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ABSTRACT

The sensitivity of downslope wind forecasts to small changes in initial conditions is explored by using

70-member ensemble simulations of two prototypical windstorms observed during the Terrain-Induced Rotor

Experiment (T-REX). The 10 weakest and 10 strongest ensemble members are composited and compared for

each event.

In the first case, the 6-h ensemble-mean forecast shows a large-amplitude breaking mountain wave and

severe downslope winds. Nevertheless, the forecasts are very sensitive to the initial conditions because the

difference in the downslope wind speeds predicted by the strong- and weak-member composites grows to

larger than 28 m s21 over the 6-h forecast. The structure of the synoptic-scale flow one hour prior to the

windstorm and during the windstorm is very similar in both the weak- and strong-member composites.

Wave breaking is not a significant factor in the second case, in which the strong winds are generated by a

layer of high static stability flowing beneath a layer of weaker mid- and upper-tropospheric stability. In this

case, the sensitivity to initial conditions is weaker but still significant. The difference in downslope wind speeds

between the weak- and strong-member composites grows to 22 m s21 over 12 h. During and one hour before

the windstorm, the synoptic-scale flow exhibits appreciable differences between the strong- and weak-

member composites. Although this case appears to be more predictable than the wave-breaking event, nei-

ther case suggests that much confidence should be placed in the intensity of downslope winds forecast 12 or

more hours in advance.

1. Introduction

Downslope windstorms are a frequently occurring

phenomenon capable of adversely impacting com-

merce and communities in the lee of mountain barriers.

Although high-resolution, cloud-resolving numerical

weather prediction (NWP) models have shown an abil-

ity to realistically hindcast downslope windstorms (e.g.,

Colle and Mass 1998; Doyle and Shapiro 2000), the

predictability of downslope winds remains largely un-

known. Lorenz (1969) argued that, because of the rapid

upscale propagation of uncertainties in the specification

of initial conditions, the predictability of forecasts for

mesoscale motions with spatial scales on the order of

10 km would be limited to time scales on the order of 1 h.

This discouraging prospect has largely been supplanted

by a more optimistic view based on experiences with

high-resolution NWP models demonstrating that real-

istic mesoscale circulations can be generated during the

forecast without having to specify mesoscale precursors

to these circulations in the initial conditions. Anthes

et al. (1985) argued that the predictability of many me-

soscale phenomena can substantially exceed that sug-

gested by Lorenz if they are sufficiently organized by the

large-scale flow (e.g., fronts) or controlled by well-known

external forcing such as orography, thermal contrasts, or

other land-use characteristics.

Klemp and Lilly (1975) presented some of the earliest

results suggesting that topography may enhance meso-

scale predictability. They predicted downslope winds

in Boulder, Colorado, using a linear two-dimensional

mountain-wave model initialized with soundings taken

from large-scale NWP model forecasts at locations up-

stream of the Colorado Rockies. Using soundings valid

3–5 h prior to the windstorm, they obtained a significant

positive correlation between the predicted and observed
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wind speeds, at least for those events where gusts in

excess of 25 m s21 were measured. The results of Klemp

and Lilly offer the possibility that downslope windstorms

‘‘are potentially predictable well in advance of their

formation given accurate large-scale forecasts’’ (Anthes

1984); however, the question of what constitutes a suffi-

ciently accurate large-scale forecast has remained largely

unexplored.

A more recent attempt to forecast downslope winds

produced more equivocal results. Nance and Coleman

(2000) employed a two-dimensional nonlinear mesoscale

model to forecast downslope winds using initial conditions

generated by a synoptic-scale NWP model. Their ap-

proach, which was considerably more sophisticated than

that used by Klemp and Lilly (1975) and which was based

on synoptic-scale forecasts that should have been much

better than those available in the 1970s, did have consid-

erable success in providing alerts on days when wind-

storms were observed, but it also generated a large

number of false warnings, suggestive of a difficulty in dis-

tinguishing between actual windstorms and null events.

A few previous studies have investigated aspects of

downslope windstorm predictability using idealized two-

dimensional numerical models. Doyle et al. (2000) com-

pared simulations produced by 11 different numerical

models initialized with identical upstream soundings rep-

resentative of the conditions during the 11 January 1972

Boulder windstorm (Lilly and Zipser 1972; Lilly 1978).

Although all of the models were able to produce downslope

winds and a region of wave breaking in the lower strato-

sphere, the temporal evolution of the breaking was sig-

nificantly different between the individual models. More

recently, Doyle and Reynolds (2008) constructed an en-

semble of two-dimensional simulations by adding random

perturbations with magnitudes typical of radiosonde obser-

vational errors to the same Boulder sounding. For strongly

nonlinear flow, the ensemble spread was characterized by

a broad distribution with half of the members simulating

a large-amplitude breaking wave in the stratosphere and

the other half of the members simulating a trapped-wave

response. Additionally, the downslope wind speed varied

by over 25 m s21 between the ensemble members.

The purpose of this study is to explore the predict-

ability of downslope winds in a fully three-dimensional

NWP model by examining the initial-condition sensi-

tivity of two prototypical storms that occurred dur-

ing the Terrain-Induced Rotor Experiment (T-REX;

Grubišić et al. 2008). For each case, we conduct 70-

member mesoscale ensemble simulations in which the

initial-condition variability across the ensemble repre-

sents the expected level of uncertainty in the NWP

analysis. We explore the time scale over which small

initial differences between the ensemble members grow

to large differences in the strength of the downslope

winds. As we shall see, this time scale turns out to be far

shorter than the one- or two-day period over which

Anthes (1984) suggested accurate downslope wind fore-

casts could be made.

The two prototypical T-REX windstorms arise from

different dynamical mechanisms. In the first case [in-

tensive observation period (IOP) 6], a large-amplitude

mountain wave breaks and strong downslope winds

develop beneath the breaking region (Clark and Peltier

1977; Peltier and Clark 1979). Wave breaking can also

lead to severe clear-air turbulence (CAT), which can be

a significant threat to aviation (Lilly 1978; Nastrom and

Fritts 1992). The mechanism that is active in the second

case (IOP 13), which we will refer to as static-stability

layering, occurs in cross-mountain flows with a strong

stable layer near mountaintop level, below a much

deeper layer of relatively weak upper-tropospheric sta-

bility (Durran 1986). For this class of windstorms, wave

breaking is not an important factor, but severe down-

slope winds are still found along the lee slope.

The outline of this paper is as follows: the experi-

mental setup, numerical model, and ensemble technique

are described in section 2. The synoptic-scale evolution

of the two events is given in section 3. The growth of

ensemble variability for the two downslope wind events

is described in section 4. Section 5 characterizes the

challenges and limitations associated with downslope

wind forecasting. Conclusions are presented in section 6.

2. Experimental design and setup

This section contains a description of the experimen-

tal design, numerical model, and ensemble method used

in this study. A 70-member ensemble is used to char-

acterize the initial-condition error growth for two strong

downslope wind events which occurred during T-REX.

T-REX took place from 1 March to 30 April 2006 over

the southern Sierra Nevada and the adjacent Owens

Valley (Fig. 1), and it sampled several strong mountain-

wave and downslope wind events.

