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ABSTRACT

The tendency of high-resolution numerical weather prediction (NWP) models to overpredict the strength

of vertically propagating mountain waves is explored. Discrete analytic mountain-wave solutions are pre-

sented for the classical problem of cross-mountain flow in an atmosphere with constant wind speed and

stability. Time-dependent linear numerical solutions are also obtained for more realistic atmospheric

structures. On one hand, using second-order-accurate finite differences on an Arakawa C grid to model

nonhydrostatic flow over what might be supposed to be an adequately resolved 8Dx-wide mountain can lead

to an overamplification of the standing mountain wave by 30%–40%. On the other hand, the same finite-

difference scheme underestimates the wave amplitude in hydrostatic flow over an 8Dx-wide mountain. In-

creasing the accuracy of the advection scheme to the fourth order significantly reduces the numerical errors

associated with both the hydrostatic and nonhydrostatic discrete solutions. The Coupled Ocean–Atmosphere

Mesoscale Prediction System (COAMPS) model is used to generate two 70-member ensemble simulations of

a mountain-wave event during the Terrain-Induced Rotor Experiment. It is shown that switching from

second-order advection to fourth-order advection leads to as much as a 20 m s21 decrease in vertical velocity

on the lee side of the Sierra Nevada, and that the weaker fourth-order solutions are more consistent with

observations.

1. Introduction

Accurately forecasting orographically generated in-

ternal gravity waves is a significant challenge for me-

soscale numerical weather prediction (NWP) models.

More commonly known as mountain waves, these fea-

tures occur when stably stratified air is forced over a

topographic barrier. While NWP models have steadily

advanced over the last several decades, opportunities to

verify model forecasts of mountain waves against ob-

servations are limited to a handful of field campaigns.

Several authors have compared in situ aircraft obser-

vations with model simulations of mountain waves over

the European Alps during the Mesoscale Alpine Pro-

gram (MAP; e.g., Doyle and Smith 2003; Volkert et al.

2003; Doyle and Jiang 2006). In these comparisons the

models have been able to capture the general qualita-

tive character of the mountain wave; however, their

detailed evolution has not been adequately simulated.

One persistent problem in both real-time and a pos-

teriori forecasts is the tendency to overpredict the

mountain-wave amplitude directly over the barrier.

One possible consequence of mountain-wave over-

amplification is an increased tendency for the predicted

waves to break down and generate severe downslope

winds (e.g., Peltier and Clark 1979). Real-time, a priori,

forecasts of mountain waves, used for mission planning

during MAP, produced mountain waves with much

larger amplitude than observed as well as frequent wave

breaking (J. D. Doyle 2008, personal communication).

Furthermore, a posteriori simulations indicate that

simulated waves in high-resolution models were sub-

stantially stronger than observed (Doyle and Jiang

2006). Mountain-wave overprediction is not limited to

the European Alps. Garvert et al. (2007) used horizontal

winds derived from a dual-Doppler radar mounted on

the National Oceanic and Atmospheric Administration

(NOAA) P-3 aircraft to compare observations of a

mountain-wave event over the Oregon Cascades to

high-resolution model simulations. They found that the
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simulated mountain-wave amplitude was much stronger

than observed.

The influence of numerical error on mountain-wave

amplitude is examined in this study. Davies and Brown

(2001) investigated the minimum horizontal resolution

needed to accurately simulate hydrostatic flow over

topography. They concluded that features resolved by

10Dx converged to the true solution; however, appre-

ciable skill was found for 6Dx-wide features and quali-

tative agreement occurred for 4Dx-wide features. In this

study the impact of discretization errors across a wide

range of hydrostatic and nonhydrostatic scales is in-

vestigated with a variety of numerical schemes on both

staggered and unstaggered meshes. With the aid of

linear theory it will be shown that, even when the

mountain is spanned by 10Dx, numerical models with

second-order-accurate advection and the common

C-grid staggering (Mesinger and Arakawa 1976) are not

capable of accurately simulating the resulting waves.

In section 2, analytic solutions of discrete linear flow

over topography are presented. The discretization er-

rors are interpreted via an analysis of the discrete group

velocity in section 3. A real-world case study showing

the tendency of mountain waves to overamplify in a

fully nonlinear NWP model is presented in section 4.

The influence of this overamplification on a simulated

downslope windstorm is also explored in section 4.

Conclusions are given in section 5.

2. Discrete flow over topography

In this section the role of discretization errors in

simulations of linear Boussinesq flow over an isolated

two-dimensional barrier will be quantified by compar-

ing discrete analytic mountain-wave solutions with the

solution to the continuous problem. Klemp et al. (2003)

computed discrete analytic mountain-wave solutions to

demonstrate the need for consistent finite differencing

in domains with vertically transformed coordinates.

Here, we compute similar analytic mountain-wave so-

lutions to investigate the errors due to inadequate hor-

izontal resolution in finite-difference models for flow

over orography. We focus first on nonhydrostatic waves,

which are more likely to be poorly resolved by opera-

tional mesoscale models and then consider the impact of

discretization on hydrostatic waves.

a. The discrete Boussinesq system

Consider a differential-difference approximation to

the continuous Boussinesq system in which the spatial

derivatives are computed with finite differences and the

time derivatives are left in continuous form. As is com-

mon in many finite-difference NWP models, the un-

known fields are defined on a C grid, such that the

perturbation pressure P and buoyancy b are collocated

at the index point (n, m), while the perturbation hori-

zontal momentum (u, y), and vertical momentum w, are

staggered one-half grid point in the horizontal and

vertical directions, respectively. Staggering the varia-

bles in this way allows the pressure gradient and di-

vergence terms to be calculated on a numerical mesh

with twice the resolution of the grid, leading to a better

representation of the shortest resolvable gravity waves

when compared to an unstaggered mesh. Further im-

provements to the numerical accuracy can be obtained

by computing the horizontal advective terms with

higher-order-accurate finite differences. We consider

the impact on the discrete solution when the order of

accuracy for the horizontal advective terms ranges from

first- to sixth-order.

