared, multiple scattering has a minimal effect

on the net radiative absorption in the cloud layer and

will be neglected. Given that scattering is ignored, the

monochromatic transmittance in a plane-parallel atmo-

sphere can be approximated by

t
l

’ e�t
l
/ m, (18)

where tl is the optical depth of the layer at wavelength

l and m is the cosine of the effective zenith angle. Here

we will use m 5 ½. In the case of TTL cirrus the ab-

sorption of radiation by the ice particles dominates gas-

eous absorption, so this problem can be treated as a single

absorber case. This condition allows us to approximate the

broadband transmittance of the jth layer as

t
j
’ e�t

j
/ m, (19)

where t
j

5 s
a
NjDz is the effective broadband optical

depth in the jth layer, s
a

is the effective broadband ab-

sorption cross section, Nj is the ice number density in the

layer, and Dz is the depth of the layer. The broadband

upward and downward fluxes at the top and bottom of

the jth layer are calculated according to

F
j11/2

[ 5 F
j�1/2

[ t
j
1 (1� t

j
)B

j
, (20)

F
j�1/2

Y 5 F
j11/2

Y t
j
1 (1� t

j
)B

j
, (21)

where Bj 5 sTj
4 is the broadband flux emitted by a

blackbody, s 5 5.67 3 1028 W m22 K24 is the Stefan-

Boltzmann constant, and Tj is the temperature of the jth

layer in kelvins. The radiative heating rate in each layer

of the atmosphere can then be calculated from the

broadband fluxes according to

dT
j

dt
5

F
j�1/2

[ j� F
j11/2

[ 1 F
j11/2

Y � F
j�1/2

Y

rc
p
Dz

. (22)

The remaining issue is how to estimate the effective

broadband absorption cross section s
a
. The usual way to

do that is to perform an integration across all wave-

lengths. However, a much simpler approach, which we

will use here, is to parameterize sa based on a standard

radiative transfer model. More specifically, sa is chosen

such that the heating rate calculated in (19)–(22) is the

same as what would be obtained from a standard radi-

ative transfer model.

We determined the value of s
a

using the Rapid

Calculation of Radiative Heating Rates (RAPRAD)

radiative transfer model introduced by Toon et al.

(1989). Toon et al. (1989) derived the tridiagonal matrix

that results from the two-stream approximation applied

to an atmosphere of multiple homogeneous layers.

RAPRAD has 16 wavelength intervals for the longwave

spectrum (3.3 to 1000 mm) and 32 wavelength intervals

for the shortwave spectrum (0.24 to 4.6 mm). RAPRAD

absorption cross sections of the shortwave spectrum

were updated by Kato et al. (1999) using the k-distribution

method. Using this update, the model transmissivity de-

viates by no more than 1% from that in a line-by-line

reference computation across most of the solar spectrum

(Kato et al. 1999).

For our simplified radiation code, instead of having 48

absorption cross-section values as in RAPRAD (16 for

the longwave spectrum and 32 for the shortwave spec-

trum), we parameterize only two effective absorption

cross sections, one for the longwave spectrum and one

for the shortwave spectrum. This means tolerating some
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degree of error in the calculation of the radiative heating

rate in comparison with RAPRAD over the range of

optical depth relevant to TTL cirrus. The parameteriza-

tion of the absorption cross section is performed at each

particular ice particle size; thus, for each particle size

there are two parameterized absorption cross sections.

The boundary conditions necessary to solve for the

fluxes in the intermediate levels inside the cirrus cloud

are the downward flux at the cloud top and the upward

flux at the cloud base. These fluxes are calculated using

RAPRAD running on the initial atmospheric tempera-

ture, water vapor, and ozone profiles. In all of our sim-

ulations the cloud top and bottom appear to move

vertically by less than 200 m. This is less than the 300-m

minimum grid spacing we used for RAPRAD. Fur-

thermore, we found that the perturbations of the basic

atmospheric profile by the cloud dynamics are too small

to change the downward flux at the cloud top and the

upward flux at the cloud base. Therefore, we assume that

these boundary fluxes, once calculated by RAPRAD

from the initial conditions, are fixed for all time steps in

simulating the cirrus cloud.

The heating rate of the cirrus given by our simplified

radiation scheme has been tested against RAPRAD. It

is found to be accurate within about 5% for cloud ice

absorption optical depths between 0.0005 and 0.05.