The first event we consider, IOP 6 (25–26 March 2006),

generated a large-amplitude breaking mountain wave,

along with vigorous turbulence and strong downslope

winds. The second event, IOP 13 (16–17 April 2006), was

characterized by upstream layering of the static-stability

profile. Wave breaking was not apparent in the simula-

tions for this case; however, strong downslope winds still

developed.

a. Numerical model

Numerical simulations are computed with the Cou-

pled Ocean–Atmosphere Mesoscale Prediction System
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(COAMPS; Hodur 1997), which solves a finite-difference

approximation to the fully compressible, nonlinear, non-

hydrostatic equations of motion on a terrain-following

vertical coordinate system. Prognostic equations for the

zonal, meridional, and vertical velocities (u, y, and w),

as well as potential temperature u and Exner function

p, are marched in time with a two-time-step integration

(Klemp and Wilhelmson 1978). The finite-difference

approximations to the space derivatives are second-

order accurate, with the exception of the horizontal-

advection terms, which are fourth-order accurate.

Nonlinear instability is controlled in the model with a

fourth-order diffusion operator applied to the prog-

nostic variables at each time step. A full suite of physical

processes are represented in the COAMPS simulations,

including the parameterization of the boundary layer,

radiative transfer, and moist processes (see Hodur 1997).

To resolve the multiscale aspect of downslope winds

and mountain waves, three one-way interacting nests

with 27-, 9-, and 3-km horizontal resolution are centered

over the Sierra Nevada and Owens Valley (Fig. 1). The

outermost 27-km mesh encompasses the western North

American continent as well as a large portion of the

eastern Pacific Ocean (Fig. 1a). An intermediate-sized

9-km mesh extends over the north–south extent of the

Sierra Nevada range (Fig. 1b). The 3-km mesh is located

over the highest portion of the Sierra Nevada and covers

the region immediately upstream and downstream of

the mountains, including the Owens Valley (Fig. 1c).

Each nest is configured with 40 vertical levels, typical of

real-time operational NWP models. The time step on

the 3-km domain is 3.3 s and increases by a factor of 3 for

each larger domain.

The lateral boundary conditions on the 27-km domain

are specified from operational forecasts of the Naval

Operational Global Atmospheric Prediction System

(NOGAPS) and perturbed for each ensemble member

using the fixed-covariance-perturbation method described

in Torn et al. (2006). The perturbations are Gaussian

with zero mean and a covariance that is balanced for

synoptic-scale motions. The covariance relations are

obtained from the Weather Research and Forecasting-

Variational (WRF-VAR) data assimilation system (Barker

et al. 2004). The 27-km domain was designed to be

large enough so that these perturbations undergo sev-

eral assimilation cycles before impacting the Sierra

Nevada and Owens Valley. The lateral boundaries on

the 9- and 3-km domains are updated every time step

from the parent ensemble member. Topography on the

lower boundary is specified from the global land one-

kilometer base elevation (GLOBE) dataset and inter-

polated to the model grid points. A 25-point filter is

applied to the interpolated topography field to remove

the 2Dx signal. Upward propagating gravity waves are

damped over the top 7 model levels by gradually in-

creasing the numerical viscosity.

b. Ensemble method

An ensemble Kalman filter (EnKF) is used for data

assimilation and to provide a set of 70 initial conditions

for the numerical simulation of the downslope wind

events. Under the assumption of Gaussian error statis-

tics, the EnKF optimally combines a previous forecast

with new observational data (Hamill 2006). The vari-

ability within the ensemble analysis represents the ex-

pected level of error, given uncertainty in the observations

and in the previous forecast. The growth of ensemble

variability over a given forecast period reflects the po-

tential for error growth resulting from initial-condition

uncertainty. A brief description of our implementation

of the EnKF on the outer 27-km domain is given in the

appendix. For detailed reviews of data assimilation us-

ing an EnKF, the reader is referred to Evensen (2003)

and Hamill (2006).

FIG. 1. The topography on the (a) 27-, (b) 9-, and (c) 3-km domains. The solid black lines in (b) and (c) indicate the locations of the vertical

cross sections. The Owens Valley metric box is depicted by the solid white lines.
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For several reasons, it was beneficial to cycle the

EnKF data assimilation system on the 27-km COAMPS

domain for the duration of the T-REX field campaign

(1 March–30 April). The two-month-long integration

generated a reasonably large set of statistics from which

the EnKF could be evaluated and properly calibrated.

Additionally, because of the high computational cost

of integrating the high-resolution ensemble, only ac-

tive mountain-wave periods could be simulated with the

9- and 3-km-domain ensemble.

The ensemble initiation procedure for the 9- and 3-km

domains for both the IOP 6 and IOP 13 simulations is

shown schematically in Fig. 2. For the IOP 6 simulation,

each ensemble member from the 27-km domain was

linearly interpolated to the 9-km domain at 0600 UTC

24 March, and the 9-km ensemble was interpolated to

the 3-km domain at 0000 UTC 25 March. From the in-

terpolation time (when each nested domain is initial-

ized) to 1800 UTC 26 March, each nest is independently

cycled every 6 h with EnKF data assimilation. The pre-

dictability experiment begins at 1800 UTC 26 March by

integrating the ensemble forward for 12 h without fur-

ther data assimilation. In a similar manner, but for the

IOP 13 simulation, the 9-km domain was initialized

at 1200 UTC 15 April by interpolating data from the

27-km domain, and the 3-km domain was initialized

at 0600 UTC 16 April by interpolating data from the

9-km domain. The set of initial conditions for 1800 UTC

16 April is integrated forward for 12 h without data as-

similation. Interpolating the 27-km-domain ensemble to

the finer meshes was a natural way to initialize the high-

resolution ensemble forecasts. This procedure allows

the resolved circulations and covariance relations suffi-

cient time to spin up on each nest and ensures that the

initial conditions on the nest contain horizontal scales

appropriate for that grid spacing. Doyle and Smith

(2003) have shown that mountain-wave simulations only

require a few assimilation cycles to adequately represent

the scales of motion resolvable by the numerical mesh.

Similar nesting procedures for ensemble data assimila-

tion have been performed in simulations of tropical cy-

clones (Zhang et al. 2009; Torn and Hakim 2009).

3. Synoptic-scale flow

The synoptic-scale flow pattern for the IOP 6 and

IOP 13 events are described in this section. For IOP 6,

the 500-hPa ensemble-mean analysis of geopotential

height and wind speed is shown in Fig. 3. At 1800 UTC

25 March 2006 (Fig. 3a), a relatively sharp, negatively

tilted trough is situated directly over the northern Cal-

ifornia coastline. A 45 m s21 jet maximum is located at

the base of the trough with strong southwesterly flow

extending northeastwards to the northern Sierra Nevada.

Six hours later, at 0000 UTC 26 March 2006 (Fig. 3b), the

trough has progressed eastward such that the strongest

winds are directly upstream of the Owens Valley and

oriented nearly perpendicular to the barrier. The spatial

extent of the high wind speeds has decreased and their

maximum intensity has dropped below 45 m s21. As will

be seen, the ensemble mean downslope wind response is

very strong at this time.