Assuming there are no variations in the y direction,

the semidiscrete Boussinesq system for flow with uni-

form background wind speed U, Brunt–Väisälä fre-

quency N, and Coriolis parameter f, can be concisely

expressed with the aid of operator notation as

›u

›t

����
n�1

2,m
1 UDpxu

n�1
2,m
� f Æy

n�1
2,m

æx
1 dxP

n�1
2,m

5 0,

(1)

›y

›t

����
n,m

1 UDpxyn,m 1 f Æun,mæx
5 0, (2)

›w

›t

����
n,m�1

2

1 UDpxw
n,m�1

2
1 dzP

n,m�1
2

5 Æb
n,m�1

2
æz, (3)

›b

›t

����
n,m

1 UDpxbn,m 1 N2Æwn,mæz
5 0, and (4)

dxun,m 1 dzwn,m 5 0. (5)

Here, dx and dz are operators representing second-

order-centered finite differences in the horizontal and

vertical directions with grid spacing Dx/2 and Dz/2, re-

spectively. The operator Dpx is a pth-order approxima-

tion to the first derivative with grid spacing Dx. Table 1

shows Dpx for first- through sixth-order differences as a

function of the centered finite-difference operator

dpxfn 5
f

n1p/2
� f

n�p/2

pDx
, (6)

where fn is a discrete representation of a continuous

variable f (nDx). Note that dx and dz are defined by (6)

for the case of p 5 1. In addition to the finite-difference

operators, an averaging operator defined by
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Æfnæx
5

fn11/2 1 fn�1/2

2
(7)

is used in (1)–(4).

Analogous to the familiar approach used with the

continuous Boussinesq system, the semidiscrete dis-

persion relationship can be computed by substituting

discrete plane-wave solutions of the following form:

c 5 c0ei(knDx1lmDz�vt) (8)

into (1)–(5) and solving for v (Durran 1999). Here, the

horizontal and vertical wavenumbers are given by k and

l, respectively, while the frequency of the oscillation is

given by v. The exact formulation of the semidiscrete

dispersion relationship depends on the order of accur-

acy in which the horizontal advective terms are com-

puted, as well as the horizontal and vertical grid spacing,

however, a generalized form can be written as

v 5 U ~Kp �
~N2 ~k2 1 ~f 2~l 2

~k 2 1 ~l 2

 !1
2

. (9)

Here i ~Kp, i ~k, and i~l are the eigenvalues associated with

various finite-difference operators in (1)–(5), such that

~k 5

sin
Dx

2
k

� �
Dx

2

, ~l 5

sin
Dz

2
l

� �
Dz

2

, (10)

and ~Kp, the horizontal wavenumber associated with the

approximation of the horizontal advection terms, is

given in Table 1 as a function of

~kp 5
sin p

2 Dxk
� �
p
2 Dx

. (11)

The ~k and ~l terms arise from the dx and dz finite-

difference operators associated with the pressure gra-

dient and divergence terms in (1), (3), and (5). Apparent

from the definition of ~kp is that ~k 5 ~k1. Finally, ~N and ~f

are associated with the averaging operators in (1)–(4)

and are defined by

~N 5 N cos
Dz

2
l

� �
and ~f 5 f cos

Dx

2
k

� �
, (12)

respectively. Note the similarity between the semi-

discrete dispersion relationship in (9) and the continu-

ous dispersion relationship:

vc 5 Uk 6
N2k2 1 f 2l2

k2 1 l2

 !1
2

. (13)

In the limit of good horizontal and vertical resolution
~kp ! k, ~kp ! k, ~l! l, ~N ! N, and ~f ! f , implying

that v / vc.

b. Flow over topography

To investigate the effects of numerical errors in the

discretized problem we must first consider the contin-

uous case. Following Smith (1979) the vertical velocity

for a single Fourier mode over an infinitely long ridge is

ŵ(k, z) 5 ikUĥ(k)eilz. (14)

In the preceding, ĥ(k) is the Fourier transform of the

topographic profile h(x) and ŵ is the transform of the

vertical velocity. The vertical wavenumber l is obtained

by setting vc 5 0 in (13) and solving the resulting

equation to give

l2 5 k2 N

Uk

� �2

�1

" #
1� f

Uk

� �2
" #�1

. (15)

TABLE 1. The first- through sixth-order ( p) discrete operator (Dpx) to the first derivative, as well as the discrete representation of the

wavenumber (Kp) associated with that finite-difference approximation to a plane-wave function.

p Dpx Kp

1 d2x �
Dx

2
d2

x
~k2 1 i

[cos(kDx)� 1]

Dx
2 d2x

~k2

3 d2x �
Dx2

6
d2

xD1x
1

3
(4 ~k2 � ~k4)� i

3

[cos(kDx)� 1]2

Dx

4 1� Dx2

6
d2

x

� �
d2x

1

3
(4 ~k2 � ~k4)

5 1� Dx2

6
d2

x

� �
d2x 1

Dx4

30
d4

xD1x
3

2
~k2 �

3

5
~k4 1

1

10
~k6

� �
1

i

15

[cos(kDx)� 1]3

Dx

6 1� Dx2

6
d2

x 1
Dx4

30
d4

x

� �
d2x

3

2
~k2 �

3

5
~k4 1

1

10
~k6

� �
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Substituting for l in (14) and taking the inverse Fourier

transform gives the vertical velocity w from which P, b,

u, and y can be recovered from the polarization rela-

tions (Gill 1982).

Nondimensional parameters governing the mountain-

wave structure may be defined as follows. Inspection of

(15) reveals two relevant horizontal length scales: U/N

and U/f. Vertical propagation is possible over the range

f/U , k , N/U. Since N/f ’ 100 in midlatitudes, the

spatial scales of vertically propagating waves can vary

by two orders of magnitude. If the horizontal scale of

the topography is a then d 5 Na/U is the nondimen-

sional mountain width and Ro 5 U / ( fa) ’ 100 / d is the

Rossby number. For d 5 O(1) the response is domi-

nated by nonhydrostatic motions and rotational effects

are negligible. For d 5 O(10), the wave motions are

primarily hydrostatic and rotational effects only mini-

mally modify the solution. As d increases beyond 10, the

influences of rotation must be considered.

The terrain profile is specified as

h(x) 5

h0

16
1 1 cos p

x

4a

� �h i4
, if j x

4a
j # 1;

0, otherwise,

8<
: (16)

which, as shown in Fig. 1, is similar to the widely used

Witch of Agnesi except that it drops to zero at a finite

distance (of 4a) from the mountain crest. To compute ĥðkÞ
from (16), a fast Fourier transform (FFT) is used on a grid

with 2048 points spaced 0.05a apart. The vertical velocity

field is recovered by applying the inverse FFT to (14).

Figure 2 shows the vertical velocity in the continuous

system for flow over h(x) with d 5 1.8. Consistent with

the scaling arguments presented above, the impact

of rotation is ignored by setting f 5 0. The vertical ve-

locity is normalized by Uh0 /a, which arises from (14)

by setting the scale for k as a21. The x axis has been

normalized by the mountain half-width x9 5 x/a and

the z axis has been normalized by the vertical wave-

length of a two-dimensional hydrostatic mountain wave

z9 5 zN/(2pU). The nonhydrostatic nature of the flow is

clearly evident in Fig. 2 as the wave is dispersive with a

substantial amount of wave energy propagating both

vertically and downstream (Durran 1986).

