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ABSTRACT

Implicit–explicit (IMEX) linear multistep methods are examined with respect to their suitability for the

integration of fast-wave–slow-wave problems in which the fast wave has relatively low amplitude and need not

be accurately simulated. The widely used combination of trapezoidal implicit and leapfrog explicit differ-

encing is compared to schemes based on Adams methods or on backward differencing. Two new families of

methods are proposed that have good stability properties in fast-wave–slow-wave problems: one family is

based on Adams methods and the other on backward schemes. Here the focus is primarily on four specific

schemes drawn from these two families: a pair of Adams methods and a pair of backward methods that

are either (i) optimized for third-order accuracy in the explicit component of the full IMEX scheme, or

(ii) employ particularly good schemes for the implicit component. These new schemes are superior, in many

respects, to the linear multistep IMEX schemes currently in use.

The behavior of these schemes is compared theoretically in the context of the simple oscillation equation

and also for the linearized equations governing stratified compressible flow. Several schemes are also tested

in fully nonlinear simulations of gravity waves generated by a localized source in a shear flow.

1. Introduction

The atmosphere and the ocean support several dif-

ferent types of waves that propagate at very different

speeds. If time derivatives in the equations governing

atmospheric flow are approximated using explicit finite-

difference schemes, the maximum stable time step will

be limited by the speed of the fastest-moving wave. Yet

the fastest-moving atmospheric and oceanic waves are

sound waves, which play no direct role in atmospheric

and ocean circulations and do not need to be accurately

simulated.

Atmospheric models typically avoid the severe time-

step restrictions associated with sound wave propaga-

tion in one of three ways. One approach is to replace the

governing equations with an approximate system, such

as the anelastic (Ogura and Phillips 1962; Lipps and

Hemler 1982; Bannon 1996), or pseudo-incompressible

equations (Durran 1989, 2008), before constructing any

numerical approximations. The other two approaches ap-

proximate the full compressible equations using numerical

techniques that treat sound waves in a stable, but in-

accurate manner, while faithfully approximating the

behavior of the slower-moving waves. This may be ac-

complished either by resorting to implicit time differ-

encing (Tapp and White 1976) or by splitting up the terms

in the governing equations and integrating those re-

sponsible for sound wave propagation on a smaller time

step than that used for the remaining terms (Klemp and

Wilhelmson 1978; Tatsumi 1983; Wicker and Skamarock

2002).

Fully implicit time differences require the solution of

a nonlinear algebraic system at each time step, and while

they continue to be the subject of ongoing investigation

(Evans et al. 2010), they are generally thought to be less

efficient than implicit–explicit (IMEX) methods (also

known as semi-implicit methods) in which only those

terms responsible for linear sound wave propagation are

evaluated using implicit differences and the remaining

terms are integrated using explicit formulas. A large body

of research exists on the construction of IMEX methods

for advection-diffusion problems, in which the diffusion

terms are treated implicitly and the advection terms with

some type of explicit differencing (Varah 1980; Ascher

et al. 1995). Less attention has been devoted to the de-

velopment of IMEX methods for fast-wave–slow-wave

problems, but at least in atmospheric science, a basic
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leapfrog-trapezoidal IMEX method (see first line of

Table 1) is widely used (Kwizak and Robert 1971).

Consistent with the true solution, pure IMEX leapfrog-

trapezoidal approximations to inviscid linear wave-

propagation problems neither damp nor amplify the

numerical solution. In practical applications, however,

the leapfrog-trapezoidal method requires some modifi-

cations. The computational mode of the explicit leap-

frog scheme is undamped and may interact with the

physical mode in nonlinear problems to produce spu-

rious 2Dt oscillations (time splitting); Robert–Asselin

(RA) filtering (Robert 1966; Asselin 1972) or Robert–

Asselin–Williams (RAW) filtering (Williams 2009) is of-

ten applied to avoid this problem. In addition, the weights

in the trapezoidal integration formula are sometimes

backward biased in an effort to enhance the stability of

the implicit part (Benoit et al. 1997), by choosing ½ ,

u # 1 in the formula given on the first line of Table 1.

Either filtering or off-centering the integration weights

render these methods first-order accurate. In addition

the off-centering damps a rather wide range of frequen-

cies, including those that are rather well resolved. Can we

do better?