Single-layer TTL cirrus are generally observed to be

within this range of optical depth (Comstock et al. 2002;

McFarquhar et al. 2000). Given our focus on the radia-

tively driven cloud dynamics, our approach provides a

reasonable trade-off between efficiency and accuracy.

b. Simulation details and initial conditions

The numerical domain is the region 2200 # x #

200 km, 12 # z # 18 km. Wave-permeable boundaries

are approximated at all boundaries. The radiation bound-

ary condition for hydrostatic gravity waves (Klemp and

Durran 1983; Bougeault 1983) as formulated in Durran

(1999) is imposed at the top boundary. At the lower

boundary, a wave-absorbing layer combining Rayleigh

and viscous damping occupies the layer between 12 and

14.5 km. The normal velocity at the lateral boundaries is

computed using one-way wave equations with outward

directed gravity wave phase speeds of 5.5 m s21. The grid

spacing is Dx 5 250 m, Dz 5 25 m, except that below

the top of the damping layer Dz increases smoothly as

z decreases, achieving a maximum value of 100 m at

z 5 12 km.

The initial cloud in both simulations is 100 km wide,

500 m thick, and centered at (x, z) 5 (0, 16.25) km. The

depth of the cloud layer is similar to that of observed

TTL cirrus, but its width is somewhat smaller than that

typically observed, which can exceed a thousand kilo-

meters (Winker and Trepte 1998). The width chosen for

our cloud was limited by computational resources. All

cloud ice particles are initialized with a radius 4.2 mm,

which is representative of the observed ice crystal sizes

in TTL cirrus [see McFarquhar et al. (2000) for obser-

vations of TTL cirrus microphysical properties]. For

an ice particle of this size, the parameterized absorp-

tion cross sections are 3.7 3 10211 m2 (longwave) and

4.7 3 10213 m2 (shortwave). In both cases the ice con-

centration in the center of the cloud is 6.5 3 105 ice par-

ticles per cubic meter, a value chosen to give a 3.0 K day21

heating rate at the center of our cloud of 4.2-mm-radius

crystals. The infrared absorption optical depth of the en-

tire cloud layer is 0.007.

In the first simulation (case 1), the initial shape of the

cloud is similar to the shape of the region of fixed heating

shown in Fig. 1. The vertical structure is identical to that

in (5) except that the origin is shifted to z 5 16.25 km. The

horizontal structure is cos2(px/100) for x 2 [250, 50] km,

which approximates the horizontal distribution of the

heating in (5) when a 5 20 km. In case 1, the Brunt–

Vaı̈sälä frequency of the resting background state is

constant and identical to the N 5 0.016 s21 value for

which analytic solutions were obtained in the previous

section. The radiative heating generated by this initial

cloud is shown in Fig. 5a; in this and subsequent figures

only the central portion of the right half of the domain is

shown. The solution is symmetric about x 5 0.

Whereas the first simulation is designed to allow a

close comparison with the analytic solution for the fixed

heat source considered in the previous section, the sec-

ond case explores a situation more closely representa-

tive of the TTL. The vertical distribution of the initial

cloud is the same as in case 1, but the central 80 km of the

cloud is horizontally uniform. Cloud ice concentrations

drop to zero in a cos2 profile beginning 10 km from the

cloud edge. The radiative heating produced by the initial

cloud in case 2 is shown in Fig. 5b. The atmospheric

sounding for this case is representative of the eastern

tropical Pacific (Gettelman et al. 2004); within the TTL

the Brunt–Vaı̈sälä frequency increases from a typical

tropospheric value of 0.01 s21 to typical stratospheric

values in excess of 0.02 s21. The environmental profiles

of u and N for case 2 are shown in Fig. 6.

c. Numerical results

The velocity and perturbation potential temperature

fields in case 1, which is initialized with a cloud whose

structure approximates the shape of the heated region in

the previous section, are shown at t 5 6 h in Figs. 7a,c,e.

The main features of the thermally forced gravity waves

generated by the fixed heat source (5) are clearly pres-

ent in the numerical solution, including upward vertical

SEPTEMBER 2009 D U R R A N E T A L . 2867



motion inside the cloud and inward/outward horizontal

motions in the lower/upper halves of the cloud layer. As

before, a horizontal tongue of warm air extends well

beyond the region of radiative heating, and adiabatic

ascent produces cooling just above and below the heated

layer.

Recall that for the analytic solution, x, t, u, and b

all scale with the width a of the heating region. Because

a 5 100 km in Fig. 2 but the case shown in Fig. 7 ap-

proximates a 5 20 km, the values of x, u, and b shown at

t 5 30 h in Figs. 2b,d,f should be divided by 5 to compare

with those shown at t 5 6 h in Figs. 7a,c,e. (The z

coordinate and the magnitude of the vertical velocity do

not change with a.) Allowing for this rescaling, the ex-

trema in the two solutions are very similar. The maximum

vertical velocities are almost the same. The horizontal

velocities are larger in the numerical simulation, whereas

the temperature perturbations are slightly weaker.