Turning now to the discrete system, the vertical ve-

locity is given by

ŵ(k, mDz) 5 ikUĥ(k)eilpmDz. (17)

Here lp is the vertical wavenumber associated with the

pth-order finite-difference scheme satisfying the steady

version of (9). Setting v 5 0 in (9) and using (10) and

(12) the discrete vertical wavenumber is

lp 5
2

Dz
cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Dz ~k)2

1 4� (2 ~Rp)2

~k
N

U

Dz

~Kp

 !2

1 4� (2 ~Rp)2

vuuuuut
, (18)

where ~Rp 5 ~f /(U ~Kp). The discrete linear solutions are

obtained using Fourier transforms in an identical man-

ner as the continuous case with one exception: h(x) is

defined on a horizontal grid with spacing Dx.

To appreciate the errors that may occur when com-

puting approximations to the solution in Fig. 2, suppose

the nondimensional horizontal and vertical grid inter-

vals used to evaluate the discrete solutions are Dx9 5 Dx/

a 5 0.67 and Dz9 5 DzN/(2pU ) 5 0.048. Figure 1 shows

the horizontal gridpoint spacing in relation to the to-

pographic profile for this case and indicates that the

barrier is resolved by roughly 8 grid points (the wave-

length of the maximally forced vertical velocity at the

FIG. 1. Topography given by (16) (solid line) compared to a

Witch of Agnesi with half-width a (dashed). The tick marks are

plotted every 2/3a corresponding to the grid spacing for the ex-

amples in lines 1 and 2 of Table 2.

FIG. 2. Nondimensionalized vertical velocity for linear two-

dimensional flow over an isolated ridge. The flow is nonhydrostatic

with d 5 1.8. The contour interval is 0.125Uh0/a and the zero

contour is omitted. A line that would make a 508 angle with the

horizontal in a plot with 1:1 axis scaling is drawn for reference.
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lower boundary is spanned by 8.1Dx). A concrete ex-

ample of one representative set of dimensional param-

eters corresponding to this case is listed in the first row

of Table 2. Note that the high vertical resolution makes

the solutions relatively insensitive to moderate varia-

tions in Dz9.

The normalized vertical velocity forced by the topo-

graphic profile in (16) is shown for first- through sixth-

order schemes in Fig. 3. It is not surprising that the well-

known diffusive nature of the first-order scheme (Fig.

3a) produces excessive damping of the mountain-wave

solution. The large errors of the second-order scheme

(Fig. 3b) for flow over the 8Dx-wide mountain were,

however, unexpected. Considering the maximum vertical

velocity within the first positive phase of the wave (from

z9 5 0.25 to z9 5 1.0), the second-order solution is 30%

stronger than the corresponding continuous solution.

This is a direct result of the second-order scheme being

unable to adequately resolve waves forced by the 8Dx

topography. In addition, the structure of the second-

order solution is substantially different from the con-

tinuous solution. The second-order solution does not

correctly capture the downstream propagation evident in

the continuous solution. Instead, the majority of wave

energy is found directly over the crest of the topography,

as would be expected in a hydrostatic mountain wave.

Increasing the order of accuracy of the horizontal

advective operator improves the mountain-wave struc-

ture and reduces the magnitude of the errors in the

vertical velocity. For example, the third-order scheme

more faithfully represents downstream wave propaga-

tion (Fig. 3c), although, the implicit numerical diffusion

in the third-order approximation removes too much

energy from the shortest wavelengths. Downstream

propagation is clearly evident in the solution obtained

using the fourth-order scheme (Fig. 3d); however, sim-

ilar to the second-order solution, the vertical velocity

amplitude in the first phase of the wave is overpredicted

by 10%. The two best performing numerical methods

are the fifth- and sixth-order schemes (Figs. 3e and 3f,

respectively). In both of these solutions the downstream

energy propagation evident in the continuous solution is

accurately captured. Additionally, the vertical velocity

amplitude within the first phase of the wave compares

TABLE 2. Illustrative physical parameters for the three moun-

tain-wave solutions considered assuming the background wind

speed and Brunt-Väisälä frequency are U 5 25 m s21 and N 5 0.01

s21, respectively.

d a (km) f (s21) Dx (km) Dz (km)

1.8 4.5 0 3.0 0.75

10 25 1024 16.7 0.75

10 25 1024 33.6 0.75

FIG. 3. The nondimensional vertical velocity for the discrete solution to linear nonhydrostatic (d 5 1.8) Boussinesq flow over an

isolated ridge for (a) first-, (b) second-, (c) third-, (d) fourth-, (e) fifth-, and (f) sixth-order-advection schemes. The horizontal grid spacing

is Dx9 5 0.67 resulting in 8 grid points across the ridge. The contour interval is 0.125Uh0/a and the zero contour is omitted.
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well with the continuous solution, with the fifth- and

sixth-order schemes yielding values, 1% and 3% stronger

than the corresponding continuous solution. (Despite

the implicit numerical diffusion associated with the

fifth-order scheme, the wave amplitude is slightly

stronger than in the continuous solution.)

We now consider the impact of discretization on hy-

drostatic mountain waves. Figure 4a shows the nor-

malized vertical velocity in the continuous Boussinesq

solution for d 5 10. The influence of the Coriolis force

is included in the calculation, however, the impacts

are minimal since the Rossby number is relatively large

(Ro 5 10). As expected, the majority of wave energy is

located directly over the mountain crest and the phase

lines tilt upstream with height (e.g., Smith 1979). The

second-order discrete solution for flow over an 8Dx-

wide mountain when Dx9 5 0.67 and Dz9 5 0.048 is

shown in Fig. 4b. Note that the waves propagate up-

stream and the vertical-velocity amplitude is decreased

over the mountain crest by 9% relative to that in the

continuous solution. Representative dimensional pa-

rameters for this problem are given on line 2 of Table 2

and are typical of resolutions that may be present in

operational NWP forecasts. The gridpoint locations rel-

ative to the mountain are shown in Fig. 1 and are identical

to those in the previously considered d 5 1.8 case.

A less well-resolved case is shown in Fig. 4c, in which

the normalized horizontal resolution is Dx9 5 1.35,

corresponding to slightly more than four grid points

spanning the mountain barrier. Some authors have

suggested (Davies and Brown 2001; Webster et al. 2003)

that simulated disturbances above 4Dx-wide topography

can be qualitatively, though not quantitatively, correct.

Line 3 of Table 2 gives the dimensional parameters for

an illustrative example that would map to this case.