The leapfrog-trapezoidal method is a linear multistep

IMEX method. In the following we explore several

other linear multistep methods that lend themselves to

IMEX differencing in fast-wave–slow-wave problems

while producing more scale-selective damping at the

highest frequencies. These methods permit almost the

same maximum stable time step allowed by the filtered

IMEX leapfrog-trapezoidal methods while achieving

higher accuracy.

2. Formulation of IMEX multistep methods

The equations governing atmospheric or ocean dy-

namics (and many other processes) can be expressed in

the following form:

›u

›t
5 f(u) 1 Lu, (1)

where u is the state variable, L is the matrix associated

with a linear operator that includes processes with short

time scales (such as sound and/or gravity wave propa-

gation), and all remaining terms are collected in f(u),

including those responsible for advection. If the terms

supporting the fast processes are not linear, they may be

linearized to form L, and the remaining nonlinear con-

tributions may be incorporated in f.

Letting qn be the numerical approximation to u at

time nDt, a linear IMEX M 1 1 step approximation to

(1) may be expressed in the following form:

�
1

k52M
akqn1k 5 Dt �

0

k52M
bkf(qn1k) 1 �

1

k52M
nkLqn1k

2
4

3
5.

(2)

The set of coefficients (ak, bk) define the explicit method,

whereas the implicit portion is defined by the set (ak, nk).

The use of a single set of ak restricts the choice of explicit

and implicit multistep methods that can be combined in

the IMEX scheme to those with identical ak.

a. The implicit component

To ensure that the time step is not restricted by the

fast processes, the implicit method should be A stable,

although as shown by Dahlquist (1963) no A-stable

linear multistep method can be higher than second-

order accurate. A method is A stable if when applied to

the scalar problem

du

dt
5 hu, (3)

with u and h complex, and <(h) # 0, the magnitude of

the factor by which the numerical solution amplifies

TABLE 1. Coefficients of implicit–explicit multistep methods following (2). In the first column, values of c are given for implicit Adams (5)

and backward (6) methods. The values of b are listed for explicit Adams (10) and backward (11) schemes.

Method

Implicit Explicit a1 a0 a21 b0 b21 b22 n1 n0 n21

T2u LF 1/2 0 21/2 1 0 0 u 0 1–u

T1 AB3 1 21 0 23/12 24/3 5/12 1/2 1/2 0

MCN (c 5 1/8) AX21 (b 5 3/8) 1 21 0 27/16 27/8 3/16 9/16 3/8 1/16

AM2* (c 5 1/2) AX2* (b 5 1/2) 1 21 0 7/4 21 1/4 3/4 0 1/4

AI2* (c 5 3/2) AB3 (b 5 5/6) 1 21 0 23/12 24/3 5/12 5/4 21 3/4

BDF2 (c 5 0) BX2 (b 5 0) 3/2 22 1/2 2 21 0 1 0 0

BDF2 (c 5 0) BX2* (b 5 1/2) 3/2 22 1/2 5/2 22 1/2 1 0 0

BI2* (c 5 1/3) BX3* (b 5 2/3) 3/2 22 1/2 8/3 27/3 2/3 4/3 22/3 1/3
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each time step, jAj [ jqn11/qnj, is bounded by unity re-

gardless of the size of the time step (Durran 2010, p. 41).1

When IMEX methods are used in advection-diffusion

problems, the implicit method typically has the addi-

tional property that it is L stable. An L-stable method is

an A-stable method satisfying the additional condition

that jAj / 0 as <(h)Dt / 2‘ (Durran 2010, p. 48).

Integrating the diffusion terms with an L-stable method

ensures that very short wavelength features decay prop-

erly when the time step and the diffusivities are large.

Some damping of the highest frequencies has also proved

helpful in many fast-wave–slow-wave problems, so here

our primary focus will be on implicit methods that pro-

vide such damping, although we will not necessarily re-

quire jAj/ 0 as =(h)Dt / 6‘.

One set of potentially attractive candidates for use in

linear IMEX multistep methods are the Adams schemes

for which a1 5 1, a0 5 21 and ak 5 0 for 2M # k , 0.

The highest-order explicit Adams scheme that can be

obtained using s steps is the s-step Adams–Bashforth

method; the highest-order implicit scheme is the s-step

Adams–Moulton method. Adams–Moulton implicit

schemes are, however, of limited use in IMEX formula-

tions because the only A-stable Adams–Moulton method

is the classic one-step trapezoidal scheme (denoted here

as T1), which does not damp high-frequency oscillations.