One important difference between the case with fixed

heating and the problem considered in case 1 is that the

numerically simulated cloud rises and its top is stretched

relative to its bottom. As a consequence, the fields lose

their symmetry about the horizontal centerline of the

initial heating at z 5 16.25 km. The decrease in density

with height, which is accounted for in the numerical

simulation but neglected in the Boussinesq solution for

FIG. 5. The initial radiative heating (K day21) in cases (a) 1 and (b) 2. The heating is symmetric about x 5 0.

FIG. 6. Vertical profiles of (a) the background potential temperature u (K) and (b) the Brunt–Vaı̈sälä frequency N (s21) for case 2.
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FIG. 7. (a),(b) Vertical velocity (mm s21), (c),(d) horizontal velocity (m s21), and (e),(f) perturbation potential

temperature (K) for (a),(c),(e) case 1 and (b),(d),(f) case 2. Positive values are contoured by solid lines and high-

lighted by grayscale fill; negative values are contoured by dashed lines.
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the fixed heat source, also breaks the symmetry about

the horizontal centerline of the cloud. The change in the

shape and position of the cloud in case 1 is illustrated in

Figs. 8a,b; in both panels the white horizontal line marks

the initial centerline of the cloud. The top and bottom of

the cloud rise roughly 100 m during the 6-h simulation,

whereas the region of highest cloud ice concentration,

where the heating and vertical velocities are strongest,

rises roughly 200 m.

Qualitatively similar results are obtained in case 2,

which differs from case 1 in that the initial cloud is

horizontally uniform over a length of 80 km before ta-

pering to zero at its edges and the background static

stability is higher above the cloud than below. As shown

in Figs. 7b,d,f, the vertical variations in N lead to an even

more pronounced departure from symmetry about the

z 5 16.25-km level, and the increase in the width of the

region of high ice crystal concentration and strong

heating leads to larger potential temperature and hori-

zontal velocity perturbations. The upward vertical ve-

locities in case 2 are slightly weaker, although the

downward velocities outside the cloud and the hori-

zontally integrated upward displacements within the

cloud are greater than in case 1. As is apparent in Figs.

8c,d, the distortion of the cloud edge (due to horizontal

outflow at the top of the cloud and inflow at the bottom)

is also more pronounced. In case 2 the bottom of the

cloud again ascends about 100 m during the 6-h simu-

lation, but the ascent of both the top and the center of

the cloud is slightly less than in case 1.

The fields in these numerical simulations never reach

a true steady state because of the continuous changes in

FIG. 8. Ice mixing ratio (in units of 1026 kg kg21) for t 5 (a),(c) 0 and (b),(d) 6 h for (a),(b) case 1 and (c),(d) case 2.

The white line indicates the initial centerline of the cloud at z 5 16.25 km.
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the cloud geometry. Nevertheless, because the ice par-

ticles move slowly, the discussion in section 2b still

provides a rough description of the approach of the

numerical solutions to steady state. For example, in

case 1 the vertical velocity at the center of the cloud is

5.6 mm s21 at t 5 6 h, which is 82% of the steady-state

vertical velocity in the center of the cloud in the case

with fixed heating [for which wss(0, 0) 5 Q0/N2 5

6.8 mm s21]. According to (13) and (15), the time re-

quired to reach 82% of wss(0, 0) in the fixed-heating case

is 5.2 h, which is a reasonable estimate of the 6-h time

actually required to develop the same w in the numerical

simulation.

When assessing the possible role of TTL cirrus in

stratospheric–tropospheric exchange, a key question cen-

ters on the degree of cross-isentropic transport induced by

the radiative heating, and this is illustrated for case 2 in

Fig. 9. The potential temperature perturbation may be

decomposed as the sum of perturbations due to the

adiabatic redistribution of the mean stratification, u9a,

and a remainder due to diabatic heating, u9d. There is no

latent heating or cooling in these simulations, and the

parameterized subgrid-scale turbulent mixing never

becomes active, so u9d may also be interpreted as the time

integral of Q along each air parcel trajectory.

As shown in Fig. 9a, negative values of u9a are pro-

duced by rising motion within, above, and below the

cloud, whereas subsidence produces positive u9a outside

the lateral cloud edge. On the other hand, IR heating

produces positive values of u9d inside the cloud (Fig. 9b),

and these more than compensate for the adiabatic

cooling, creating a horizontally extensive layer of posi-

tive u9 (Fig. 9d). Figure 9c indicates the extent to which

the actual potential temperature distribution responds

FIG. 9. Potential temperature fields at t 5 6 h in case 2: (a) u9a (b) u9d (c) u (solid) and u(z) 1 u9
d

(dotted), (d) u9. The

contour interval in (a),(b), and (d) is 0.2 K; in (c) it is 1 K. Shaded contours show perturbations greater than 0.2 K.
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to the heating. The hypothetical field u(z) 1 u9
d

(dashed

lines) shows the potential temperature that would de-

velop if all radiative heating resulted solely in local

temperature increases. Not surprisingly, the atmosphere

adjusts so that the maximum slope of the isentropes for

the actual u field is much less than that for u(z) 1 u9d. The

energy budget analysis from the linear model (Fig. 4a)

suggests that roughly one-third of the total energy input

by radiative heating is converted to perturbation kinetic

energy.