Clearly the wave structure is grossly distorted; a sub-

stantial amount of wave energy is propagating upstream

and the magnitude of the vertically propagating wave is

significantly reduced. The maximum vertical velocity in

the first phase of the wave is 37% lower than the cor-

responding continuous solution.

c. Pressure drag

An important quantity related to mountain waves is

the pressure drag exerted across the mountain barrier,

which must be accounted for in models that do not ex-

plicitly resolve topography (Palmer et al. 1986; McFarlane

1987). Here, we consider the impact of discretization

errors on the pressure drag. The drag for the second-

and fourth-order discrete solutions, normalized by the

continuous drag, is shown as a function of the non-

hydrostatic parameter d in Fig. 5. In Fig. 5a the hori-

zontal resolution is fixed at Dx9 5 0.67 (approximately 8

grid points resolving the wavelength at which the ver-

tical velocity is maximally forced). The second-order

scheme overpredicts the actual drag for the non-

hydrostatic waves (d , 3) by nearly 25%; however, it is

within 5% of the actual drag for the hydrostatic waves

(d . 5). On the other hand, the fourth-order scheme is

able to accurately capture the pressure drag for both the

nonhydrostatic and the hydrostatic waves.

Unless the model topography is filtered to remove

waves shorter than 8Dx, it is likely that even shorter

features will be also forced by the lower boundary.

Figure 5b shows the impact on the pressure drag when

the grid spacing is increased to Dx9 5 1.35 (approxi-

mately 4 grid points resolving the wavelength at which

the vertical velocity is maximally forced). As with the

drag for the 8Dx-wide mountain, the errors in the second-

order scheme are largest at the nonhydrostatic scales

(d , 3) and decrease as the flow becomes more hydro-

static. However, the errors are considerably larger than

the errors for the 8Dx-wide mountain with over a 100%

overprediction for nonhydrostatic waves and over 42%

for the hydrostatic waves. Significant errors are also

seen with the fourth-order scheme where the drag is

FIG. 4. The nondimensional vertical velocity when d 5 10 and Ro 5 10 for the (a) continuous solution as well as second-order solutions

with (b) Dx9 5 0.67 and (c) Dx9 5 1.35. The contour interval is 0.125Uh0/a and the zero contour is omitted.
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overpredicted by upward of 50% for the nonhydrostatic

waves and approximately 12% for the hydrostatic waves.

3. Group-velocity analysis

The differences between the mountain-wave solu-

tions in the continuous and discrete systems can be

understood by comparing the group velocities for each

system. This group-velocity analysis provides a physical

interpretation of the mountain-wave overamplification

observed in the previous section. First, we consider

group velocities for wavelengths associated with the

nonhydrostatic mountain waves shown in Figs. 2 and 3.

Then, the impact of numerical errors on the group ve-

locity across a wide range of horizontal scales and nu-

merical resolutions is investigated by considering the

angle the group-velocity vector makes with the hori-

zontal plane. Finally, the influence of grid staggering on

group-velocity errors is explored.

a. Continuous and discrete group velocities

In the continuous case, the horizontal and vertical

components of the group-velocity vector cg are

cgx 5 U � kl2(N2 � f 2)

(k2 1 l2)
3
2(N2k2 1 f 2l2)

1
2

(19)

and

cgz 5
k2l(N2 � f 2)

(k2 1 l2)
3
2(N2k2 1 f 2l2)

1
2

. (20)

While cg admits both steady and nonsteady motions,

attention is restricted to steady flow by requiring l to

satisfy (15). The horizontal and vertical components of

the continuous group velocity for steady flow are plot-

ted (using solid lines) in Figs. 6a,b as functions of the

normalized horizontal wavelength d9 5 lxN/(2pU) 5

N/(Uk). For decreasing d9 the influence of non-

hydrostatic motions become important as evident by the

increasing amount of downstream-propagating wave

energy in Fig. 6a. Near the nonhydrostatic cutoff of d9 5

1, cgz drops rapidly to 0 and cgx increases to U; the

majority of wave energy at these short horizontal scales

is propagating downstream.

In context of the continuous nonhydrostatic mountain-

wave solution (Fig. 2), the range of d9 presented in

Figs. 6a,b contains most of the power forced by the d 5 1.8

mountain. For example, Fourier analysis of the vertical

velocity field at the surface in the nonhydrostatic

mountain wave shows that the dominant horizontal

wavelength is d9 5 1.55 (corresponding to lx ’ 8Dx).

From Fig. 6, cg 5 (1.04U, 1.23U) for this wave implying

that the group-velocity vector makes an angle of u ’ 508

with the horizontal plane. The dashed line in Fig. 2,

which shows the line that would map to an angle of u5 508

in a plot with 1:1 scaling, shows that the majority of wave

energy propagates upward and downstream at this angle.

Now consider the effect of discretization on the

group-velocity vector. In an analogous manner to the

continuous system, the discrete steady version of cg

can be derived by differentiating (9) with respect to

k and l and substituting (18) for l into the resulting two

FIG. 5. The pressure drag as a function of the nonhydrostatic parameter d for the second- (solid) and fourth-order

(thick dashed) schemes. The horizontal resolution is (a) Dx 5 0.67a and (b) Dx 5 1.35a. The drags have been

normalized by the continuous solution. The correct solution is indicated by the thin, dashed line.
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equations. The steady-state horizontal and vertical dis-

crete group velocities are plotted in Figs. 6a,b for the

second-, fourth-, and sixth-order numerical schemes.

The odd-order schemes are not plotted since their group

velocities are identical to those for the next higher even-

order schemes. The number of grid points per wave-

length indicated along the top axis of both panels cor-

responds to the numerical resolution of the waves

forced by the topography in Fig. 3.

As evident in Fig. 6, the second-order scheme is unable

to accurately approximate the correct nonhydrostatic

group velocities for any value of d9 between 0.5 and

roughly 2.5. The downstream component of the group

velocity is significantly reduced compared to the contin-

uous system and there is a nontrivial vertical component

of the group velocity for wavelengths that would be eva-

nescent in the continuous system (d9 , 1). These errors in

the group velocity lead to an accumulation of wave en-

ergy over the topography resulting in overamplification

of the vertically propagating wave (Fig. 3b). In contrast,

at the same wavelengths the fourth- and sixth-order

schemes more faithfully represent the downstream

propagation of cg. However, the shortest nonhydrostatic

waves are still poorly represented by the fourth-order

advection scheme, and as a result cgx is retarded at these

wavelengths. The sixth-order scheme performs well, even

at the shortest horizontal wavelengths.

b. Angle of propagation

While the preceding analysis was particular to the

grid spacing used to approximate the nonhydrostatic

mountain waves shown in Figs. 2 and 3, it can be con-

cisely extended to a wide range of horizontal scales and

numerical resolutions by considering the angle u that

the discrete group-velocity vector makes with the hori-

zontal plane. Figure 7 shows contour plots of u for a

steady internal gravity wave as a function of the nor-

malized horizontal wavelength d9 (indicating the degree

of hydrostaticity) and the number of grid points per

wavelength lx/Dx (indicating the numerical resolution).

