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ABSTRACT

Most mesoscale models can be run with either one-way (parasitic) or two-way (interactive) grid nesting.

This paper presents results from a linear 1D shallow-water model to determine whether the choice of nesting

method can have a significant impact on the solution. Two-way nesting was found to be generally superior to

one-way nesting. The only situation in which one-way nesting performs better than two-way is when very

poorly resolved waves strike the nest boundary. A simple filter is proposed for use exclusively on the coarse-

grid values within the sponge zone of an otherwise conventional sponge boundary condition (BC). The two-

way filtered sponge BC gives better results than any of the other methods considered in these tests. Results for

all wavelengths were found to be robust to other changes in the formulation of the sponge boundary, par-

ticularly with the width of the sponge layer. The increased reflection for longer-wavelength disturbances in the

one-way case is due to a phase difference between the coarse- and nested-grid solutions at the nested-grid

boundary that accumulates because of the difference in numerical phase speeds between the grids. Reflections

for two-way nesting may be estimated from the difference in numerical group velocities between the coarse

and nested grids, which only becomes large for waves that are poorly resolved on the coarse grid.

1. Introduction

Nested grids are extensively used in numerical mod-

eling of the atmosphere for a wide range of applications,

including numerical weather prediction (Mass et al. 2002),

mesoscale meteorology, regional climate modeling (Giorgi

and Mearns 1999), and air quality modeling (Krol et al.

2005). The implementation and proper use of grid nest-

ing requires attention to intergrid communication, which

can be split into two different problems.

The first part is communication from the coarse grid to

the nested grid, typically through the specification of the

boundary conditions (BCs) of the nested grid. The con-

ditions at the nested grid boundary must satisfy the ra-

diation condition that outgoing disturbances should leave

the nested grid without causing reflections back into the

domain, but also allow disturbances on the coarse grid to

propagate onto the nested grid without distortion. Sev-

eral such BCs are reviewed in Zhang et al. (1986) and

Staniforth (1997).

The second part of the grid communication problem is

that from the nested to the coarse grid, also referred to

as coarse-grid updating. Many mesoscale models give

the choice of either one-way (parasitic) nesting or two-

way (interactive) nesting. One-way nesting performs no

nested-to-coarse-grid communication; the solution on

the coarse grid is independent of that on the nested grid.

On the other hand, in two-way nesting, the solution on

the coarse grid is continually replaced (or updated) by

that on the nested grid wherever the two grids coincide.

A number of update algorithms have been proposed; see

Zhang et al. (1986) and Skamarock and Klemp (1993)

for some examples.

Admonitions to use two-way nesting are occasion-

ally seen in the literature (Warner et al. 1997; Clark

and Farley 1984; Phillips and Shukla 1973), but the few

examples given supporting this assertion do not show a

dramatic difference between one- and two-way nest-

ing, and one-way nesting is still used in some applica-

tions (Mass et al. 2002; Colle et al. 2005; Deng and Stull

2005) and in some operational forecasts (Table 1).

Warner et al. (1997) note that the potential improve-

ments of two-way nesting have not been confirmed by

research. Elsberry (1978) discusses potential problems

with one-way nesting, but neither tests nor quantifies
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these problems with numerical experiments. Sundstrom

and Elvius (1979) claim that two-way nesting may give

larger errors than one-way nesting because of reflec-

tions caused by the change of phase speeds between

the nested and coarse grids; however, they also do not

give any examples supporting this assertion and fur-

thermore do not consider similar effects when using one-

way nesting.

Phillips and Shukla (1973) compared the reflections of

nonlinear, two-dimensional shallow-water Rossby and

gravity waves off of the interface of both one-way and

two-way nested grids. They found that the solutions for

a two-way nest were ‘‘almost invariably nearer’’ to a

single-grid control case with the same resolution as the

nested grid; however, they did not give any rigorous ex-

planation for this beyond the basic fact that the coarse-

grid solution is influenced by that of the nested grid over

the region on which the two grids coincide.

Clark and Farley (1984) performed a one-way sim-

ulation of vertically propagating mountain waves that

was considerably noisier than the same simulation

performed with a two-way nest, but the majority of the

errors in their one-way nest appeared to be due to re-

flections off of the nested grid’s upper boundary, which

did not coincide with the coarse grid’s upper boundary.

This type of vertical nesting is not used in most meso-

scale models.

Vichnevetsky (1981) analyzed the reflections that

occur as a wave propagates through a grid refinement,

which as we shall see is relevant to the problem of two-

way nesting. He found that the reflection coefficient,

or the ratio of the amplitudes of the incident and re-

flected waves, can be determined through a simple

expression involving the discrete group velocities on

either side of the refinement. Mar-Or and Givoli (2006)

carefully analyzed reflections in the 1D linear shallow-

water equations using the Carpenter (1982) BC at the

edge of a one-way nest, but they did not consider two-way

nests or a wider range of practically important boundary

conditions.

In this paper, we examine the reflection of a localized

disturbance exiting the nested grid for both one- and

two-way nests using either of a pair of common nested-

grid BCs: simple interpolation and a Davies (1976) sponge

layer, as well as a simple modification to the latter, which

has the potential to greatly decrease spurious reflection

for poorly resolved solutions. Although the interpola-

tion BC is not particularly effective at eliminating re-

flections, we consider it because it allows for a simple

analysis of the amplitude of reflections at the nested-grid

boundary. For the same reason, we will use a simple one-

dimensional model whose behavior can be rigorously

analyzed without undue complication. Our goal is to de-

termine whether one of the nesting strategies is superior,

and why. A forthcoming paper will describe the dif-

ferences between one- and two-way nesting in complex

meteorological flows.

Section 2 of this paper describes the 1D model used

and the experiments carried out. Section 3 presents re-

sults from the model. Section 4 compares the observed

reflection amplitudes to theoretically derived results for

the interpolation BC. Section 5 discusses the generality

of the results. Section 6 concludes the paper.

2. Model description and methodology

The one-dimensional linear shallow-water model is de-

scribed by the equations

›u

›t
1 g

›h

›x
5 0, and (1)

›h

›t
1 H

›u

›x
5 0 (2)

for velocity u, perturbation interface height h, gravita-

tional acceleration g 5 9.8 m s22, and mean water depth

H, which is chosen to satisfy (gH)1/2 5 c 5 5 m s21,

where c is the shallow-water wave speed. There is no

mean flow, Coriolis, or topography in these experiments.