The synoptic-scale evolution for the IOP 13 case is

shown in Fig. 4. At 0000 UTC 17 April 2006 (Fig. 4a), a

broad, positively tilted trough is situated nearly 400-km

west of the San Francisco Bay. A broad region of strong

zonal flow, with wind speeds greater than 45 m s21,

extends from the base of the trough to the central and

southern Sierra Nevada. Six hours later (0600 UTC

17 April 2006; Fig. 4b) the trough has intensified and

progressed eastward to the upstream side of the Sierra

Nevada. At this time, the flow is perpendicular to the

Sierra Nevada crest; as will be seen in the next section,

distinct static-stability layering is present throughout the

troposphere, with strong stability in the lower tropo-

sphere and weaker stability farther aloft.

4. Downslope wind variability

In this section, the predictability of the wave-breaking

event (IOP 6) and that of the layered event (IOP 13) is

explored by considering the growth in the variability of

the downslope wind response. To quantify the downslope

FIG. 2. Diagram of the data assimilation procedure on the 27-, 9-,

and 3-km domains for the IOP 6 and IOP 13 experiments. Open

circles indicate data assimilation and the dashed arrows indicate

interpolation from the parent domain to the child domain. The

dashed lines at the end of each bar represent the time of the IOP 6

and IOP 13 experiments in which the ensemble was run in forecast

mode, and the diamonds indicate the time the ensemble members

are ranked.
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wind intensity, an average zonal wind is computed on the

3-km domain within the white box depicted in Fig. 1c. To

capture the low-level westerly momentum associated with

the downslope winds, the metric box extends from ground

level to 350-m AGL. This metric is referred to as the

‘‘Owens Valley metric’’ and is used to characterize the

downslope wind response throughout the rest of this pa-

per. The box covers the approximate horizontal extent of

the T-REX observational network in which downslope

winds were typically observed. For both cases, we consider

forecasts valid at the time when the ensemble mean predicts

a maximum downslope wind response; that is, 0000 UTC

26 March 2006 for the IOP 6 wave-breaking case and

0600 UTC 17 April 2006 for the IOP 13 layered case.

a. Ensemble distributions

To begin evaluating predictability characteristics of the

two windstorm forecasts, we consider ensemble-derived

FIG. 3. The EnKF mean analysis of the 500-hPa geopotential heights and wind speed on the 27-km domain for IOP 6 at (a) 1800 UTC

25 Mar and (b) 0000 UTC 26 Mar.

FIG. 4. The EnKF mean analysis of the 500-hPa geopotential heights and wind speeds on the 27-km domain for IOP 13 at (a) 0000 UTC

17 Apr and (b) 0600 UTC 17 Apr.
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distributions of the Owens Valley metric. Figures 5a,b

show ensemble distributions of the Owens Valley met-

ric for the 1800 UTC 25 March IOP 6 and 0000 UTC

17 April IOP 13 analyses, respectively. The distributions

are computed by binning the Owens Valley metric from

each ensemble member into 2.5 m s21 wide bins and

normalizing so that the area under the curve is unity.

Equivalently, these can be thought of as ensemble-

derived probability density functions (PDFs). These dis-

tributions show the variability of the lee-slope winds in

the 70-member ensemble at the start of the forecast.

As a consequence of data assimilation, where obser-

vations systematically reduce the ensemble variance, the

variability of the Owens Valley metric at the initial time

is relatively small. For the 1800 UTC IOP 6 analysis

(Fig. 5a) the majority of ensemble members lay between

15 and 22.5 m s21, with a definitive peak in the 20 m s21

bin. In contrast, the distribution in the IOP 13 analysis at

0000 UTC (Fig. 5b) is broader with the wind speeds at

the initial time ranging between 5 and 17.5 m s21 and a

maximum in the 12.5 m s21 bin. The initial distributions

for both the 1800 UTC IOP 6 case and the 0000 UTC

IOP 13 case are approximately normally distributed,

which is consistent with the EnKF assumptions.

The PDF for the Owens Valley metric of the 6-h IOP 6

forecast (valid 0000 UTC 26 March) is shown in Fig. 5d.

Compared to the initial time, the 6-h forecast contains

a large level of uncertainty with a broad region of rela-

tively uniform probabilities between 22.5 and 42.5 m s21.

Assuming that the observed response is sampled from

the same distribution as the ensemble, there is approx-

imately a 15% chance that the forecast winds will verify

within any 5-m s21 wide band over this range. In addi-

tion, a long tail extends toward weaker winds, suggesting

a relatively high chance for false-positive forecasts. On

the strong side, there is a sharp cutoff of the distribution

for wind speeds greater than 42.5 m s21; however, one

very strong ensemble member is predicting downslope

winds close to 50 m s21.

The extent to which the spread in the forecast PDF

might be due to small differences in the timing of the

winds is explored in Fig. 6, which shows a PDF of the

maximum values of the Owens Valley metric computed

over a 6-h window centered on the 6-h IOP 6 forecast.

The long tail extending from 7.5 to 20.0 m s21 apparent

in the PDF of instantaneous winds (Fig. 5d) is not pres-

ent in this distribution. Nevertheless, there is still con-

siderable spread with the predicted downslope wind

response ranging from 20.0 to 50 m s21. Even a down-

slope wind forecast verifying over a relatively long 6-h

window would contain considerable uncertainty.

The 6-h IOP 13 forecast distribution (valid 0600 UTC

17 April) is shown in Fig. 5e. Although the wind intensi-

ties in the distribution range from nearly calm to a severe

FIG. 5. The ensemble distributions of the Owens Valley metric for the (a) 1800 UTC 25 Mar IOP 6, (b) 0000 UTC 17 Apr IOP 13, and

(c) 1800 UTC 16 Apr IOP 13 analyses. Also plotted are the distributions for the (d) 6-h, 1800 UTC IOP 6 forecast; (e) 6-h, 0000 UTC IOP

13 forecast; and (f) 12-h, 1800 UTC IOP 13 forecast. The shading shows the fraction of the distribution represented by the 10 strongest and

10 weakest ensemble members.
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downslope windstorm with winds exceeding 25 m s21,

there is a distinct peak centered at the 17.5 m s21 bin.

The probabilities within this bin are nearly twice as large

as the probabilities in the surrounding bins, suggesting

more confidence can be placed in the 6-h forecast of the

IOP 13 downslope wind event than in the 6-h forecast of

the IOP 6 event.

The relatively narrow probability distribution for 6-h

IOP 13 forecast suggests that it may be worthwhile to

examine a 12-h forecast for the same event. The distri-

butions for the analysis at 1800 UTC 16 April and the 12-h

forecast valid at 0600 UTC 17 April are shown in Figs. 5c,f.

As with the other two simulations, the analysis is charac-

terized by a relatively narrow distribution associated with

the data assimilation procedure; the wind speeds are

contained within the 0 to 10 m s21 range (Fig. 5c). How-

ever, over the course of the 12-h simulation, the wind

speeds increase substantially in a number of the ensemble

members and considerable uncertainty is associated with

this downslope wind forecast (Fig. 5f). A relatively large

section of the PDF is uniformly distributed, with approx-

imately a 20% chance that the actual wind speeds will fall

within any 5 m s21 band between 2.5 and 17.5 m s21.