We will therefore consider Adam’s methods whose order

of accuracy is lower than the best that can be achieved

using a given number of time steps, but whose stability

properties nevertheless make them potentially attractive

choices for IMEX approximations to fast-wave–slow-

wave problems.

The simplest example of such a method may be obtained

from the trapezoidal scheme, which may be modified to

produce frequency-dependent damping by off-centering it

in time; the result is a first-order one-step scheme. When

used in conjunction with an explicit leapfrog scheme, the

time differencing in the two schemes is made compatible

by approximating the trapezoidal difference over 2Dt (in

which case it is not formally an Adams scheme). The

result is

qn11 2 qn21

2Dt
5 uLqn11 1 (1 2 u)Lqn21, (4)

with 1/2 , u # 1. Choosing u near ½ gives the best ac-

curacy, but only weak damping. We will refer to this

scheme as T2u.

Second-order accuracy can be achieved using a mem-

ber of the following one-parameter family of implicit

Adams methods, which are A stable for any nonnegative

c (Frank et al. 1997):

qn11 2 qn

Dt
5

1

2
(1 1 c)Lqn11 1

1

2
(1 2 2c)Lqn 1

c

2
Lqn21.

(5)

Choosing c 5 0 reduces this to a two-step method and

gives the familiar trapezoidal scheme. The case c 5 ½

yields the method denoted AM2* by Fornberg and

Driscoll (1999), who used it in conjunction with a fourth-

order Adams-Bashforth method for IMEX simulations

of dispersive waves. Nevanlinna and Liniger (1978)

found AM2* to be the two-step second-order method

that gave the smallest error bounds among all methods

that yield nongrowing solutions to a test problem similar

to (3) with h(t) # h0 , 0 for t $ 0.

Instead of Adams methods, one could alternatively

consider the one-parameter family of backward methods:

3

2
qn11 2 2qn 1

1

2
qn21

Dt
5 (1 1 c)Lqn11

2 2cLqn 1 cLqn21. (6)

The left-hand side is the standard second-order backward-

difference approximation to the derivative at time level

n 1 1 and the right-hand side is a second-order ap-

proximation to Lq at time n 1 1. The familiar L-stable

second-order backward difference formula (BDF2) is

obtained by choosing c 5 0. Numerical evaluations of

the amplification factor A show the family schemes (6)

to be A stable for c $ 21/4.

The amplification factors A generated by several of

the preceding implicit methods are compared with that

for the exact solution to (3) in Fig. 1. Each panel shows

contours of jAj plotted as a function of <(h)Dt and

=(h)Dt. Method AI2* is (5) with c 5 3/2, method BI2* is

(6) with c 5 1/3; the significance of these methods will be

discussed in section 3.

As expected for A-stable methods, jAj# 1 throughout

the half-plane <(h)Dt # 0. One limiting behavior is ex-

hibited by the T2u method with u 5 0.5, which correctly

preserves the amplitude of purely oscillatory solutions,

but fails to correctly damp the solution if <(h)Dt�21.

The other limit is attained by the BDF2 method, which

consistent with its L stability, provides the best treat-

ment of the strongly damped case [<(h)Dt�21]. Most

of the other methods produce significant damping as

<(h)Dt / 2‘ (the values of jAj in this limit appear in

the bottom-left corner of each panel of Fig. 1), and like

1 An N-step linear multistep method has N amplification factors,

one of which corresponds to the physical mode. The others are

associated with computational modes. Unless otherwise specified,

jAjwill refer to the maximum of the magnitude of the amplification

factor over all physical and computational modes.
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BDF2, they preserve the amplitude of purely oscillatory

motions for j=(h)Dtj less than about ½. The exception is

the T2u method with u 5 0.6, which requires the smallest

time step in the purely oscillatory case to avoid spurious

damping, yet fails to produce strong damping when

<(h)Dt / 2‘.

The damping and phase errors for each of these methods

is examined in detail for the purely oscillatory case

[<(h) 5 0], in Fig. 2. The frequency dependence of the

damping is indicated by the plot of jAj as a function of

=(h)Dt in Fig. 2a. All the methods preferentially damp

the poorly resolved waves, except for T2u with u 5 0.5,

which correctly preserves the amplitude of the solution.