To clearly display u across a wide range of horizontal

scales d9 has been plotted on a logarithmic axis. While

the contour plots are independent of any particular

mountain geometry, each d can be associated with a

particular d9 through the maximally forced horizontal

wavelength in the vertical velocity field for that partic-

ular d. The right-hand axis shows the nondimensional

mountain width d for which d9 is the horizontal wave-

length at the peak of the vertical velocity spectrum

forced by the mountain profile in (16).

In the continuous limit lx/Dx / ‘ (left edge of each

plot in Fig. 7), the group-velocity vector points down-

stream for the shorter nonhydrostatic wavelengths and

points increasingly toward the vertical as d9 approaches

10. However, as d9 exceeds 10, Coriolis effects become

important and the group-velocity vector again tilts

downstream. The impact of discretization on a partic-

ular monochromatic wave can be seen by moving from

left to right in each plot. As the horizontal resolution

decreases, the errors in u increase. For example, for the

second-order scheme (Fig. 7a) decreasing the number of

grid points per wavelength of the d9 5 5 wave leads to

the vector pointing increasingly upstream such that

when the wave is resolved by 8 grid points, u ’ 1258

instead of the correct value of u ’ 788. The errors in the

second-order scheme grow more rapidly than those of

the fourth- and sixth-order schemes with decreasing

horizontal resolution, as evidenced by the greater hor-

izontal extent of the individual u contours from the left

edge of Figs. 7b,c.

FIG. 6. The discrete group velocities in the (a) horizontal and (b)

vertical directions as a function of the normalized horizontal

wavelength. The top label indicates the number of points resolving

d9. The grid spacing corresponds to the example given in the first

line of Table 2.
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The approximate locations in this parameter space of

the three discrete mountain-wave cases shown in Figs. 3

and 4 are indicated by the black dots and dashed lines in

Fig. 7. The black dots are plotted at the wavelength and

spatial resolution at which the vertical velocity is max-

imally forced, and the dashed lines are the locus of all

such points containing 90% of the power in the vertical

velocity spectrum forced by each mountain. For the

second-order nonhydrostatic mountain-wave solution

(Fig. 7a) the group velocities are oriented too vertically

(u . 708) for all wavelengths within 90% of the maxi-

mum forcing. For example, at the dominant horizontal

wavelength (d9 5 1.55), u 5 718 in the second-order

scheme, compared to 508 in the continuous solution. In

this case all of the modes erroneously propagate upward

at almost the same 718 angle, so wave action is concen-

trated in a narrow beam leading to an overamplification

of the mountain wave. Higher-order schemes more ac-

curately capture the correct angles of propagation and

the consequent dispersion for d9 5 1.55, u 5 538 for the

fourth-order scheme (Fig. 7b) and 508 (the correct

value) for the sixth-order scheme (Fig. 7c).

Turning now to the discrete solutions for the hydro-

static mountain waves (d 5 10), the maximally forced

wavelength in the vertical velocity spectrum (d9 5 8.63)

yields an angle of u 5 1428 for the 8Dx-wide mountain

and u 5 1748 for the 4Dx-wide mountain, compared to

u 5 808 in the continuous system. Additionally, the 90%

threshold for the vertical velocity spectrum spans a wide

range of propagation angles leading to the spurious

dispersion of the discrete hydrostatic mountain waves.

c. Higher-order finite differences on the staggered
mesh

The numerical errors in the preceding are exacer-

bated by the use of the staggered C grid. Inspection of

Fig. 7 reveals that at intermediate resolution (6–12

points per wave) the sixth-order scheme often generates

larger errors than the fourth-order-scheme, especially at

hydrostatic wavelengths. For example, at d9 5 10 with 8

points-per-wave resolution, u 5 768 for the fourth-order

scheme and u 5 598 for the sixth-order scheme, com-

pared to u 5 798 in the continuous solution. One way to

improve the solution obtained using sixth-order advec-

tion is to employ a fourth-order approximation of the

derivatives on the staggered mesh:

›f

›x
5

9

8
dx �

1

8
d3x

� �
f 1 O(Dx4). (21)

Figure 8 shows u obtained when (21) is used to compute

the pressure gradient in (1) and the horizontal divergence

in (5) in combination with fourth- or sixth-order advec-

tion. These different methods are referred to as the 4–4

scheme (fourth-order advection with fourth-order pres-

sure gradient and divergence) and the 6–4 scheme (sixth-

order advection with fourth-order pressure gradient and

divergence). The increased accuracy of the 6–4 scheme is

evident as the horizontal extent of u contours from the left

axis is much greater than the 6–2 scheme. Considering

the same parametric location as above, a nearly correct

value of u 5 808 is given by the 6–4 scheme.

FIG. 7. The discrete angle of propagation for the (a) second-, (b) fourth-, and (c) sixth-order schemes as a function of d9 (the normalized

horizontal wavelength) and lx/Dx (the number of horizontal grid points per wavelength). The dots represent the location in the parameter

space of the dominantly forced wavelength in the three mountain-wave solutions considered in Table 2. The curves represent a slice

through the parameter space where 90% of the wave energy is forced in the mountain-wave solutions. The value of the nonhydrostatic

parameter d for the maximally forced wavelength is shown on the right-hand axis.
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The source of the errors in u can be partially under-

stood by considering how inconsistencies between ~Kp

and ~k influence the downstream component of group

velocity. In the limit of good vertical resolution, the

discrete horizontal group velocity for hydrostatic, non-

rotating flow is

~cgx 5 U ~Kp
›

›k
log

~Kp

~k

 !" #
’U ~Kp

›

›k

~Kp

~k

 !
. (22)

Errors in ~cgx arise when ~Kp and ~k are different functions

of the true horizontal wavenumber k, as will always be

the case on staggered meshes. At very fine resolutions
~Kp/ ~k! 1 and ~cgx ! cgx 5 0; however, at intermediate

resolutions, small differences in the dependence of ~Kp

and ~k on k can lead to large errors in ~cgx. Figure 9 shows

the ratio between ~Kp and ~k for the previously consid-

ered finite-difference combinations.1 From (22) errors in
~cgx, and thus u, are large where the slope of ~Kp/ ~k is steep

and small where the slope is shallow. As a result of the

larger differences between ~K6 and ~k, in the hydrostatic

nonrotating limit, the errors in the 6–2 scheme are larger

than the errors in the 4–2 scheme. As evident in Fig. 9,

the 6–4 scheme gives a more consistent representation of
~K6 and ~k over a wide range of horizontal resolutions.

d. Unstaggered meshes

In light of Fig. 9 and (22) one could conceivably im-

prove the numerical solution by using unstaggered

meshes. Figure 10 shows u computed on an unstaggered

mesh for second- and fourth-order finite differences. At

hydrostatic wavelengths (d9 . 10) the u contours extend

horizontally over a wider range of resolution compared

to the 2–2 and 4–4 schemes on the staggered mesh (Figs.