Compared to the 6-h forecast valid at the same time, a

relatively long tail extending from 22.5 to 35 m s21 indi-

cates that a nontrivial chance of severe winds exists.

In the following, we will focus on the 6-h IOP 6

forecast initialized at 1800 UTC 25 March 2006 and the

12-h IOP 13 forecast initialized at 1800 UTC 16 April.

These two cases will be referred to as the IOP 6 and the

IOP 13 forecasts, respectively.

b. Strongest and weakest members

The predictability of the two events can be further

examined by considering the range over which the fore-

cast downslope winds vary within the ensemble. To this

end, the members are ranked according to the forecast

intensity of the Owens Valley metric, and the 10 stron-

gest and 10 weakest ensemble members are grouped

into two subsets. The shaded regions of the ensemble

forecast distributions (Figs. 5d–f) show the fraction of

the PDF containing the 10 strongest and 10 weakest

members. Although these subsets are located on the

tails of the distributions, they represent almost 30% of

the total probability.

Averages over these subsets are computed to give

composites of the strongest and weakest responses. These

composites facilitate a simple comparison between the

strong and weak cases on both the mesoscale and the

synoptic scale. Furthermore, using 10 ensemble members

to compute the composites ensures that our results are

not unduly influenced by one or two unrepresentative

outliers.

The Owens Valley metric at hour 6 (corresponding to

0000 UTC 26 March) was used to rank the 70 ensemble

members for IOP 6. Figure 7 shows the evolution of the

Owens Valley metric for each of the 10 strongest and

10 weakest ensemble members, as well as the mean for

each 10-member subset. At hour 6, the mean for the

strong subset is nearly 29 m s21 stronger than the mean

for the weak subset; however, the differences between the

subset means decrease rapidly after hour 6. Looking at the

individual members at hour 6, every strong member has

wind speeds greater than 35 m s21; whereas, the speed

for almost every weak member is less than 15 m s21. As

FIG. 6. As in Fig. 5d, but for the distribution of the maximum

Owens Valley metric over a 63-h window centered on the 6-h

forecast of the IOP 6 simulation.

FIG. 7. The evolution of the zonal wind averaged over the Owens

Valley metric box during the IOP 6 simulation for the (a) 10

strongest and (b) 10 weakest ensemble members. The thick line

shows the mean of each 10-member subset.
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will be discussed later, this large variability is associated

with mountain-wave breaking above Sierra Nevada

crest. At later times, the Owens valley metric varies

dramatically among the individual members of both

subsets, with wind speeds ranging from 5 to 35 m s21.

Consistent with our focus on the 12-h forecast in the

somewhat more predictable IOP 13 event, the weakest

and strongest 10-member subsets are determined by the

value of the Owens Valley metric at forecast hour 12

(0600 UTC 17 April). Figure 8 shows the individual

ensemble members as well as the ensemble mean from

the strong and weak subsets. Both the strong and weak

subsets predict relatively intense downslope winds 3.5 h

into the simulation that subsequently diminish by hour

4.5. Between 5 and 12 h, the differences between the two

subsets steadily grows, with the strong-subset mean in-

creasing to 26 m s21 and the weak-subset mean de-

creasing to just 4 m s21.

c. Downslope wind and mountain-wave response

A large-amplitude mountain wave generates the strong

downslope winds in the Owens Valley. Here, the dif-

ference in the mountain-wave structure associated with

the strongest and weakest ensemble members is com-

pared along vertical cross sections depicted by the solid

black lines in Fig. 1c. The orientation of the cross section

is representative of the ensemble-mean midtropo-

spheric synoptic-scale flow for the 6-h IOP 6 forecast

(A–A’ cross section) and the 12-h IOP 13 forecast (B–B’

cross section). Both the A–A’ and B–B’ cross sections

pass through the center of the Owens Valley metric box.

1) WAVE BREAKING: IOP 6

Figures 9a,b show the zonal-wind component, as well

as the turbulent kinetic energy (TKE) for the 6-h IOP

6 forecast along the A–A’ vertical cross section. The

panels labeled ‘‘weak members’’ and ‘‘strong members’’

are obtained by averaging the fields over the weak and

strong ensemble subsets. Consistent with the evolution

of the Owens Valley metric shown in Fig. 7, the differ-

ences between the means of the strong and weak subsets

have grown very large over the short 6-h forecast. For

the strong subset (Fig. 9b), a tongue of high winds ex-

tends from the midtroposphere down the lee slope of the

Sierra Nevada and into the Owens Valley. An extensive

region of wave breaking is indicated by the strongly

decelerated flow and large area of turbulent mixing

between 8 and 12 km. The wave breaking is associated

with the generation of the strong downslope flow on the

lee slope (Clark and Peltier 1977; Peltier and Clark

1979). In contrast, the weak members (Fig. 9a) are

characterized by high zonal-momentum air that does not

extend below crest level. For this subset, the upper-level

wave breaking is less extensive, weaker, and displaced

vertically. A small region of decelerated flow, with zonal

winds less than 10 m s21 is apparent near 12 km MSL.

Furthermore, the spatial extent of the upper-tropospheric

turbulent mixing region is much smaller, with the TKE

barely exceeding 10 m2 s22.

The subset-mean vertical velocities w and potential

temperatures u for the 6-h forecast in IOP 6 are plotted

along the same vertical cross section in Figs. 10a,b. The

strong-subset mean (Fig. 10b) contains a large-amplitude

mountain wave, as indicated by the large excursions of

the isentropes and the couplet of intense vertical veloc-

ity on the lee side of the Sierra Nevada. For example,

the 320-K isentrope is displaced downward nearly 4 km

from its nominal upstream height of 8 km, and the

maximum vertical velocity is nearly 14 m s21 in the

core of the updraft. Several of the individual ensemble

members predict a much stronger mountain wave with

vertical velocity magnitudes greater than 26 m s21.

Additionally, overturning is more evident for the indi-

vidual members; however, the subset average smoothes

this response. In contrast, the amplitude of the moun-

tain wave for the weak-subset mean (Fig. 10a) is little

more than half that of the strong subset. For the weak

subset, the maximum vertical velocity is 8 m s21 and

the downward displacement of the 320-K isentrope is

less than 2 km.

It is important to note that the difference between

the strong and weak downslope wind response is due to

major structural differences in the mountain wave, as

opposed to small shifts in the leeward extent of some

FIG. 8. As in Fig. 7, but for the IOP 13 simulation.
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region of high surface winds. These large differences

occur even though the upstream conditions are very

similar. For example, the zonal momentum upstream of

the Sierra Nevada crest is nearly indistinguishable be-

tween the strong and weak ensemble members (cf. the

left-hand sides of Figs. 9a,b). Forward shear is apparent

in both examples, with the zonal-wind increasing from

10 m s21 near crest level to 40 m s21 near the tropo-

pause. The stability of the upstream profiles is also very

similar between strong and weak members (Figs. 10a,b).