The equations are discretized on a staggered grid, using

second-order centered differencing in space and leapfrog

differencing in time

d
2t

u 1 gd
x
h 5 0, and

d
2t

h 1 Hd
x
u 5 0.

TABLE 1. Selected forecast mesoscale models and their nesting

methodology.

Organization Model

Resolutions

(km) Method

Washington WRF 36, 12, and 4 One-way

Wisconsin UW-NMS 160, 80, and 27 Two-way

Oklahoma ARPS/wx 27, 9, and 3 One-way

NCAR AMPS WRF 45, 15, 5, and 1.7 Both

NCAR Real-time WRF 36 and 12 Two-way

Penn State WRF 36, 12, 4, 1.33

and 0.44

One-way

NRL COAMPS-OS 27, 9, 3, and 1* Both

Colorado State RAMS** 48, 12, and 3 Two-way

FSL RUC-HRRR 13 and 3 One-way

* For the Washington, D.C., forecast area. Other forecast areas

use slightly different resolutions.

** RAMS no longer operational at the time of writing.
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The finite difference operators above are defined by the

expression

d
nx

f(x) 5
f(x 1 nDx/2)� f(x� nDx/2)

nDx
(3)

for x and similarly for time t.

The simulations in this paper all use a periodic coarse

grid with an x direction width Lxc 5 16 km and a nested

grid whose western boundary is at 5 km and whose

width is Lxn 5 6 km, unless otherwise specified. On the

coarse grid, Dxc 5 20 m, and Dtc 5 0.4 s, giving a Cou-

rant number of cDt/Dx 5 0.1. Grid nesting is imple-

mented with a 3:1 refinement in space and time, as in

many widely used mesoscale models, giving a nested-

grid spacing of Dxn 5 6.7 m and time step of Dtn 5

0.13 s. Numerical simulations with the Courant number

halved to 0.05 give almost the same results (to within

4%), as do simulations integrated using the third-

order Adams–Bashforth method (Durran 1991) with

cDt/Dx 5 0.1. Thus, our simulations may be interpreted

as isolating the effects of the spatial discretization on

the solution.

Two types of nested-grid BC are used. The first, called

the ‘‘interpolation’’ BC, merely interpolates the coarse-

grid data to the boundary points on the nested grid for

all variables on each nested grid time step. This is the

simplest ‘‘open’’ boundary condition for nested grids

allowing both outflow and inflow, and it also allows for

comparatively simple analytic expressions for the reflec-

tion amplitude; however, this BC performs substantially

worse than other nested-grid BCs used in recent meso-

scale models. The second BC uses the sponge-layer

formulation in the Weather Research and Forecasting

(WRF) model’s Advanced Research WRF dynamical

core (Skamarock et al. 2005) for nested grids as of ver-

sion 2.1.1 (as quoted in Moeng et al. 2007), in which the

outermost point of the nested grid is interpolated, and

the solution for each variable on the next N points in

from the boundary (collectively known as the sponge

zone) are given as

›u

›t

�
�
�
�
n

5�g
›h

›x
1 w

1n
(u

c
� u

n
)� w

2n
D2(u

c
� u

n
), and

›h

›t

�
�
�
�
n

5�H
›u

›x
1 w

1n
(h

c
� h

n
)� w

2n
D2(h

c
� h

n
), (4)

where n is the index of this grid point in the sponge

zone (counting inward from the interpolated point),

uc represents data interpolated from the coarse grid

to the same point as un, D2 represents a diffusive

smoother (three points in this 1D model, in which case

D2ui 5 ui21 2 2ui 1 ui11); and the weighting coefficients

in Eq. (4) are given by1

w
1n

5
W

Dt

1 1 N � n

N

� �

, for n 5 1, 2, . . . , N, (5)

and w2n 5 0.2w1n. The coefficient W in Eq. (5) is referred

to in this paper as the sponge weight; WRF sets this to

0.1, which is the value we use unless otherwise specified.

In this study, N 5 5 unless otherwise stated, which fol-

lows the example of Moeng et al. (2007), who needed

five points to get acceptable results for their two-way

nested large eddy simulations of the planetary boundary

layer. In contrast, WRF by default uses only three

sponge points, although this can be changed by the user.

The implementation of the sponge BC uses explicit

forward differencing to evaluate the sponge terms in

Eq. (4). The Dt in the denominator of Eq. (5) cancels out

when the time step is taken, ensuring that the amount of

effective dissipation performed during a time step is

independent of its length. In our test cases, the sponge

zone is added to the ends of the domain, so that the size

of the interior region is identical for both BCs. When

using the interpolation BC, the u boundary points are

specified directly from the coincident coarse-grid points,

while the h boundary points, which do not coincide with

coarse-grid points on this staggered grid, are linearly

interpolated from the coarse grid. Linear interpolation

is also used for all boundary and sponge-zone points

when the sponge BC is used. Tests with the interpolation

BC showed little change in the amplitude of reflected

waves to the choice of interpolation method.

In our simulations, the grids are aligned so that all of

the coarse-grid points coincide with a nested-grid point,

and so the additional step performed in two-way simu-

lations of updating the coarse grid using the nested grid’s

data is performed by setting the values on the coarse-

grid points to the values of the coincident nested-grid

points. This differs from the approach used by Skamarock

and Klemp (1993) and others, in which the update uses

averages of nested-grid points. When the sponge BC

is used, the sponge zone is not included in the update

process.