The AM2* method is the second best at preserving the

amplitude, the least frequency-selective method is T2u

with u 5 0.6. The relative phase error

R 5
1

=(h)Dt
arctan

�
=(A)

<(A)

�
,

is plotted as a function of=(h)Dt in Fig. 2b; R is the ratio

of the phase advance produced by one step of the nu-

merical scheme to the phase advance in the exact

solution of (3) over the same time interval. The smallest

phase errors are produced by the BDF2 method. AM2*

and the T2u methods also perform relatively well.2 The

largest phase errors are generated by the AI2* scheme;

the BI2* method is the second worst.

b. The explicit component

When the implicit part of a multistep IMEX scheme

is approximated using the modified trapezoidal scheme

in (4), the explicit part of the integration is often per-

formed using the leapfrog scheme with Robert–Asselin

filtering (Robert 1966; Asselin 1972). Williams (2009,

2011) recently proposed an improvement to this filter,

the resulting ‘‘RAW filtered’’ leapfrog scheme has the

following form:

qn11 2 ~~qn21

2Dt
5 f(~qn), (7)

FIG. 1. The magnitude of the amplification factor jAj for several implicit approximations to the test

problem in (3), plotted as a function of the real and imaginary parts of hDt. Also shown, by the thin solid

contours, is the magnitude of the amplification factor for the exact solution. The labels correspond to the

terminology in the text and Table 1. The number in the bottom left is the limit of jAj as <(h) / 2‘.

2 T1, the standard trapezoidal method, in which the time dif-

ference is computed over an interval of Dt rather than 2Dt as in (4),

would give the lowest phase error.
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~~qn 5 ~qn 1
sg

2
(~~qn21 2 2~qn 1 qn11), (8)

~qn11 5 qn11 1
(s 2 1)g

2
(~~qn21 2 2~qn 1 qn11). (9)

Here ~q represents a provisional singly filtered value and
~~q the doubly filtered final value of q, while g and s are

constant filter parameters.3 The original Robert–Asselin

formulation (with filter coefficient g/2) is obtained by

setting s 5 1. Here we use s 5 0.53 in the RAW filter

following Williams (2009). Depending on the non-

linearity of the underlying problem, time-splitting in-

stability is typically avoided by choosing a value of g in

the range 0.05 # g/2 # 0.2.

Adams–Bashforth methods are obvious possibilities

for the explicit part of multistep IMEX schemes, which

use an implicit Adams method. The two-step Adams–

Bashforth method is a poor choice because it amplifies

oscillatory solutions, but the three-step Adams–Bashforth

method (AB3), generally gives good results and is also

third-order accurate. As with was the case for implicit

Adams methods, for fast-wave–slow-wave IMEX applica-

tions, it will be useful to consider the family of three-step

methods that are at least second-order accurate. This one-

parameter family may be expressed in the following form:

qn11 2 qn

Dt
5

1

2
(3 1 b)f(qn)

2
1

2
(1 1 2b)f(qn21) 1

b

2
f(qn22). (10)

The two-step and three-step Adams–Bashforth schemes

are obtained by choosing b 5 0 and b 5 5/6, respectively.

Suitable explicit methods for use with the implicit back-

ward schemes (6) are less well known. The one-parameter

family of three-step explicit backward schemes of at least

second-order accuracy has the following form:

3

2
qn11 2 2qn 1

1

2
qn21

Dt
5 (2 1 b)f(qn)

2 (1 12b)f(qn21) 1 bf(qn22).

(11)

Choosing b 5 0 yields a method that has seen use in

combination with BDF2 to obtain second-order IMEX

methods (Karniadakis et al. 1991; Giraldo et al. 2010).4

The b 5 0 method, which we will denote BX2, does have

the disadvantage that it erroneously amplifies purely

oscillatory solutions. The choice b 5 2/3 gives a third-

order method that will be denoted BX3*; this method is

the explicit component of the IMEX BDF2B scheme of

Giraldo (2005), who attributed it to Hulsten.

Figure 3 shows jAj for selected explicit methods in the

same format as Fig. 1. AX2* and BX2* correspond to

the choice b 5 ½ in (10) and (11), respectively. The sig-

nificance of these two schemes will be discussed in the

next section. As is well known, the region for which the

unfiltered leapfrog scheme generates nongrowing solu-

tions is the segment (21, 1) along the imaginary axis of

the <(h)Dt 2 =(h)Dt plane. Both the Asselin–Robert

and the RAW filter widen this region somewhat, while

decreasing the maximum values of=(h)Dt for which jAj#
1. Nevertheless, the filtered leapfrog schemes remain far

less suited to the simulation of damping processes than

the other explicit methods shown in Fig. 3. The best

scheme for simulating problems with some dissipation is

FIG. 2. Magnitude of the (a) amplification factor and (b) relative

phase error of the schemes used for the implicit part of the IMEX

formulas in Table 1.