A layer of strong crest-level stability is present and the

undisturbed tropopause height is nearly identical for

both subsets. Despite these similarities, the difference

between the mountain waves and downslope wind fore-

cast for the two subsets is considerable, suggesting very

strong sensitivity to the model initial conditions and

predictive time scales of less than the 6-h length of the

forecast.

CAT commonly affects aircraft over regions of com-

plex terrain (Nastrom and Fritts 1992). With finescale

numerical models, it is possible to simulate CAT (Clark

et al. 2000); however, the predictability of these events

is not known. The large region of turbulent mixing

and strong vertical velocities associated with the strong

subset suggest that significant clear-air turbulence is

forecast through a deep layer over the Owens Valley. In

contrast, the weak vertical velocities and absence of

TKE indicate that significant CAT is not forecast for the

weak members. Thus, in this event, the predictability of

CAT appears to be just as limited as the downslope wind

predictability.

2) STABILITY LAYERING: IOP 13

Consider now the strong- and weak-subset means for

the IOP 13 case. Figures 9c,d shows the zonal wind, as

well as the TKE for the 12-h IOP 13 forecast along the

B–B’ vertical cross section. Evident in the strong-subset

mean (Fig. 9d) is a region of high westerly momentum

air extending down the lee slope of the Sierra Nevada

and into the Owens Valley. The strength of the down-

slope flow exceeds 40 m s21 high on the lee slope but

decreases sharply toward the base of the Owens Valley.

In contrast to the IOP 6 strong subset, mountain-wave

breaking is not present in the upper troposphere along

the B–B’ cross section. The upper-level winds above the

Owens Valley are not reversed, but they are generally

greater than 20 m s21, and turbulent mixing, as indi-

cated by TKE, is completely absent. Despite the lack of

wave breaking, the difference between the strong and

weak subsets is large. Strong zonal flow is only present

well above crest level in the weak ensemble members

(Fig. 9c). Additionally, the weak members exhibit easterly

FIG. 9. The zonal wind u (shaded) and TKE (heavy contours) along a vertical cross section across the Sierra Nevada for the (a) 10

weakest and (b) 10 strongest ensemble members for the 6-h IOP 6 forecast as well as the (c) 10 weakest and (d) 10 strongest ensemble

members for the 12-h IOP 13 forecast. The contour interval (CI) is 10 m s21 for u and 10 m2 s22 for TKE. The zero u contour is depicted

by the dashed line.
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flow within the Owens Valley, which extends nearly

halfway up the lee slope of the Sierra Nevada.

The u and w fields in the mountain wave for the 12-h

IOP 13 forecast are plotted along the B–B’ vertical cross

section in Figs. 10c,d. In the strong-subset cases (Fig. 10d),

the mountain wave generates trough-to-crest displace-

ments of the 320-K isentrope of roughly 3 km and a

vertical velocity maximum greater than 12 m s21. Up-

stream of the Sierra Nevada, the static-stability profile is

composed of two distinct layers within the troposphere:

a layer of strong static stability below 6 km MSL and layer

of weak static stability between 6 and 11 km MSL. The

layered structure leads to an amplification of the shorter

wavelengths through nonlinear processes (Durran 1986,

1992); in fact, the horizontal wavelength is roughly half

that of the strong IOP 6 solution (Fig. 10b).

On the other hand, the weak-subset-mean mountain

wave has much lower amplitude (Fig. 10c). The trough-

to-crest displacements are reduced to roughly 1 km and

the vertical velocity maximum is less than 8 m s21.

Upstream of the Sierra Nevada, a layered stability

structure is again evident, but the vertical distribution

of the Brunt–Väisälä frequency and wind speed is

considerably different. Compared to the strong subset,

the stability is weaker near crest level and stronger in

the middle to upper troposphere and the wind speeds

are greater in the upper troposphere. These differences

in static stability and wind speed are likely responsible

for the differences in the strength of the mountain wave

and the downslope winds. The fact that such a large

variation develops between the subsets over just a 12-h

forecast suggests that windstorms produced by stability

layering can also be quite sensitive to the model initial

conditions.

5. Variability in the large-scale flow

In this section, the synoptic-scale variability between

the strong- and weak-member subsets will be examined

both at the time of the most intense downslope winds

and one hour prior to that wind maximum.

a. Upstream soundings

A single sounding profile upstream of a mountain

barrier is sometimes used for downslope wind prediction

(e.g., Klemp and Lilly 1975; Nance and Coleman 2000).

Here, we compare the upstream profiles of the cross-

barrier component of the flow U, potential temperature

u, Brunt–Väisälä frequency N, and relative humidity

RH between the strong and weak subsets of the IOP 6

and IOP 13 forecasts. For both cases, we consider model

soundings computed on the 3-km domain one hour prior

to the time in which the ensemble members were ranked.

To determine appropriate locations for the upstream

FIG. 10. As in Fig. 9, but for the vertical velocity w (shaded) and potential temperature u (heavy contours). The CI is 10 K for u and 4 m s21

for vertical velocity. The zero contour of vertical velocity is omitted and the negative contours are dashed.
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soundings, 1-h back trajectories were launched on the

3-km domains from the upstream edge of the Owens

Valley metric box at a height of 5 km MSL, thereby

ensuring that the profiles represent the atmospheric

conditions over the crest at the time when the ensemble

members are ranked.

1) IOP 6

Figure 11 shows soundings of U, u, N, and RH from

the 5-h forecast (valid 2300 UTC 25 March) for the IOP

6 simulation. With the exception of the low-level RH,

the strong and weak subsets are strikingly similar. For

example, the U profiles differ by less than 3 m s21

through the depth of the troposphere, whereas the u and

N profiles are nearly indistinguishable. The soundings

for each subset contains a stable layer centered at a

height of 4.2 km, weaker static stability in the upper

troposphere, and a tropopause height close to 9.5 km. A

short-vertical-wavelength fluctuation in N is apparent in

the 1.0–2.5-km layer of the weak-subset sounding. The

influence of this small-scale feature on the intensity

of the lee-side response is unknown, but it is expected

that the deeper layer of strong static stability extending

through the midtroposphere is much more important in

regulating the development of strong downslope winds.

It is hard to imagine that a forecaster could differentiate

between the strong and weak responses based on these

upstream profiles of U, u, and N. Furthermore, assimi-

lating radiosonde data at this location would do little to

improve an NWP downslope wind forecast because,

except for the humidity, the differences between the

weak and strong members are within the error bounds

associated with radiosonde observations.

In contrast to the wind speed and temperature, sub-

stantial humidity differences are apparent in the 1–3-km

layer. Throughout this layer, the RH for the strong-

subset mean is generally greater than 80% with a maxi-

mum value of approximately 95% at 1.5 km. In contrast,

for the weak-subset mean, the RH is less than 80% in the

1–3-km layer with a minimum near 65% at 1.75 km. The

importance of these differences in moisture will be dis-

cussed later.