1 The expression for the sponge weights in the WRF documen-

tation is slightly different than that given in Eq. (5). The expression

in Skamarock et al. (2005) produces a weight of zero for the in-

nermost point of the sponge zone (called the ‘‘relaxation zone’’ in

WRF), and so the true width of the sponge zone is one grid point

less than that specified by the user. Here, we have altered the ex-

pression so that every point in the sponge zone has a nonzero

weight, but that the weights are the same for the N sponge points as

they would be if WRF was set to use N 1 1 points.
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The initial condition (IC) used here consists of a

Gaussian-modulated sinusoidal wave of a given wave-

length l specified on the nested grid, and then updated

to the coarse grid (regardless of whether one-way or

two-way nesting is used). The value of u(x, 0) is chosen

so that there is a single eastward-moving wave and the

westward characteristic is set to zero. The IC is thus:

h(x, 0) 5 cos[(x� x
0
)k] exp[-(x� x

0
)2/s], and

u(x, 0) 5 gc�1h(x, 0),

where x0 5 Lxc/2 5 8 km, k 5 2p/l is the wavenumber,

and s 5 5.333 km2. An example IC is seen in Fig. 1a.

3. Simulation results

a. Waves of intermediate wavelength on
the coarse grid

We begin by considering waves that are moderately

well resolved on the coarse mesh and very well resolved

on the fine mesh. Figure 1 compares the behavior of one-

way and two-way nesting, along with the performance of

both interpolation and sponge BCs when a l 5 36Dxn

shallow-water wave (12Dxc on the coarse grid) encoun-

ters the boundary of the fine mesh. The initial condition

on the nested grid is shown in Fig. 1a. The next four

panels show the solution at a time when it has propa-

gated through the right boundary and any reflected wave

has returned to the center of the nested grid. Clearly

one-way (gray lines) nesting performs worse than two-

way nesting (black lines), and the interpolation BC cre-

ates more reflection than the sponge. The amplitudes

of the reflected waves shown in Figs. 1b–e are given as

percentage of their initial amplitudes in the first line of

Table 2. These numerical values confirm the superiority

of both two-way nesting and the sponge BC for this

wavelength.

As shown by the next two lines in Table 2 the re-

flection becomes more severe as the wavelength is de-

creased, although for one-way nesting the increase is not

a monotone function of the wavelength. In the one-way

case, the reflections produced by the 18Dxn wave are

similar to those generated in the 36Dxn, while the be-

havior of the 24Dxn is far worse. The reason the reflec-

tion for the 18Dxn wave is reduced relative to that for the

24Dxn wave will be discussed in section 3a.

The behavior of the reflected modes in the shallow-

water system is different from that produced at the

nested-grid boundary by numerical approximations to

the 1D advection equation for a scalar concentration f

with constant background wind speed c,

›f

›t
1 c

›f

›x
5 0.

If the preceding is discretized using leapfrog time dif-

ferencing and second-order centered space differencing

d
2t

f 1 cd
2x

f 5 0, (6)

the only modes with negative group velocities, and there-

fore the only modes capable of transporting reflected

waves away from the downstream boundary have wave-

lengths in the range 2Dxn # l , 4Dxn (Durran 1999,

FIG. 1. Nested-grid solutions for h(x, t) in simulations of the 1D

shallow-water model. (a) Initial condition, which is an eastward-

propagating l 5 36Dxn wave packet. (b)–(e) The solutions at t 5

1250 s after any reflection has returned to the center of the nested

grid. Interpolation BC results are shown for (b) one-way and (c)

two-way nesting. Sponge BC results for (d) one-way and (e) two-

way nesting. Results from one-way nesting are shown in gray.

TABLE 2. Reflection amplitudes for various initial conditions and

BCs in the 1D shallow-water model. Simulations use no damping of

the form Eq. (7) unless otherwise specified.

Interpolation BC (%) Sponge BC (%)

IC wavelength One-way Two-way One-way Two-way

36Dxn 76 2.4 8.5 0.02

24Dxn 186 5.4 20 0.38

18Dxn 90 10 9.9 0.94

36Dxn, g4 5 0.1 47 2.1 7.3 0.18

9Dxn 107 96 19 44
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section 2.4.1). This is illustrated in Fig. 2 for one-way

nesting, the interpolation BC, and an incident 36Dxn

wave packet moving at c 5 5 m s21. Figure 2a shows the

packet at the initial time, Fig. 2b shows the reflection

after it propagates back to the center of the nested mesh

as a high-amplitude mode of wavelength approximately

2Dxn.

Reflections into such short waves are easily removed

by applying artificial dissipation. Suppose fourth-order

dissipation of the form

g
4

16Dt
(�f

j�2
1 4f

j�1
� 6f

j
1 4f

j11
� f

j12
) (7)

is added globally to the right-hand side of Eq. (6) when

evaluating the value of fj at the next time level, where

j represents the solution at x 5 jDx. Using only a very

weak dissipation coefficient g4 of 0.01—an order of mag-

nitude less than that used in many mesoscale models (cf.

Knievel et al. 2007)—easily eliminates the reflected modes

(Fig. 2c). For a 2Dxn wave, this g4 yields an e-folding time

for the wave amplitude of 53 s, or 0.017 Lxc/c. More

generally, when reflections are comprised of very short

wavelength modes, they will almost immediately be re-

moved by the background dissipation present in nearly

all mesoscale models.

On the other hand, in systems that support waves

moving in both directions, such as the shallow-water

equations, reflections often appear as spurious physical

modes that are not easily removed by artificial dissipa-

tion because the magnitude of any artificial dissipation

is normally set low enough that it does not significantly

impact most physical modes. For example, adding sig-

nificant dissipation (with g4 5 0.1) to the staggered

shallow-water model and comparing the 36Dxn case to

that without dissipation, we see from Table 2 that even

such relatively strong dissipation exerts only a modest

influence on the amplitude of this very well-resolved

reflected wave. This wave is damped with an e-folding

time of approximately 7Lxc/c, so there is very little re-

duction of the amplitude of either the incident wave or

of the reflection; instead, the artificial dissipation is

damping out the sharp discontinuity caused by the in-

terpolation BC when the two solutions are out of phase,

thereby reducing the amplitude of the reflected wave.

Repeating this case with dissipation applied only at the

two grid points nearest to the boundary yielded a re-

flection with similar amplitude to a simulation with global

dissipation, confirming this explanation.

Figure 3a depicts the amplitude of the reflected wave

as a function of the wavelength of the incident distur-

bance for the interpolation BC. Here, the reflections are

given in terms of the ‘‘normalized reflection amplitude’’

max h
rn

�
�

�
�

h
0

, (8)

where hrn represents the value of h(x, t) on the nested

grid after the disturbance has been reflected and re-

turned to the interior of the nested grid, and h0 repre-

sents the initial amplitude of the outgoing disturbance.