7a,b). Additionally, no wave energy propagates up-

stream for lx/Dx . 4. The most notable improvement

occurs with the 2–2 scheme; for the previously consid-

ered 8Dx-wide wave associated with the hydrostatic

mountain-wave case (d9 5 8.63), u 5 828, which may be

compared to 1428 on the staggered mesh and 808 in the

continuous system. Consistent with the improved angle

of propagation, the wave structure for second-order finite

differences on the unstaggered mesh improves consid-

erably compared to the staggered mesh (not shown).

4. More realistic atmospheric structures

The constant N and U basic state allows analytic

mountain-wave solutions to be obtained but is not rep-

resentative the real atmosphere. In this section, we ex-

amine the tendency of poor resolution to overamplify

mountain waves in cases with more realistic static-stability

and wind speed profiles.

a. Time-dependent linear numerical
model—Prototypical westerly flow

When midlatitude westerlies cross a north–south-

oriented mountain range, a deep layer of forward shear is

often present through the depth of the troposphere cou-

pled with a layer of reversed shear in the stratosphere. In

this section a sounding with a linear increase in wind

FIG. 8. The discrete group-velocity angle for (a) fourth- and (b) sixth-order horizontal advection schemes when the

horizontal pressure gradient and divergence terms are computed with a fourth-order finite difference.

1 For the 6–4 and 4–4 schemes ~k 5 9/8 ~k1 � 1/8 ~k3.
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speed from U0 5 10 m s21 at the surface to U 5 25 m s21

at a height of 9 km and uniform static stability of N 5 0.01

s21 is used to model to troposphere. The stratosphere is

approximated by increasing the static stability to N 5 0.02

s21 above 9 km and linearly decreasing the wind speed

back to 10 m s21 at 14 km. Above 14 km the wind speed

remains constant at 10 m s21. The mountain profile is

given by (16) and the half-width is a 5 4.5 km.

The linear mountain-wave solution for this case is

computed with a time-dependent numerical model in

which the horizontal advection terms are approximated

with either second- or fourth-order finite differences

and all other spatial derivatives are approximated with

centered second-order finite differences. The model

solves the time-dependent, two-dimensional Boussinesq

equations of motion on a C grid using the projection

method (Chorin 1968) with a third-order Adams–

Bashforth computation for the time step. The domain

extends in the vertical to z9 5 5 and a radiation upper

boundary condition is approximated with a Rayleigh

damping layer located above z9 5 3. The lateral bound-

aries are located at x9 5640a. The horizontal and ver-

tical grid spacing are Dx9 5 0.67 and Dz9 5 0.048, re-

spectively; which are identical to the grid spacing used

for the discrete analytic solutions (Fig. 3). The nondi-

mensional time step is Dt9 5 U0Dt/a 5 0.028. As a check,

we verified that the model reproduces the solutions

shown in Figs. 3b,d in the d 5 1.8 constant N and U case

(not shown). Figures 11a,b show the vertical velocity for

the numerical solutions at U0t/a 5 50 for the second-

and fourth-order horizontal advection schemes, re-

spectively. For comparison, a higher-resolution solution

in which Dx9 5 0.167 and fourth-order advection is used

is shown in Fig. 11c. This higher-resolution solution is

converged to the continuous limit; a further reduction of

the grid spacing has almost no effect on the result. The

mountain wave for this case is nonhydrostatic (using the

surface wind speed and tropospheric stability d 5 4.5).

As evidenced by Fig. 11, the vertical wind shear and

static-stability layering produce a complicated response

FIG. 9. The relative difference between ~Kp and ~k for the 2–2

scheme (thick dash–dot), 4–2 scheme (thick solid), 6–2 scheme (thick

dashed), 4–4 scheme (thin solid), and 6–4 scheme (thin dashed).

FIG. 10. The group-velocity vector angle on an unstaggered mesh for (a) second- and (b) fourth-order finite

differences.
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with wave energy propagating both vertically and down-

stream. Comparing the second-order solution (Fig. 11a)

and the fourth-order solution (Fig. 11b) to the contin-

uous limit (Fig. 11c) shows that the second-order

scheme substantially overpredicts the amplitude of the

wave response. In this case the maximum vertical ve-

locity is over 42% stronger than the continuous limit. In

contrast, the fourth-order solution is slightly weaker

(10%) than the continuous solution. Neither the second-

or the fourth-order solution are able to capture the

downstream-propagating short wavelength modes

found in the continuous solution. In a pair of additional

simulations, in which the horizontal grid spacing was

decreased to Dx9 5 0.44 (not shown), the fourth-order

scheme was able to capture the downstream-propagating

wave, and the amplitude error was reduced to less than

1%. In contrast, the second-order scheme was unable to

capture the downstream-propagating waves and still

overpredicted the vertical velocity by 10%.

b. Nonlinear numerical model

Numerical simulations of a mountain-wave event

were computed using the atmospheric portion of the

Coupled Ocean–Atmosphere Mesoscale Prediction

System (COAMPS; Hodur 1997). COAMPS solves a

finite-difference approximation to the fully compress-

ible, nonlinear, nonhydrostatic equations of motion on a

terrain-following vertical coordinate system. Prognostic

equations for the zonal, meridional, and vertical veloc-

ities (u, y, and w), as well as potential temperature u and

Exner function p are marched forward in time with a

split-time-level integration (Klemp and Wilhelmson

1978). A full suite of physical processes are represented

in the COAMPS simulations including the parameteri-

zation of the boundary layer, radiative transfer, and

moist processes (see Hodur 1997). As with the linear

Boussinesq system presented above, the model varia-

bles are staggered on a C grid. The metric terms are

computed in an internally consistent manner as dis-

cussed in Klemp et al. (2003). With the exception of the

horizontal advective terms, the spatial derivatives are

approximated with centered second-order finite differ-

ences. An option exists within COAMPS to compute the

horizontal advective terms with either second-order- or

fourth-order-centered finite differences.

c. Experimental setup

The model is used to create a 70-member ensemble

hindcast of the flow over the Sierra Nevada Mountains

on 16–17 April 2006, a period when strong mountain-

wave activity was forecast operationally during (inten-

sive observing period) IOP-13 in the Terrain-Induced

Rotor Experiment (TREX; Grubiši�c et al. 2008). To

explicitly resolve the scales of motion associated with

mountain waves, three one-way nests with increasing

horizontal resolution are used. Figure 12a shows the

location and topography on the three nests. The out-

ermost domain has a horizontal resolution of 27 km and

covers a large region of the western North American

continent and eastern Pacific Ocean. An intermediate

size domain with 9-km resolution encompasses the en-

tire north–south extent of the Sierra Nevada Mountain

range. A smaller domain with 3-km horizontal resolu-

tion is placed over the highest portion of the Sierra

Nevada Mountains as well as regions immediately up-

stream and downstream of the mountain range. In the

experiments described below the large time step is 3.3 s

on the 3-km domain and increases by a factor of 3 for

each larger domain. The topography on the 3-km do-

main is shown in Fig. 12b. The vertical relief between

FIG. 11. The nondimensional vertical velocity from a time dependent linear numerical model for flow over a 4.5-km-wide mountain at