2) IOP 13

For the IOP 13 case, the upstream profiles of U, u, N,

and RH are shown in Fig. 12. The distinct layering of

static stability in the troposphere is evident; however, the

structure is considerably different between the strong and

weak subsets. On one hand, for the strong subset, a classic

layered structure of the static stability is present with N

exceeding 0.014 s21 between the elevations of 2.5 and

5.2 km and lower stability farther aloft. This layering is

FIG. 11. Composite model soundings for the strong subset (solid) and weak subset (dashed)

for IOP 6. The soundings are valid at forecast hour 5 (one hour before the time of maximum

wind) and taken at the upstream edge of the A–A’ cross section depicted in Fig. 1c. Plotted is

the (a) cross-barrier component of the wind U, (b) potential temperature u, (c) Brunt–Väisälä

frequency N, and (d) RH.
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very favorable for strong downslope winds on the lee side

of the barrier (Durran 1986). On the other hand, the weak

members are characterized by weaker stability in the 2.5–

5.2-km layer and much stronger stability farther aloft. In

addition to the differences in the static-stability profiles,

the cross-barrier flow above 6-km is nearly 10 m s21

faster in the weak-member subset. In contrast to the other

variables, the RH profile is very similar between the

strong- and weak-member subsets, with significant drying

above 3 km in both profiles. Thus, unlike IOP 6, signa-

tures potentially capable of distinguishing between the

strong and weak subsets are available at this short 1-h

lead time, suggesting a somewhat longer predictive time

scale for IOP 13.

3) MOIST PROCESSES

The large difference in low-level moisture presented in

Fig. 11d suggests the possibility that diabatic effects as-

sociated with moist processes are modulating the strength

of the windstorm. Jiang and Doyle (2009) argued that low-

level moisture during IOP 6 strengthened the mountain-

wave response by reducing the below-mountaintop

stability and decreasing the depth of the blocked layer.

To asses the role of moisture and latent heating on the

error growth of the Owens Valley metric a ‘‘dry’’ version

of the IOP 6 ensemble simulation is conducted in which

diabatic and radiative effects associated cloud micro-

physical processes are eliminated. In all other respects,

including the set of initial and boundary-conditions

perturbation making up the ensemble, the new set of

simulations is identical to that of the original ‘‘control’’

IOP 6 experiment.

We first evaluate the downslope wind response for the

same set of ensemble members, which comprised the

strong- and weak-member subsets in the control simula-

tion. Consistent with Jiang and Doyle (2009), the strong-

member-subset mean weakens by 12.5 m s21 at hour 6.

On the other hand, the dry weak-member-subset mean

strengthens by 3.6 m s21. As a consequence, the differ-

ence between the means of the strong and weak subsets

is reduced from 29 m s21 in the moist case to 13 m s21

in the dry case. Although the difference in wind speed

remains substantial, it does appear that the low-level

humidity plays a significant role in differentiating be-

tween the strong and weak cases in IOP 6.

The generality of this result is nevertheless unknown.

The strong- and weak-member subsets in the IOP 13 case

were not associated with large differences in upstream

humidity. Furthermore, the difference between the strong-

and weak-member-subset means in a dry simulation

for the IOP 13 case only changed by 4.7 m s21. In ad-

dition, if the ensemble members in the dry IOP 6 sim-

ulation are reranked to correspond to the 10 weakest

and 10 strongest members in the dry case (instead of

retaining the rankings from the moist simulation), the

strong- and weak-member-subset means differ by 25 m s21,

FIG. 12. As in Fig. 11, but for IOP 13, with the soundings valid at forecast hour 11 at the

upstream edge of the B–B’ cross section depicted in Fig. 1c.
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which is only 4 m s21 less than the difference obtained

in the original control simulation. However, as shown

in Fig. 13, the 1-h upstream soundings for the strong-

and weak-member subsets are once again extremely

similar, suggesting that, even in the absence of mois-

ture, downslope winds generated by wave breaking

can be extremely sensitive to small variations in the

upstreamflow.

b. Synoptic-scale structure

Although the use of a single upstream sounding to

forecast downslope winds may be attractive due to

its simplicity, a more complete representation of the

synoptic-scale data is likely to be more informative.

Here we examine the differences in the synoptic-scale

conditions associated with the weak and strong ensem-

ble members by comparing subset-means on the 9-km-

resolution domain.

As noted in section 3, both IOP 6 and IOP 13 occurred

as progressive upper-level troughs crossed the Sierra

Nevada. Figures 14a,b show the subset means of the

500-hPa wind speed V and geopotential heights from the

6-h forecast (valid 0000 UTC 26 March), the time of

strongest downslope winds. The similarities between the

strong and weak members is surprising. In both subsets,

the trough is located directly over the Sierra Nevada

crest and a wind speed maximum is just north of the

Owens Valley. The difference in V is also evident in the

vertical cross sections shown in Figs. 15a,b, which are

taken along the line C–C’ indicated in Fig. 1b. Note that

although the winds in the strong subset are slightly more

intense north of the Owens Valley metric box (indicated

by the dashed vertical lines), directly upstream of the

metric box the difference in velocity is less than 2.5 m s21.

In contrast to the wind speed, there is almost no dis-

cernible difference in the u field between the weak and

strong subsets. Averaged over the entire cross section

shown in Fig. 15, the RMS difference in V between the

strong- and weak-subset means is 2.1 m s21; for u the

RMS difference is 0.8 K.

Given the large variability in the simulated downslope

wind response, it is remarkable that the differences in

the synoptic-scale flow are so small. These differences

are within the error bounds typically associated with

radiosonde observations, further suggesting that differ-

entiating between the strong and weak storms for this

FIG. 13. As in Figs. 11a,b,c, but for the dry IOP 6 experiment.
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wave-breaking event would be nearly impossible for a

human forecaster or, as seen in these simulations, a

deterministic numerical model.

Turning now to the IOP 13 case, Figs. 14c,d show the

500-hPa wind speed and geopotential heights from the

12-h forecast (valid 0600 UTC 17 April) for the strong-

and weak-subset means. The differences between the

strong and weak members are clearly larger than in

IOP 6. For example, compared to the weak-subset mean,

the jet core in the strong-subset mean is displaced ap-

proximately 150 km northward and has a slightly greater

horizontal extent. Relatively large differences between

the strong and weak subsets are also apparent in the

vertical cross sections of V and u shown in Figs. 15c,d

(which are again taken along the line C–C’). The RMS

difference in V in the plane of the cross section is

7.5 m s21, with the majority of the increase occurring

north of the Owens Valley metric box. However, con-

sistent with the upstream soundings shown in Fig. 12a, the

winds directly upstream of the Owens Valley metric box

are actually weaker in the strong subset. The RMS dif-

ference in u is 4.1 K, which, as will be discussed later,

is associated with vertical displacements in the frontal

inversion.