Again, the two-way nest (pluses) produces substan-

tially lower-amplitude reflections than the one-way nest

(crosses) for all but the shortest wavelengths. In fact,

when using the interpolation BC the reflected wave’s

amplitude for a 12Dxn disturbance on a two-way mesh is

FIG. 2. Simulation of a 36Dxn wave in the scalar advection

equation with a one-way nest and the interpolation BC. (a) Initial

condition, (b) at t 5 1300 s with no dissipation, (c) at t 5 1300 s with

g4 5 0.01. The thickness of the line in (b) obscures the 2Dxn

wavelength of the reflected mode.

FIG. 3. One-way vs two-way nesting in the 1D shallow-water

model at t 5 1200 s. (a) Normalized reflection amplitude Eq. (8) as

a function of wavelength for the interpolation BC and (b) the

sponge BC. Note change in vertical scale in (b) and change in

horizontal scale in both panels at 24Dxn. Solid lines in (a) refer to

the estimates Eqs. (9) and (11) for the reflection amplitudes.
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roughly the same as that of a 48Dxn disturbance on a

one-way mesh. Using the sponge BC (Fig. 3b) reduces

the errors in one-way nesting by as much as a factor of

10 for some wavelengths, but one-way nesting still pro-

duces much larger reflections than does two-way nesting

for wavelengths $12Dxn.

b. Poorly resolved waves on the coarse grid

While for moderately well resolved waves two-way

nesting is superior, this is not the case for more poorly

resolved disturbances. When using the interpolation BC,

the amplitude of the reflected wave is equal to that of the

incident wave for wavelengths #9Dxn for both one-way

and two-way nesting (Fig. 3a). The sponge BC (Fig. 3b)

again reduces the amplitude of the reflections for these

short wavelengths, but is much more effective for one-

way nesting than for two-way nesting.

The 9Dxn case (Fig. 4a; see also Table 2) illustrates

these behaviors. Using the interpolation BC (Fig. 4b),

reflection is nearly total in the one-way case, and is only

slightly reduced in the two-way simulation (Fig. 4c).

Using the sponge BC, the reflected mode is substantially

reduced with one-way nesting (Fig. 4d), but is almost

half the amplitude of the incident wave in the two-way

case (Fig. 4e). Although one-way nesting produces re-

flections of similar- or lower-amplitude than does two-

way nesting for this 9Dxn disturbance, the one-way results

are degraded by a spurious mode propagating into the

nested grid from the outflow (right) boundary (Figs. 4b–d).

The sudden shift in the behavior of the two-way nest’s

reflections when the wavelength of the incident wave

drops to 9Dxn (Fig. 3) is surprising. One might expect

disturbances to become ‘‘trapped’’ on the coarse grid and

to produce total reflection only when the numerical group

velocity of the wave on the coarse grid is directed inward.

For our staggered-grid discretization of the shallow-water

equations, we expect that trapping should only occur for

wavelengths #6Dxn (or, equivalently, #2Dxc).

c. Filtered sponge BC: An improvement
to the sponge BC

A close examination of the coarse-grid solution pro-

vides both a reason for this behavior as well as a solution.

For poorly resolved solutions, there is a substantial dif-

ference in the amplitudes and wavelengths of the solu-

tions on the two grids, causing a mismatch between

the solutions and thus larger reflections; in particular, in

two-way nesting there can be a large difference in the

wavelength of the fine-mesh solution and that on the

coarse mesh outside the region where the grids overlap.

If such short-wavelength waves are indeed causing the

problems, then filtering the coarse-grid data to remove

the problematic high-frequency modes before using it in

the sponge BC should decrease the amplitude of the re-

flections. To this end, we introduce the ‘‘filtered sponge’’

BC, in which uc and hc are smoothed with the fourth-

order filter Eq. (7) before being used in Eq. (4). Note

that this filter is applied only to the data being used as

the coarse-grid values in the sponge zone and does not

alter the actual coarse-grid solution. Here, g4 5 1, so

that any 2Dxc waves are eliminated with a single pass of

the filter. We use the fourth-order filter because it is

a simple scale-selective filter that efficiently damps short

wavelengths while having little effect on better-resolved

disturbances.

The response of the filtered sponge BC to an incident

9Dx wave is compared with the other nested BCs in

Fig. 4. In the one-way case, when the wave packet en-

counters the filtered sponge BC the filter reduces the

spurious radiation of waves inward through the down-

stream boundary, but otherwise has a relatively minor

impact on the solution (Fig. 4f). In contrast, in the two-

way case the filter substantially reduces the reflection

FIG. 4. As in Fig. 1, but for a 9Dxn wave. (f),(g) Results using the

filtered sponge BC described in section 3c.
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(Fig. 4g) relative to that generated by the unfiltered

sponge BC (Fig. 4e).

The magnitude of the reflections produced by the fil-

tered sponge BC is compared with that for the standard

sponge BC as a function of wavelength in Fig. 5. For two-

way nesting and incident waves that are poorly resolved

on the coarse grid (,12Dxn), filtering greatly reduces the

reflections (cf. the black crosses with the open black

squares). At longer wavelengths, the filtered sponge BC

also outperforms the unfiltered sponge BC, although the

both give very similar results for wavelengths longer

than 20Dxn. In one-way nesting, the improvement pro-

duced by filtering is much smaller and is largely limited

to wavelengths between 8 and 11Dxn (cf. the gray crosses

with the open gray diamonds).

4. Analysis of reflections generated by the
interpolation BC

a. One-way nesting

The reflection generated at the nested-grid boundary

using one-way nesting is strongly influenced by any

difference in the phase of the wave on the coarse and

nested grids in the neighborhood of the nested-grid

boundary.2 Such differences are illustrated for a 24Dxn

wave in Fig. 6a, in which the coarse- and nested-grid

waves from a one-way simulation are both plotted in the

region near the original nest boundary, although for

these simulations, the actual nest boundary has been

moved far beyond the right edge of the plot. Because of

numerical dispersion and the difference in resolution of

the wave on the coarse and nested grids, the phase speed

of the wave on the coarse grid is slower than that on the

nested grid.