3 When the RAW filter is used in leapfrog-trapezoidal IMEX

schemes, ~~qn21 replaces qn21 in (4).

4 Varah (1980) and Frank et al. (1997) considered a variant of

this method in which the right side is replaced by f(2qn 2 qn–1),

which is equivalent to (11) with b 5 0 when f is linear.
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BX2*, which in the =(h)Dt 5 0 case, does a good job of

approximating the correct rate of damping for 20.5 #

<(h)Dt # 0 and remains stable for <(h)Dt as negative as

roughly 20.9.

Further details about the amplification factor for the

oscillatory case are shown by the plot of jAj as a function

of =(hDt) in Fig. 4a for the physical mode associated

with each of the preceding explicit schemes as well as

BX2, which is the previously used version of (11) for

which b 5 0. The unstable amplification generated by

BX2 is clearly apparent, as is the weaker damping pro-

duced by all other methods except the RAW-filtered

leapfrog scheme. The RAW-filtered leapfrog scheme (with

g 5 0.2 and s 5 0.53) generates very weak damping for 0 #

=(hDt) # ;0.42, and weak amplification at larger time

steps. The stability limits for AB3 and BX3* arise when the

amplification factor for one of their two computational

modes exceeds unity. Values of jAj for the computational

modes associated with the preceding schemes are plotted in

Fig. 4b. Among all these methods, AB3 clearly produces

the smallest relative phase errors (Fig. 4c).

3. Stability analysis of IMEX methods

a. The oscillation equation

In the preceding section, the properties of the implicit

and explicit methods were considered in isolation, but

these methods interact in complex ways when combined

in an IMEX time integration scheme. For example, de-

spite their attractive properties, the third-order Adams–

Bashforth method and trapezoidal method combine to

form a IMEX method that is of little use in fast-wave–

slow-wave problems (Durran 1991). The stability of

IMEX approximations to fast-wave–slow-wave prob-

lems can be explored using a variant of the oscillation

equation:

›q

›t
5 ivLq 1 ivHq, (12)

where the frequencies vH and vL represent the oscilla-

tions triggered by the propagation of fast and slow

waves, respectively.

As an example of the analysis, the implicit–explicit

AI2*–AB3 approximation to (12) takes the following

form:

qn11 2 qn

Dt
5 ivL

23

12
qn 2

4

3
qn21 1

5

12
qn22

� �

1 ivH

5

4
qn11 2 qn 1

3

4
qn21

� �
, (13)

and the amplification factor A for this method satisfies

FIG. 3. As in Fig. 1, but for the explicit part of the IMEX formulas in Table 1.
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1 2
5

4
ivHDt

� �
A3 1 21 2

23

12
ivLDt 1 ivHDt

� �
A2

1
4

3
ivLDt 2

3

4
ivHDt

� �
A 2

5

12
ivLDt 5 0. (14)

The amplification factors for the other methods listed

in Table 1 were computed in a similar manner. The

only complication arises in the analysis of the Asselin-

filtered leapfrog scheme, where it is assumed that
~Aq 5 A~q and~~Aq 5 A~~q (see Durran 2010, p. 65).

The magnitudes of the amplification factors for sev-

eral variants of the leapfrog–T2u schemes are contoured

as a function of vLDt and vHDt in Fig. 5. The result for

u 5 ½, g 5 0 (Fig. 5a) is excellent in the sense that (i) the

scheme is stable for all values of Dt provided jvLj, jvHj
(because jAj # 1 in the wedge-shaped region jvLDtj ,
jvHDtj), and (ii) even in the case jvLj. jvHj, the stability

of the method is limited exclusively by the explicitly

differenced term (because jAj # 1 in the vertical strip

jvLDtj, 1). Off-centering the implicit term by choosing

u 5 0.6 (Fig. 5b) preserves stability throughout the

wedge-shaped region jvLDtj , jvHDtj, but does signifi-

cantly reduce the range of vLDt over which stable solutions

can be obtained when vHDt is small—a counterintuitive

result since off-centering the trapezoidal method adds

damping that one would think might increase stability.

As mentioned previously, a serious difficulty with the

pure leapfrog scheme is that, in nonlinear problems, the

solution may be subject to time-splitting instability.