U0t/a 5 50. Forward shear is present throughout the troposphere coupled with reverse shear in the stratosphere (see text). Solutions with

Dx9 5 0.67 and horizontal advective terms approximated with (a) second- and (b) fourth-order finite differences. (c) The continuous limit,

computed with Dx9 5 0.17 and fourth-order finite differences. The positive (solid) and negative (dashed) contours are plotted every

0.4Uh0/a and the zero contour is omitted. The tropopause is indicated by the dash–dot line.
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the mean crest height of the Sierra Nevada and the

Owens Valley directly to the east is greater than 2 km.

Initial conditions at 0000 UTC 17 April 2006 for the

70-member ensemble are provided by an ensemble

Kalman filter (EnKF). Unless otherwise noted, all times

are given in reference to this initial time. The EnKF

approach was adopted for two reasons. First, data as-

similation using an EnKF provides an optimal combi-

nation of observations and model background states

(Hamill 2006). Second, an EnKF provides a natural way

to generate ensemble forecasts that can be used to as-

certain probabilistic forecast information. The EnKF is

used to assimilate observations every 6 h for several

forecast cycles leading up to the 0000 UTC forecast

period. The boundaries of the 9- and 3-km domains are

updated every time step from the parent ensemble

member. The boundaries on the 27-km domain are de-

rived from the Navy Operational Global Analysis Sys-

tem (NOGAPS) model and perturbed for each ensemble

member using a fixed-covariance perturbation method

described by Torn et al. (2006). During this spinup time,

second-order horizontal advection is used on all three

domains. For the 0000 UTC forecast the horizontal ad-

vection on the two outer domains remains second order;

however, the advection on the 3-km domain is computed

with either second- or fourth-order schemes. The initial

conditions for each experiment, as well as the flow on the

27- and 9-km domains are identical.

d. Model simulations

The 0000 UTC ensemble mean analysis and 0600

UTC ensemble mean forecast of the 500-hPa geo-

potential height field and wind speeds on the 27-km

domain are plotted in Fig. 13. At the analysis time (Fig.

13a) a low pressure trough is located just offshore of the

western United States. Associated with the low pressure

trough is a jet extending around the base of the trough

and into the central portion of California. The wind

speeds within the jet exceed 40 m s21 at 500 hPa. Six

hours later (Fig. 13b) the trough has moved onshore and

the associated jet maximum is interacting with the central

and southern portion of the Sierra Nevada Mountains.

This synoptic-scale flow regime is conductive to the

formation of mountain waves and downslope winds

within the Owens Valley.

A vertical cross section of the 6-h ensemble mean

forecast of w and u along the transect indicated in Fig.

12b is plotted in Fig. 14 using data from the 3-km-

resolution mesh. The second-order solution (Fig. 14a)

shows a large-amplitude mountain wave anchored to

the Sierra Nevada crest. The vertical velocities in the

ensemble mean exceed 18 m s21 through a large depth

of the troposphere. However, the ensemble variability

of vertical velocity is very large within the mountain

wave. The maximum upward motions range from 6 m s21

in the weakest ensemble member to 28 m s21 in the

strongest member. The large-amplitude mountain wave

is also apparent in the potential temperature field. For

example, the 320-K isentrope is depressed nearly 2.5 km

on the lee side of the orography. In contrast, the mountain-

wave solution computed with the fourth-order advection

scheme (Fig. 14b) is substantially weaker with consid-

erably lower ensemble variability. The maximum ver-

tical velocity in the ensemble mean does not exceed 8 m

s21 and varies between 4 m s21 in the weakest member

to 16 m s21 in the strongest member. In this simulation

FIG. 12. Location and topography of the (a) 27-, 9-, and 3-km COAMPS domains as well as the (b) topography and

cross-section location on the 3-km domain. The solid and dashed white lines in (b) indicate the spatial extent over

which the respective downslope wind metric and minimum flow aloft metric are computed.
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the 320-K isentrope is only displaced downward about

1 km indicating a much weaker wave. While nonlinear

effects are clearly present in this mountain-wave simu-

lation, the linear analysis presented in the previous

section provides guidance for the sources of the errors in

the second-order scheme. The wave energy in the poorly

resolved nonhydrostatic modes propagates vertically in

the second-order solution leading to a significant over-

amplification of the vertically propagating modes.

Associated with the large-amplitude wave in the

second-order solution is a severe downslope windstorm

penetrating into the Owens Valley. Figure 15 shows the

simulated and observed downslope wind speeds 10 m

AGL at the point labeled DRI 01 in Fig. 12b. The ob-

servational data has been filtered with a low-pass filter

to remove high-frequency oscillations. At the peak in-

tensity of the second-order solution, the simulated

winds are more than 30 m s21 stronger than observa-

tions. In contrast, the relatively weak mountain wave in

the fourth-order solution leads to much better agree-

ment between the simulated and observed winds. This is

especially true for the second half of the 12-h forecast

where the errors in the model simulation are generally

less than 5 m s21. The larger errors during the first half

of the forecast could be associated with adjustments to

the mountain-wave structure associated with the switch

from the second- to fourth-order schemes.

Probability densities of the simulated downslope wind

speed at the DRI 01 station at 0600 UTC are shown in

Fig. 16. The probability densities have been computed

by binning each of the 70 ensemble members into 5 m s21

bins and normalizing the resulting distribution so that

the area under the curve is equal to 1. Switching from

the second- to the fourth-order scheme results in a sig-

nificant decrease of downslope wind intensity for most

ensemble members, as well as a decrease in the en-

semble spread.

The weaker downslope winds present in the fourth-

order solution can be understood as a response to re-

duced midtropospheric wave breaking. Figure 17 shows

a scatterplot of the downslope winds in the Owens

Valley as a function of the cross-barrier flow aloft at

0600 UTC. The downslope winds are computed for each

ensemble member by averaging the zonal wind speed

over a 250-m-deep box whose perimeter is depicted by

the solid white line in Fig. 12b. The cross-barrier flow is

computed as the minimum wind speed perpendicular to

the Sierra Nevada crest between 5 and 9 km over the

region defined by the dashed box in Fig. 12b. In the

second-order solution (Fig. 14a), a large number of en-

semble members have reversed flow above the lee slope,

indicating that the mountain waves are breaking. Strong

downslope winds in the Owens Valley are associated

with such breaking (Peltier and Clark 1979). In contrast,

the upper-level flow for most of the ensemble members

is not reversed in the fourth-order solution, indicating

that the mountain wave is not breaking, and as a conse-

quence the downslope winds are much weaker.