The difference in numerical phase speeds between the

two grids is relatively small for the 24Dxn wave; however,

in the one-way case, the difference in phase accumulates

as the waves propagate toward the nested-grid bound-

ary, so that for the particular dimensions of the nested

grid used here, the coarse and nested solutions are

nearly half a wavelength out of phase when the packet

arrives at the boundary (Fig. 6a), yielding the maximum

amount of reflection. The difference in phase speeds on

the coarse and nested grids is larger for an 18Dxn wave,

yet counterintuitively, smaller reflections are produced

because for the domain size we use, the 18Dxn waves

come back into phase by the time the center of the wave

packet reaches the boundary (Fig. 6b). Small reflections

nevertheless occur in the 18Dxn case, because at earlier

FIG. 5. Comparison of normalized reflection amplitudes for the

sponge BC with and without filtering.

FIG. 6. Nested- (gray) and coarse- (black) grid solutions for

simulations in which the eastern boundary of the nest is moved

from 11 to 15 km: (a) 24Dxn and (b) 18Dxn waves at t 5 600 s, at

which time the fine-mesh wave packet is centered around the

previous location of the nested-grid boundary (indicated by the

heavy vertical line at x 5 11 km).

2 Elsberry (1978) noted that reflections in one-way nesting could

be caused by the solutions moving out of phase between the two

grids, although he did not elaborate on this idea.
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or later times, when the wave amplitude at the boundary

is lower, there is some difference in phase between the

solutions on the two grids.

Theoretical estimates for the interpolation BC’s errors

in one-way nesting can be derived as a function of the

computational phase speeds on each grid. If we neglect

the amplitude modulation of the wave packet, we can

easily determine the reflection r1w 5 r1wt produced solely

by the phase difference in the carrier wave on each grid.

Suppose unit–amplitude monochromatic waves of the

same wavelength (2p/k) are in phase on the coarse and

nested grids at t 5 0, and assume the interpolation BC is

imposed at some point x 5 L (which we will take to be

the boundary of the nested grid). The interpolation BC

will generate a reflected wave of amplitude r1w and

wavenumber k on the nested grid, and the matching

condition at x 5 L becomes

exp(ikL� iv
n
t)1r

1w
exp(�ikL� iv

n
t)5 exp(ikL� iv

c
t),

where vn(k) and vc(k) are the frequencies on the nested

and coarse grids as given by the discrete dispersion re-

lation.

Solving for r1w yields:

r
1w

5 exp(iv
n
t) exp(2ikL)[exp(�iv

c
t)� exp(�iv

n
t)],

or

r
1w

�
�

�
�5 exp(�iv

c
t)� exp(�iv

n
t)

�
�

�
�.

Using the relationships vn 5 cnk and vc 5 cck for the

phase speeds cn and cc on the nested and coarse grids,

the amplitude of the reflected wave being produced at

time t may be expressed

r
1w

�
�

�
�5

ffiffiffi

2
p

1� cos[k(c
n
� c

c
)t]

� �1/2
, (9)

where for our staggered grid approximation to the

shallow-water equations in the limit of good time reso-

lution (cDt/Dx� 1),

c
n

5
2c

kDx
n

sin
kDx

n

2

� �

, and

c
c
5

2c

kDx
c

sin
kDx

c

2

� �

. (10)

In our simulations, t is chosen to be the time when center

of the nested-grid wave packet reaches the boundary.

b. Two-way nesting

A similar analysis can be performed for two-way nest-

ing. Vichnevetsky (1981) derived the expression

r
2w

5
c

gn
� c

gc

c
gn

1 c
gc

(11)

for reflection at a grid refinement as a function of the

numerical group speeds3 cgn and cgc on the nested and

coarse grids, respectively. Since wave propagation back

and forth across the nest boundary in a two-way nest is

very similar to that for a grid refinement, we will use the

same expression as an estimate of the expected re-

flection amplitude of a unit-amplitude disturbance at the

nested-grid boundary when using a two-way nest and the

interpolation BC.

The derivation of Eq. (11) uses the assumption that

the frequencies (not wavenumbers4) of the waves on the

two grids match; thus, the wavenumber kc of the coarse-

grid solution is that which satisfies

c
n
k 5 c

c
k

c
, (12)

where k is specified by the initial condition. For the

staggered-grid second-order spatial discretization used

here, Eq. (12) implies

sin
k

c
Dx

c

2

� �

5
Dx

c

Dx
n

sin
kDx

n

2

� �

. (13)

As the wavelength on the nested grid decreases, the

right-hand side of Eq. (13) will exceed unity and kc will

become complex-valued, implying that the coarse-grid

solution will be evanescent. For Dxc/Dxn 5 3 evanes-

cence is predicted to occur for nested grid wavelengths

#9Dxn, although numerical tests show that the longest

nested-grid wavelength which is transmitted into an

evanescent wave is approximately 8.5Dxn. The coarse-

grid solution for this wave is shown in Fig. 7; here, the

amplitude of the evanescent disturbance is greatest at

638 s because this is when the center and most intense part

of the wave packet arrives at the nested-grid boundary.

For all evanescent coarse-grid disturbances, the real part

of kc is p/2, corresponding to a 2Dxc wave. The imaginary

part of kc is smallest, and the e-folding distance on which

the wave decays is largest, for a wavelength just short

enough to cause evanescence.

3 Defined as ›v/›k, where v is the frequency from the compu-

tational dispersion relation.
4 The solutions in a two-way nested simulation are held identical

over the update region (the region where the two grids coincide,

sponge zones excepted), and so the coarse-grid wavelength can

only change when the solution propagates out of the update region.

In contrast, in one-way nesting the coarse-grid solution is initialized

to, and remains the same wavelength as, that on the nested grid.
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We may now use Vichnevetsky’s expression [Eq. (11)]

for reflections in two-way nesting where, for our dis-

cretization, the group velocities are

c
gn

5 c cos
kDx

n

2

� �

, and

c
gc

5 c cos
Re(k

c
)Dx

c

2

� 	

. (14)

Note that evanescent coarse-grid solutions have a group

velocity of 0, so r2w 5 1 and we expect total reflection.

c. Comparison with numerical results

The amplitude of the reflections estimated from Eqs.