The difference in the position of the 500-hPa trough

between the strong and weak subsets is not a ‘‘timing

FIG. 14. The 500-hPa wind speed and geopotential heights for the (a) weak and (b) strong members of the 6-h IOP 6 forecast as well as the

(c) weak and (d) strong members for the 12-h IOP 13 forecast.
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error’’ because of differences in the propagation speed of

the trough axis. The eastward propagation speed and

location of the trough axis are nearly identical in both

subsets. Instead, the differences arise from the meridional

displacement of the jet stream and its associated upper-

level front. In the strong subset, the northern location of

the jet situates the sloping surface of the upper-level front

near crest level directly upstream of the Owens Valley

metric box. This configuration of high static stability in

the lower troposphere and weaker static stability aloft

provides a favorable configuration for the development

of severe downslope winds. In contrast, the more south-

ern location of the jet in the weak subset results in a

southward displacement of the upper-level front. As a

consequence, the high static-stability air associated with

the frontal layer is farther aloft upstream of the Owens

Valley metric box, resulting in an unfavorable layering

structure of strong downslope winds.

c. Lateral boundary condition uncertainty

To evaluate the roll of lateral boundary condition un-

certainty on the growth of the Owens Valley metric var-

iability, two ‘‘deterministic boundary’’ experiments are

performed in which the NOGAPS deterministic forecast

is used to specify identical lateral boundary conditions

for each ensemble member. We compare the mean of

the Owens Valley metric for the same set of members

that made up the strong- and weak-member subsets in

the control experiment. In general, the boundary per-

turbations had only a small impact on the error growth

of the Owens Valley metric. For example, in the IOP 6

deterministic boundary simulation, the difference be-

tween the strong- and weak-subset mean is 25.8 m s21,

compared to a difference of 28.3 m s21 for the control

ensemble. The IOP 13 simulations are just as insensitive

to the boundaries perturbations. For this case, the dif-

ference between the strong- and weak-subset means

for the same set of ensemble members as the control

simulation is 24.3 m s21, compared to a difference of

24.5 m s21 for the control ensemble. Clearly, the lateral

boundary perturbations do not significantly contribute

to the ensemble variability with the limited predictabil-

ity of these downslope windstorms being fully attrib-

utable to initial-condition uncertainties. Furthermore,

inspection of the low-level zonal-wind ensemble vari-

ance on the 3-km domain (not shown) indicates that

the large errors are primarily anchored to the lee

side of the Sierra Nevada. This suggests that the rapid

error growth of the Owens Valley metric occurs entirely

over the Owens Valley and that large errors are not

FIG. 15. The composite total wind speed and potential temperature along a vertical cross section for the 10 weakest and 10 strongest

ensemble members from the (a),(b) 6-h IOP 6 and (c),(d) 12-h IOP 13 forecasts. The cross section is located on the 9-km domain and

extends along the length of the Sierra Nevada crest shown in Fig. 1b. Wind speed is contoured every 10 m s21, whereas potential tem-

perature is contoured every 10 K. Vertical dotted lines mark the upstream projection of the north and south boundaries of the Owens

Valley metric box.
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simply being advected through the 9-km domain lateral

boundaries.

6. Summary and conclusions

We have attempted to systematically document the

sensitivity of downslope wind forecasts to initial condi-

tions in a three-dimensional NWP mesoscale model. An

ensemble of 70 different initial conditions is generated

for each of two prototypical downslope wind events

from the T-REX special observing periods: IOP 6 and

IOP 13. Consistent with the available data, most of the

simulations of IOP 6 show a large-amplitude mountain

wave with upper-level tropospheric wave breaking and

severe downslope winds. In contrast, wave breaking was

not present for the most of the IOP 13 simulations;

consistent with the observations, the downslope winds

were significant but weaker than in IOP 6. The strong

winds in IOP 13 were generated by a layer of high static

stability flowing beneath a mid- and upper-tropospheric

layer of low stability.

In both cases, the individual ensemble members were

ranked according to the forecast intensity of the near-

surface winds in a region along the lee slope of the Sierras

(the Owens Valley metric box), and the 10 strongest and

10 weakest ensemble members were grouped into sepa-

rate subsets. For the wave-breaking simulations (IOP 6),

initial-condition errors grow rapidly, leading to large

variability in the downslope wind forecast. The differences

between the means of the strong- and weak-member

subsets grew from less than 5 m s21 at forecast hour 3 to

28 m s21 at forecast hour 6. These differences at forecast

hour 6 represent the contrast between a very severe

41 m s21 downslope wind and a mild 13 m s21 event.

For the case with layered static stability but no wave

breaking (IOP 13), initial-condition errors grow at a

somewhat slower pace. For the 6-h forecast (valid at

0600 UTC 17 April), the difference between the strong-

and weak-subset mean grows to 15 m s21. Additionally,

the ensemble-derived PDF of wind speed shows at least

some degree of clustering about a mode of 17.5 m s21.

On the other hand, in the 12-h forecast (valid at the same

time), the difference in the subset mean grows to

22 m s21 over a period of roughly 8 h, and the PDF of

the wind speed is much broader. The 26 m s21 winds in

the strong-subset mean constitute a moderate wind-

storm, whereas the 4 m s21 winds in the weak subset are

a nonevent.

Upstream soundings from the mean of the strong- and

weak-member subsets were examined for both cases just

one hour before the time of the maximum winds. In IOP

6, the wave-breaking case, the differences in the cross-

barrier wind speed, potential temperature, and Brunt–

Väisälä frequency for the two subsets were generally less

than radiosonde observational errors. Dynamically sig-

nificant differences were present in the low-level hu-

midity field; however, even after accounting for the

influence of moisture, the strength of the downslope

winds remained very sensitive to small variations in the

upstream profile. Such sensitivity suggests that deter-

ministic operational forecasts may have difficulty accu-

rately predicting the strength of downslope winds and

CAT associated with mountain-wave breaking. This

limited 1-h predictive time scale is consistent with the

two-dimensional results for the wave-breaking regime

obtained by Doyle and Reynolds (2008).

For the case with strong low-level static stability (IOP

13), in which wave breaking did not play a major role,

the predictability time scale appears to be somewhat

longer. Upstream soundings from 1 h prior to the time

of maximum wind show clear differences between the

mean profiles for the strong- and weak-member subsets.

For example, a 2-km-deep layer of strong static stability

is present directly above crest level in the strong subset,

whereas the crest-level static stability is considerably

lower in the weak subset. Downslope winds that develop

in cases like IOP 13 may have a significant degree of

predictability at 6-h lead times, but they may have much

less at lead times of 12 h.

Some of the difficulty in distinguishing actual events

from null cases encountered by Nance and Coleman

(2000) when trying to forecast downslope winds with a

mesoscale model may be due to the large initial-condition

sensitivities documented in this paper. Although the

rapid growth of uncertainty in our ensemble forecasts of

the IOP 6 and IOP 13 events may not occur in some

downslope windstorms, these results nevertheless call in

to question the idea that the predictability time scale for

downslope windstorms might be similar to that of the

synoptic-scale flow. Particularly in the case of windstorms

generated by wave breaking, the actual strength of the

downslope wind may depend on small mesoscale circu-

lations that represent only a modest component of the

total synoptic-scale signal. Such mesoscale perturbations

may be predictable over time scales that are no longer

than those originally suggested by Lorenz (1969).