4. Conclusions

Analytic solutions were obtained to an initial value

problem in which a fixed steady heat source represen-

tative of the radiative heating in TTL cirrus is turned on

instantaneously. These solutions show rising motion in

the heated region along with horizontal inflow toward

the base of the heat source and horizontal outflow from

its top. A layer of heated air gradually extends far be-

yond the lateral edges of the heat source; this heating is

produced by adiabatic subsidence at the leading edge of

the expanding disturbance. Thinner layers of air cooled

by ascent appear above and below the heat source and

propagate laterally away from their region of formation.

These disturbances are gravity waves. After the initial

transient, they are generated by steady forcing so their

frequencies are nearly zero, and therefore they propa-

gate almost horizontally.

According to the functional dependence of the per-

turbation fields predicted by the analytic solution for the

fixed heat source, the vertical velocity depends only on

the strength of the heating, but the magnitudes of the

horizontal velocity and temperature perturbations are

also linearly proportional to the cloud’s width. The lat-

eral propagation of the temperature perturbations oc-

curs at gravity wave phase speeds, which, in contrast to

the amplitudes of the perturbation fields, are indepen-

dent of the strength of the heating.

Very similar solutions were obtained using a meso-

scale cloud model without true microphysics: ice crystal

sedimentation was neglected and, for purposes of the

radiative heating calculations, all crystals were assumed

to maintain a radius of 4.2 mm. The similarity between

the analytic solutions and those computed by the model

is particularly close in case 1, in which the background

temperature and initial cloud distribution for the nu-

merical simulation are almost identical to those for the

analytic solution. Nevertheless, even in case 2, where

a more realistic atmospheric structure and a more uni-

form initial cloud distribution are simulated, the nu-

merical and analytic solutions have the same qualitative

character.

The primary difference between the numerical and

the analytic solutions comes from the nonlinear advec-

tion of the cloud ice field by the perturbation wind field,

which slowly lifts the cloud while narrowing its base and

widening its top: the cloud tends to self-loft and self-

spread because of nonlinear advection. In cases 1 and 2

the maximum heating was 3 K day21, which produced

maximum vertical velocities at t 5 6 h of 5.6 and

4.5 mm s21. These updrafts are substantially stronger

than the 3.2 mm s21 terminal velocity estimated for an

ice crystal with the nominal radius of 4.2 mm (Böhm

1989) used in this simulation, suggesting that radiative

heating may indeed maintain some TTL cirrus against

sedimentation. Recent observations (Lawson et al. 2008)

show that at least some TTL cirrus have considerably

larger mean effective radii (8.8 mm) that would fall more

rapidly. In fact, there is little intrinsic significance to the

nominal 4.2-mm radius chosen for the ice crystals in this

study because we do not include any true microphysical

processes; the crystal radius and ice water content of the

cloud were chosen together to give 3 K day21 of IR

heating to match the observations of Comstock et al.

(2002) and BHM. We are incorporating a bin micro-

physics scheme into the model and will explore longer

simulations of clouds with nonuniform ice crystal dis-

tributions to gain an understanding of the role of sedi-

mentation.

Because our cloud model does not include sedimen-

tation, we cannot definitively determine the ultimate

fate of the TTL cirrus present at the initial time of our

simulations. Nevertheless, the simulations presented

here demonstrate that mesoscale circulations induced

by the radiative heating of a cirrus layer that is optically

thin in the IR will tend to limit the increase in temper-

ature within the cloud to a value considerably below that

which would be achieved if its temperature simply in-

creased at the same rate as the local radiative heating.

Two processes are involved. First, the radiative energy

absorbed by the ice particles is redistributed horizon-

tally by gravity waves over a much larger region than the

cloud itself. Second, the heating produces ascent in the

cloudy layer, which tends to cool the air by adiabatic

expansion. Any tendency of radiative heating to warm

the cloud and dissipate it through sublimation is thereby

greatly reduced (cf. the solid and dotted–dashed lines in

Fig. 3b).

In addition to the simple treatment of microphysics,

there are several other ways in which these simulations

do not provide a complete model of the TTL cirrus. We

do not account for the initial nucleation of the ice crys-

tals or large-scale motion fields that might be responsi-

ble for TTL cirrus formation. Once a cloud is formed,

however, radiative heating will tend to force circulations
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of the type considered above, and at least to first order,

these circulations are likely to be superimposed on any

large-scale perturbation. We will explore the influence

of larger-scale motions on the clouds in future research

and examine the role radiatively heated TTL cirrus may

play in the transport of water from the troposphere to

the stratosphere.
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