(9) and (11) are compared with the results from simu-

lations with the interpolation BC in Fig. 3a. Except for

waves near 18Dxn (which corresponds to an only mod-

erately resolved 6Dxc wave on the coarse grid), the

agreement between Eq. (9) and the one-way numerical

simulations is quite good; and for all wavelengths the

agreement between Eq. (11) and the two-way numerical

simulations is very good. We conclude from this that the

reflections in the one-way interpolation case can be in-

terpreted as arising from the differences in the phase of

the wave on the coarse and nested grids, and that re-

flections in the two-way interpolation case arise from

differences in the group velocity. In the case of the one-

way interpolation BC, the errors in the estimates for

shorter wavelengths appear, because Eq. (9) does not

take into account the finite width of the packet. The

range of phase differences that occur over the width of

the packet increases as the difference between the phase

speeds on the coarse mesh increases, which in turn in-

creases as the wavelength of the carrier wave decreases.

Although Eq. (9) is based solely on the phase difference

when the center of the packet reaches the boundary,

reasonable qualitative agreement is seen in Fig. 3a down

to 15Dxn (5Dxc), below which the theoretical value be-

comes highly oscillatory (and so is not plotted). The two-

way estimate [Eq. (11)] correctly predicts very small

reflections for wavelengths larger than 24Dxn (8Dxc) and

accurately predicts the simulated reflections through the

smallest wavelengths, including the total reflection oc-

curring for wavelengths #9Dxn.

The difference in the group velocities on the fine and

coarse meshes for packets with wavelengths of 9Dxn or

shorter is large enough that, on a one-way mesh, the

nested-grid packet attempts to pass through the boundary

before the coarse-grid packet has even arrived. As a

consequence, the coarse-grid values imposed at the nest

boundary are almost zero, and the interpolation BC

generates almost total reflection. Further, once the coarse-

grid solution reaches the nested grid’s boundary, the

BC will radiate the coarse-grid solution back onto the

nested grid, creating the incoming disturbance seen in

Fig. 4b.

d. Implications for the sponge BC

The sponge BC causes lower-amplitude reflections

than does the interpolation BC, but for well-resolved

wavelengths behaves similarly to the interpolation BC

with respect to changes in the solution’s wavelength

(Fig. 3): two-way nesting yields small but progressively

larger reflections with decreasing wavelength, and one-

way nesting has peaks in reflection amplitude at 24Dxn

and 16Dxn with a local minimum in between. More prom-

inent qualitative differences between the behaviors of

the two BCs are found for poorly resolved wavelengths.

When using the sponge BC and a one-way nest, wave-

lengths #9Dxn are damped toward the zero coarse-grid

solution, causing the sponge BC to act as a damping layer

and thus substantially reducing the amplitude of the re-

flections. However, much like the interpolation BC, the

sponge BC creates an incoming disturbance (Fig. 4d)

once the coarse-grid solution reaches the nested-grid

boundary. This is mitigated by the use of the filtered

sponge BC (Fig. 4f), which damps the poorly resolved

coarse-grid data before applying it to the nested-grid

solution in the sponge zone.

FIG. 7. Coarse-grid two-way nested solutions at various times (s)

for an 8.5Dxn wave. Left edge of plot represents first point on coarse

grid, which is not updated from the nested grid. Horizontal tick

interval is one coarse-grid interval; vertical tick interval is 1 m, with

elongated marks representing 0 m.
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The high-frequency coarse-grid modes appearing for

marginally well-resolved solutions in two-way nesting

can degrade the sponge BC by creating a mismatch in

the sponge zone, so that the BC fails to appropriately

damp the outgoing nested grid solution. This is partic-

ularly pronounced at 9Dxn (Fig. 4e), which transmits into

a slowly propagating mode with a wavelength slightly

longer than 2Dxc. This disturbance greatly differs in

wavelength from the nested grid solution, while also

having a larger amplitude than the evanescent solutions

and failing to decay away from the nested-grid bound-

ary. Hence, the 9Dxn two-way case causes a coarse-grid

solution, which interferes the most with the sponge BC

and causes the greatest reflection compared to other

wavelengths. The effectiveness of the filtered sponge BC

(Figs. 4g, 5) verifies these assertions: if these interfering

coarse-grid disturbances are filtered out, the reflections

in two-way nested simulations are greatly reduced.

5. Generalizing the preceding results

a. Other finite difference schemes

Equations (9) and (11) for the amplitudes of reflected

waves may also be applied to other numerical schemes

and other problems involving wave propagation. For the

interpolation BC, the key factor governing reflections on

one-way nests is the difference between the phase

speeds on the coarse and fine meshes; for two-way nests,

the key factor is the difference in group velocities. Both

differences are typically smaller on a staggered grid than

on an unstaggered mesh. Higher-order methods gener-

ally give more uniform (and more accurate) approxi-

mations to the phase speeds of all but the very shortest

waves with wavelengths less than approximately 3Dx. At

least for longer waves, higher-order methods also tend

to increase the uniformity in the approximation of the

group velocity.

As a concrete example, consider how the differences

between the phase speeds and group velocities in nu-

merical approximations to the linearized shallow-water

system [Eqs. (1) and (2)] are influenced by switching

between staggered and unstaggered meshes and be-

tween second-and fourth-order centered spatial differ-

ences. Using second-order spatial differencing on an

unstaggered grid yields the scheme

d2t
u 1 gd

2x
h 5 0, and

d
2t

h 1 Hd
2x

u 5 0

In the limit of good time resolution (cDt/Dx � 1), the

numerical phase speed and group velocities for this

scheme are

c
2U

5
c

kDx
c

sin(kDx
c
), and

c
g2U

5 c cos(kDx
c
). (15)

Fourth-order spatial differencing on an unstaggered grid

gives the method

d
2t

u 1 g 1� (Dx)2

6
d2

x

" #

d
2x

h 5 0, and

d
2t

h 1 H 1� (Dx)2

6
d2

x

" #

d
2x

u 5 0,

for which (assuming cDt/Dx� 1)

c
4U

5
c

6kDx
(8 sinkDx� sin2kDx), and

c
g4U

5
c

3Dx
(4 coskDx� cos2kDx). (16)