Finally, we note that we have focused on one funda-

mental aspect of predictability: the growth rate of small

initial uncertainties. Other important considerations,

such as the time required before a downslope wind

forecast shows no more skill than persistence or clima-

tology, are left for future research. For example, although

in many respects the downslope winds in IOP 6 are very

hard to predict, almost all 70 ensemble members pro-

duce some type of windstorm in the 6-h forecast. Given

that high winds did actually occur, the 6-h ensemble
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forecast certainly exhibits significant skill relative to

climatology. The skillfulness of the forecast may, how-

ever, be less clear cut if it is compared with the more

limited climatology of lee-slope winds that occur when

the cross-mountain flow at 700 hPa exceeds some

modest threshold, such as 10 m s21.
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APPENDIX

Implementation of the EnKF

Following Whitaker and Hamill (2002), a square root

formulation of the EnKF is used. Because of computa-

tional constraints, the size of the ensemble was limited to

70 members; however, several studies have indicated

that O(100) members are sufficient to perform data as-

similation on the synoptic scale (Whitaker et al. 2004;

Mitchell and Houtekamer 2002; Dirren et al. 2007; Torn

and Hakim 2008). The 70-member ensemble was gen-

erated on the 27-km outer domain for the entire period

of 1 March–30 April 2006. Observations from radiosonde

data, Automated Surface Observing Systems (ASOS)

data, Aircraft Communications Addressing and Re-

porting System (ACARS) data, as well as cloud-drift

winds were assimilated into an ensemble of first guesses

every 6 h. No attempt was made to assimilate special

observations from the T-REX dataset on the 27- or 9-km

domains; however, 10-m wind data were assimilated for

three mesonet stations spread across the Owens Valley

from the Desert Research Institute mesonetwork. The

potential for large model errors associated with poorly

resolved gravity waves (e.g., Reinecke and Durran 2009)

limited the use of the 10-m wind data to the 3-km do-

main. The set of potential observations was limited by

only considering data within a 2-h window centered on

the assimilation time. Furthermore, cloud track winds

were thinned by averaging all observations within a 18 and

25-hPa radius; ACARS data were thinned by averaging

all data within a one-grid-point and 25-hPa radius; and

surface observations were not used if the discrepancy

between the station elevation and the model elevation

was greater than 500 m. The initial 27-km-domain en-

semble was constructed by interpolating a 36-h NO-

GAPS forecast, valid at 1200 UTC 1 March 2006, to the

27-km COAMPS domain and adding balanced random

perturbations with zero mean and derived from the

WRF-VAR data assimilation system (Barker et al.

2004). Following Torn and Hakim (2008), the initial

perturbations were scaled by a factor of 1.75 so that

the initial ensemble variance is slightly larger than the

RMS error between the ensemble mean and radiosonde

observations.

As a consequence of using a relatively small ensemble

to sample the background-error statistics, the covari-

ance estimates can generate spurious long-distance re-

lationships (Houtekamer and Mitchell 2001; Hamill

et al. 2001) as well as underestimate the magnitude of

the covariance relations (Whitaker and Hamill 2002).

To boost the rank of the ensemble, two standard pro-

cedures are used: covariance inflation and covariance

localization. Long-distance correlations are restricted by

applying a broad isotropic localization function [Gaspari

and Cohn 1999, their Eq. (4.10)], which is unity at the

observation location and decreases monotonically to zero

at 3000 km from the observation. The localization radius

was decreased by a factor of 3 for each nested domain.

Covariance relaxation is used on the 27-km domain to

boost the covariance magnitude (Zhang et al. 2004). The

background- and analysis-error covariances are linearly

averaged with weights of 0.775 and 0.225, respectively.

These values were determined experimentally to ensure

that the ensemble variance, averaged over the two-month

period, was approximately equal to the RMS difference

between the ensemble mean and radiosonde observa-

tions. Furthermore, to ensure that the ensemble was

neither under- or overdispersive, rank histograms (Wilks

2006; Hamill 2001) were used to monitor the two-

month-long integration (not shown). Because of the

rapid growth of variability, as well as the short period

of use, covariance inflation was not used for the 9- and

3-km ensembles.

REFERENCES

Anthes, R. A., 1984: Predictability of mesoscale meteorological

phenomena. Predictability of Fluid Motions, G. Holloway and

B. J. West, Eds., American Institute of Physics, 247–270.

——, Y. Kuo, D. P. Baumhefner, R. M. Errico, and T. W. Bettge,

1985: Prediction of mesoscale atmospheric motions. Advances

in Geophyics, Vol. 28B, Academic Press, 159–202.

Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois, and

Q. N. Xiao, 2004: A three-dimensional variational data as-

similation system for MM5: Implementation and initial results.

Mon. Wea. Rev., 132, 897–914.

Clark, T. L., and W. R. Peltier, 1977: On the evolution and sta-

bility of finite amplitude mountain waves. J. Atmos. Sci., 34,

1715–1730.

NOVEMBER 2009 R E I N E C K E A N D D U R R A N 3417



——, W. D. Hall, R. M. Kerr, L. Radke, F. M. Ralph, P. J. Neiman,

and D. Levinson, 2000: Origins of aircraft-damaging clear-air

turbulence during the 9 December 1992 Colorado downslope

windstorm: Numerical simulations and comparison with ob-

servations. J. Atmos. Sci., 57, 1105–1131.

Colle, B. A., and C. F. Mass, 1998: Windstorms along the western

side of the Washington Cascade Mountains. Part I: A high-

resolution observational and modeling study of the 12 February

1995 event. Mon. Wea. Rev., 126, 28–52.

Dirren, S., R. D. Torn, and G. J. Hakim, 2007: A data assimilation

case study using a limited-area ensemble Kalman filter. Mon.

Wea. Rev., 135, 1455–1473.

Doyle, J. D., and M. A. Shapiro, 2000: A multi-scale simulation of

an extreme downslope windstorm over complex topography.

Meteor. Atmos. Phys., 74, 83–101.

——, and R. B. Smith, 2003: Mountain waves over the Hohe

Tauren: Influence of upstream diabatic effects. Quart. J. Roy.

Meteor. Soc., 129, 799–823.

——, and C. A. Reynolds, 2008: Implications of regime transition

for mountain-wave-breaking predictability. Mon. Wea. Rev.,

136, 5211–5223.

——, and Coauthors, 2000: An intercomparison of model-

predicted wave breaking for the 11 January 1972 Boulder

windstorm. Mon. Wea. Rev., 128, 900–914.

Durran, D. R., 1986: Another look at downslope windstorms.

Part I: The development of analogs to supercritical flow in

an infinitely deep, continuously stratified fluid. J. Atmos. Sci.,

43, 2527–2543.

——, 1992: Two-layer solutions to Long’s equation for vertically

propagating mountain waves: How good is linear theory?

Quart. J. Roy. Meteor. Soc., 118, 415–433.

Evensen, G., 2003: The ensemble Kalman filter: Theoretical formu-

lation and practical implementation. Ocean Dyn., 53, 343–367.

Gaspari, G., and S. E. Cohn, 1999: Construction of correlation

functions in two and three dimensions. Quart. J. Roy. Meteor.

Soc., 125, 723–757.
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