5. Conclusions

Discretization errors in numerical solutions to flow

over topography are explored with linear theory and

nonlinear NWP model simulations. Steady gravity waves

FIG. 13. The (a) 0- and (b) 6-h ensemble mean forecast of 500-hPa geopotential height and wind speed for the 0000 UTC 17 Apr 2006

initialized forecast.
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are considered for scales ranging from nonhydro-

static, where errors are most likely to be found in high-

resolution mesoscale NWP models, to inertial waves,

which may contain errors in coarser-resolution global

models. Analytic solutions to the discrete linear two-

dimensional mountain-wave problem with constant N

and U are computed with the horizontal advective term

approximated by first- through sixth-order finite differ-

ences. Solutions from a time-dependent linear numerical

model are also used to examine the sensitivity to the

order of the horizontal advective operator in cases with

more realistic atmospheric structure.

These analyses show that when second-order differ-

encing is used on a staggered mesh, very significant er-

rors can occur in the wave field generated by a smooth

isolated ridge that one might suppose would be satis-

factorily resolved by the numerical mesh. In particular,

if the ridge forces vertical velocity perturbations most

strongly at a wavelength of 8.1Dx and the waves are

nonhydrostatic, the structure of the wave field can be

qualitatively in error, and the extrema in the vertical ve-

locity field can be too strong by 30%–40%. When the flow

is hydrostatic, the same numerical resolution can produce

smaller underestimates (7%) of the wave amplitude. As

might be expected, these errors increase substantially

when the mountain is spanned by fewer grid points.

The errors in mountain-wave amplitude may be un-

derstood by examining the errors in the discrete repre-

sentation of the group velocity. In the nonhydrostatic

solution the group-velocity vector for the dominant

wave forced by the coarsely resolved topography does

not point sufficiently downstream. Instead, wave energy

accumulates over the mountain peak, overamplifying

the mountain wave. Higher-order schemes are able to

more accurately capture the downstream orientation of

the group-velocity vector and the dispersion of the in-

dividual modes that compose the solution.

Numerical errors will always be present when the

orographically forced gravity waves are poorly resolved.

The number of grid points required to adequately cap-

ture these waves depends on the importance of non-

hydrostatic effects and on the numerical scheme being

used. A surprisingly large number of points is required

when second-order horizontal advection is used in models

with staggered grids. To limit group-velocity vector errors

to less than 10%, features simulated with the second-

order scheme need to be resolved with at least 15 grid

points at steady nonhydrostatic wavelengths and nearly

25 grid points for steady hydrostatic waves. Signifi-

cant improvements are achieved with fourth-order

advection. In this case, 7-gridpoint resolution is suffi-

cient to limit the group-velocity vector errors to less

than 10% for both hydrostatic and nonhydrostatic

waves. Switching to sixth-order advection gives little or

no improvement (hydrostatic waves are slightly worse)

unless fourth-order finite differences are also used to

approximate the pressure gradient and divergence terms.

One simple way to avoid these discretization errors is to

remove the poorly resolved wavelengths from the topo-

graphic forcing prior to the numerical simulation

(e.g., Webster et al. 2003). Another possibility is to use

fourth-order advection since the computational cost of

FIG. 15. The observed (dotted) 10-m downslope wind speed at

the DRI 01 Mesonet station (see Fig. 12b). Also plotted is the

forecasted ensemble mean 10-m wind speed for the second- (solid)

and fourth-order (dashed) horizontal advection schemes.FIG. 14. The 6-h ensemble mean forecast of vertical velocity and

potential temperature using (a) second- and (b) fourth-order

horizontal advection. The location of the cross section is shown in

Fig. 12b.

MAY 2009 R E I N E C K E A N D D U R R A N 1547



increasing the horizontal resolution is far greater than

that of increasing the order of accuracy of the numerical

scheme.

The group-velocity errors are due, in large part, to the

C-grid staggering. While this staggering is common to

many NWP models [e.g., Advanced Research Weather

Research and Foreasting model (ARW-WRF), COAMPS,

Regional Atmospheric Modeling System (RAMS), Met

Office Unified Model (UKMO-UM), and Méso-NH]

improved group-velocity propagation can be obtained

using unstaggered meshes. This is especially true for

hydrostatic flow where the second-order discrete solu-

tions do not admit any upstream-propagating wave

modes for waves longer than 4Dx. Even on unstaggered

meshes, the use of flux limiters (e.g., Skamarock 2006)

will reintroduce differences in the discrete horizontal

wavenumbers associated with advection and those as-

sociated with the pressure gradient and divergence

terms, and this may generate errors similar to those seen

on staggered meshes. Analysis of other grid staggerings

(such as the E or B grid) is left to future research.

The practical implications of overamplification of

nonhydrostatic waves is demonstrated in the context of a

70-member COAMPS ensemble simulation of a mountain-

wave event over the Sierra Nevada Mountains of Cal-

ifornia. Here, an experiment is performed in which the

horizontal advective scheme on a 3-km resolution mesh is

switched from second to fourth order. In the second-order

solution a very strong mountain wave with vertical ve-

locities in the ensemble mean exceeding 18 m s21 is forced

by the topography. Associated with the simulated moun-

tain wave is a severe downslope windstorm with en-

semble mean winds close to 25 m s21. Switching to fourth-

order accurate advection, the mountain-wave amplitude

decreases such that the ensemble mean vertical veloci-

ties do not exceed 8 m s21, and the downslope winds are

reduced to less than 5 m s21, which is close to the wind

speed that was observed during the event.

Our focus has been on the influence of discretization

errors in steady internal gravity waves. When such

waves are forced by topography, they can produce co-

herent, large-amplitude signals whose errors may be

detected relatively easily. Smaller-amplitude nonsteady

internal gravity waves are also present in many meso-

scale simulations. If such waves are simulated using

second-order advection on a C-grid staggered mesh, it

FIG. 17. The ensemble scatter for the (a) second- and (b) fourth-

order horizontal advection schemes between the simulated 6-h

downslope winds in the Owens Valley and the minimum Sierra

perpendicular wind speed in a region over the Sierra Nevada crest

and Owens Valley.

FIG. 16. The ensemble-derived probability density function for

the 6-h forecast of 1-m downslope wind speeds at the DRI 01

station. Both the the second- (solid) and fourth-order (dashed)

solutions are plotted.
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seems likely that at least in some circumstances, they

will be in serious error unless they are very well resolved

(by more than 15 horizontal grid points per wave-

length). A thorough investigation of discretization er-

rors in nonsteady waves is, however, beyond the scope

of this paper.
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