Finally, the scheme

d
2t

u 1 g 1� (Dx)2

24
d2

x

" #

d
x
h 5 0, and

d
2t

h 1 H 1� (Dx)2

24
d2

x

" #

d
x
u 5 0

is a fourth-order spatial discretization on a staggered

grid. In the limit of good time resolution the phase speed

and group velocity for this scheme satisfy

c
4S

5
2c

kDx

9

8
sin

1

2
kDx

� �

� 1

24
sin

3

2
kDx

� �� 	

, and

c
4S

5
c

8
9 cos

1

2
kDx

� �

� cos
3

2
kDx

� �� 	

. (17)

In the case of one-way nesting, the actual reflections

produced in a specific situation depend on the difference

in the phase of the waves on the coarse and fine meshes

at the fine-mesh boundary. This is a function of the

distance to the boundary as well as the difference in the

phase speeds on each mesh. Nevertheless, the larger

the difference in the phase speeds, the more quickly the

waves get out of phase and, in general, the larger the

reflection that will be produced at a ‘‘nearby’’ boundary.

Thus in Fig. 8 we characterize the potential of the pre-

ceding schemes to produce reflections by plotting the

difference in phase and group velocities between the

nested and coarse grids assuming a 3:1 grid refinement.

In the one-way case (Fig. 8a), the coarse- and fine-mesh

waves stay in phase better using staggered meshes and
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fourth-order schemes.5 If for simplicity we neglect the

difference in wavenumber between the two grids, the

situation for two-way nesting (Fig. 8b) is roughly similar

except that there is a much broader range of short waves

for which fourth-order unstaggered differencing creates

larger group-velocity differences than the second-order

unstaggered approach. Numerical simulations have ver-

ified that the preceding methods do indeed produce re-

flections whose amplitudes vary from scheme to scheme

in a manner consistent with the phase-speed and group-

velocity differences shown in Fig. 8.

Of course the phase speeds and group velocities are

also influenced by the time differencing. Leapfrog time

differencing accelerates the phase whereas centered space

differencing decelerates the phase. If leapfrog time dif-

ferencing is combined with second-order centered space

differencing on an unstaggered grid, the phase errors in

the resulting method tend to cancel, and they approach

zero as cDt/Dx / 12. For the other three schemes con-

sidered in the preceding analysis, the net phase speed and

group velocity errors are more complicated functions of

the Courant number and the wavelength, although they

could nevertheless be evaluated in specific cases if so

desired.

b. Effect of nested grid width

If the width of a one-way nested grid is changed, but the

initial location of the wave packet is unchanged so that

the wave takes a different amount of time to reach the

boundary, the difference in phase between the solutions

should also change, in which case Eq. (9) implies that the

amplitude of the reflections should be different. Con-

versely, we expect that no such sensitivity to the width of

the nested grid should be evident in a two-way nest, since

the solutions remain in sync and the reflections are due

to the changes in group velocity between the grids. To test

this, a series of simulations has been performed in which

the position of the eastern end of the nested grid is

moved. The initial disturbance remains centered in the

same location, so the time required for the packet to

reach the boundary will be proportional to the width of

the domain.

Figure 9 shows the amplitude of the reflected mode for

24Dxn waves in a one-way nest of varying lengths. It is

apparent that as the nested-grid width changes, the re-

flection from the interpolation BC varies like a rectified

sine wave. The minimum reflections occur where the waves

are in phase at the boundary, although as discussed pre-

viously, Eq. (9) underestimates the actual reflection when

the waves are perfectly superimposed because it does not

account for the variation in phase that occurs while a wave

packet of finite width passes through the boundary. The

sponge and filtered sponge BCs greatly reduce the re-

flection on the one-way nest, with little difference between

the two BCs at this wavelength, but still show sensitivity to

the relative phases of the coarse and nested-grid waves at

FIG. 8. Difference between the nested- and coarse-grid (a) phase

and (b) group velocities for several numerical schemes and grid

setups, presuming a 3:1 grid refinement: second-order in space on

a staggered grid [2S; Eqs. (10) and (14)], second-order in space on

an unstaggered grid [2U; Eq. (15)], fourth-order in space on an

unstaggered grid [4U; Eq. (16)], and fourth-order in space on

a staggered grid [4S; Eq. (18)]. Speeds are computed in the limit of

good time resolution. Here, c 5 (gH)1/2. In (b) the group speed

difference for 4U exceeds unity for coarse-grid wavelengths shorter

than 8Dxn.

FIG. 9. As in Fig. 3, but as a function of the width of the nested

grid for a disturbance of wavelength 24Dxn. The solid line is the

estimate Eq. (9) for the reflection in the one-way case. One-way

reflection amplitudes for the sponge BC (not shown) are nearly

identical to those for the filtered sponge BC.

5 The sole exceptions are waves shorter than approximately 7Dxn

for which the differences in phase speed for the fourth-order un-

staggered scheme exceed those for the second-order unstaggered

method.
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the boundary. On the other hand, the reflections generated

using two-way nesting are independent of the size of the

domain regardless of the BC used, consistent with the in-

sensitivity of Eq. (11) to time or position. The two-way

example plotted in Fig. 9 uses the interpolation BC; the

reflections generated by the sponge or filtered sponge BC

on the two-way grid would plot as zeros and are not shown.

The sensitivity of one-way nesting to grid width also

extends to shorter wavelengths. The nested-grid solution

on a 4000 m wide one-way nested grid (not shown) using

a 9Dxn disturbance no longer outruns the coarse-grid

solution, and the reflections are found to be larger than

for the original grid width for all three BCs, although the

increase is reduced by using the filtered sponge BC.

Again, two-way nesting shows little sensitivity to grid

width, and if the filtered sponge BC is used two-way

nesting yields smaller reflections than one-way nesting for

this grid width.

c. Sensitivity of the sponge BC

Is the relative performance of one-way and two-way

nesting dependent upon the parameters defining the

sponge BC? One might suppose that as the sponge zone

becomes thicker, any reflection might be sufficiently re-

duced to the point where one-way and two-way nesting

would perform similarly. To address this question, re-

flection amplitudes for a well-resolved 24Dxn wave and

a more poorly resolved 9Dxn wave are plotted as a func-

tion of the width of the sponge in Fig. 10 for both one-way

and two-way nesting. For the 24Dxn wave (Fig. 10a), two-

way nesting is far superior to one-way nesting for sponge

zones of any finite width (zero width corresponds to the

interpolation BC), with the results differing little between

the sponge or the filtered sponge BC. Indeed, the re-

flection on the one-way nest using a 15-point sponge is an

order of magnitude larger than that on the two-way nest

with only a three-point sponge. With the WRF default of

three sponge points, the one-way nest yields a reflection

almost a third of the size of the incident disturbance,

while the two-way nest reduces the amplitude of the re-

flected mode to less than 1%.

As shown in Fig. 10b, the sponge BC performs poorly

when a 9Dxn wave encounters the boundary of a two-way

nest. Somewhat better results may be achieved using the

conventional sponge BC in a one-way nest, but much

better results are obtained using the filtered sponge BC.

The two-way filtered sponge BC generates less reflection

than the other configurations except for very wide sponges

where the reflections are negligible (note the logarithmic

vertical scale).

We may also examine changing W in Eq. (5). If the

weight is too small the BC would not effectively absorb the

outgoing waves, while if it is too strong, the BC would

itself create reflections. Furthermore, since the coefficients

are inversely proportional to Dt, taking a shorter time step

applies more damping over a given physical time and will

thus alter the reflections off of the boundary. This line of

thinking suggests that reflections should be dependent

upon W/Dt, the rate at which the solution in the sponge

zone is relaxed to that on the coarse grid. A series of tests

were performed in which either W or the time step was

varied so that W/Dt was modified from its original value of

0.25 s21 to values in the range of 5 3 1023–2.5 s21. For

wavelengths in the range 18–36Dxn (in which the filtered

and sponge BCs yield nearly identical results) these tests

found that two-way nesting still yielded smaller reflections

than did one-way nesting for all cases, and for all but the

smallest values of this ratio the amplitude of the reflection

for two-way nesting was lower by an order of magnitude

or more than that using one-way nesting. Similar tests for

FIG. 10. As in Fig. 3, but as a function of the number of sponge points for disturbances of wavelengths 24Dxn and 9Dxn.

Reflection amplitudes below 8 3 1023 are not shown. Note the logarithmic scale on the vertical axis.
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a 9Dxn wave found that both nesting strategies yielded

similar reflections when the filtered sponge BC was used

regardless of the value of W/Dt.

6. Conclusions

Numerical dissipation can effectively remove reflec-

tions at a nested boundary in problems like scalar advec-

tion, where the only waves that can propagate backward

off the boundary are very poorly resolved. However in

many physically significant applications well-resolved sig-

nals can propagate in both directions across the grid, and

in such cases dissipation cannot be relied upon to remove

the reflected wave unless that dissipation is strong enough

to also remove other physically important waves. Our

focus has, therefore, been on a simple system that sup-

ports waves that move in different directions: the one-

dimensional linearized shallow-water equations. We

compared the relative performance of one-way and two-

way nesting in transmitting waves through the nested grid

boundary. For boundary conditions at the edge of the

nest, we tested both simple interpolation and a sponge

layer similar to that used in some modern mesoscale

models such as WRF.

For moderately well-resolved solutions on the coarse

grid—which were very well-resolved on the nested

grid—two-way nesting was found to yield substantially

smaller reflections than did one-way nesting. This result

was found to be robust to the choice of BC and the for-

mulation thereof. On a one-way nest, the sponge BC gave

the least reflection, but even a very wide 15-point sponge

layer still produced much more reflection for these well-

resolved solutions.

The two-way nesting strategy keeps the solution on the

coarse and nested grids in phase, allowing more consistent

coarse-grid fields to be supplied to the nested-grid BC so

that well-resolved disturbances are able to exit the nested

domain with only minor reflections. These reflections are

found to be related to the difference in computational

group velocities between the two grids, which increases

with decreasing wavelength. In contrast, the solutions on

each grid in a one-way nest need not remain in phase and

significant differences may develop between the two grids.

As a result, the data provided to the boundary conditions

from the coarse grid need not match the solution on the

one-way nested grid, and nontrivial reflections typically

occur. Even small differences in the numerical phase

speeds between waves on the coarse and nested grids can

gradually accumulate so that when a disturbance reaches

the one-way nest’s boundary, there is a significant differ-

ence between its phases on each grid.

Different behaviors occur if the coarse-grid solution

is poorly resolved. For short-wavelength localized

disturbances, the two solutions in a one-way simulation

may propagate at such different group velocities that the

nested-grid solution can reach the nested-grid boundary

well before the coarse-grid solution does, so that the

coarse-grid solution is zero as the nested grid solution

exits. This causes total reflection if the interpolation BC

is used, but increases the effectiveness of the sponge BC

as it becomes a wave-absorbing layer which damps the

nested-grid solution to zero.

For two-way nesting, a marginally resolved nested-grid

solution is transmitted onto the coarse grid as either a

shorter wavelength propagating mode or an evanescent

mode with zero group velocity. In these cases, the reflec-

tion is total when using the interpolation BC, and the

reflections for the sponge BC are greatly increased as the

presence of an inconsistent coarse-mesh solution in

the sponge zone interferes with the absorption of the out-

going waves. This problem may be rectified by spatially

filtering the coarse-grid data supplied to the sponge,

thereby attenuating any short-wavelength coarse-grid

disturbances. Adding this filter to the sponge BC mod-

estly decreases the reflections on a one-way nest, and

greatly reduces them on a two-way nest.

These results suggest that in our idealized tests, two-way

nesting is preferred to one-way nesting given its superiority

for well-resolved waves, and that it is no worse than one-

way nesting for poorly resolved solutions if a filter is added

to the sponge BC. Unsurprisingly, the sponge and filtered

sponge BCs are seen to uniformly produce smaller re-

flections than does the interpolation BC.

A key remaining question is how directly these results

extend to more realistic simulations. A forthcoming pa-

per will examine the difference between the two nesting

strategies in meteorologically relevant flows and propose

guidance to modelers.
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