When u 5 0.5, using the RA filter [s 5 1 in (8)–(9)] with

g 5 0.2, produces only a modest influence on the ge-

ometry of the stable region for small values of vHDt, but

does restrict the stability condition for larger time steps,

since jvLj , 1.22jvHj becomes the corresponding sta-

bility condition for arbitrary Dt (cf. Figs. 5a,c). A similar

modest reduction in stability is produced by increasing g

from 0 to 0.2 if the implicit scheme is off-centered with

u 5 0.6 (cf. Figs. 5b,d). The stability condition jvLDtj ,
jvHDtj is recovered when the new RAW filter is used

(with s 5 0.53 and g 5 0.2) instead of the RA filter, but

there is a reduction in stability when vHDt is small (for

both u values).

Two parameters describing simple aspects of the sta-

bility region for the T2u–LF scheme are listed in Table 2:

m characterizes the stability when no high-frequency

oscillation is present in the sense that stability is guar-

anteed if jvLDtj , m and jvHDtj 5 �, where � . 0 is an

arbitrarily small constant.5 In contrast, j is the smallest

value for which stable solutions may be obtained re-

gardless of the value Dt provided jvLj, jjvHj; as such, it

characterizes the spread of the widest wedge-shaped

subset of the region of unconditional stability emanating

upward from the origin.

The magnitudes of the amplification factors for the

other methods listed in Table 1, are shown in Fig. 6,6 and

FIG. 4. Magnitude of the (a) amplification factor and (c) relative phase error for the physical

modes of the schemes used for the explicit part of the IMEX formulas in Table 1. (b) Mag-

nitudes of the amplification factors for the computational modes.

5 The case � 5 0 is not included because for many schemes that

are unstable arbitrarily close to the origin, jAj/ 1 as jvHDtj/ 0.
6 Discussion of the MCN/AX21 scheme, listed in Table 1, will

be deferred until the conclusions.
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the values of m and j for these methods are also listed in

Table 2. The T1–AB3 combination (Fig. 6a) has a very

small region of stability, and as noted in Durran (1991),

is not suitable for fast-wave–slow-wave problems. In

particular, m 5 0 and j 5 ‘ for the T1–AB3 scheme. The

previously used combination BDF2–BX2 (Fig. 6b) re-

quires the frequency of the fast oscillation to dominate

that of the slow oscillation by the factor of j 5 3, which is

considerably worse than the values of j for the leapfrog-

trapezoidal-based methods, but not worse than that for

some of the other schemes shown in Fig. 6. The stability

of the BDF2–BX2 method is, however, poor in the case

where jvHDtj is small, indeed m 5 0 for this method.

Near the origin in the vLDt2vHDt plane, the geome-

try of the regions of instability in IMEX multistep

methods often includes the line vHDt 5 2vLDt (as in

Figs. 5d and 6a,b). In addition, the region of stability

along the line vHDt 5 0 can also be quite limited. We

therefore conducted an empirical search for those com-

binations of IMEX Adams schemes and those combina-

tions of IMEX backward schemes that were stable along

the piecewise linear curve:

vHDt 5 1/2 2 jvLDtj, vLDt 2 [21/2, 1/2]. (15)

This curve is indicated by the heavy black line in each

panel of Fig. 6.

The criteria for stable IMEX schemes along this

segment proved surprisingly simple. IMEX Adams

schemes, formed by combining (5) and (10), give stable

FIG. 5. Magnitude of the amplification factor for the leapfrog-based IMEX schemes listed in

Table 2 for the model problem (12). The contour interval is 0.1, but regions with 1 , jAj, 1.01

are shaded gray and regions in which jAj exceeds 1.01 are shaded dark gray. Only the upper

half-plane is plotted, the values of jAj in the lower half plane are antisymmetric about the

origin.

TABLE 2. Parameters characterizing regions of stability for so-

lutions to (12) using the implicit–explicit multistep methods listed

in Table 1. Values for LF–RA were computed using g 5 0.2, s 5 1,

while for the LF–RAW variant, g 5 0.2, s 5 0.53.

Method

Implicit Explicit u m j

T2u LF 0.5 1 1

T2u LF 0.6 0 1

T2u LF–RA 0.5 0.91 1.22

T2u LF–RA 0.6 0 1.17

T2u LF–RAW 0.5 0.43 1.02

T2u LF–RAW 0.6 0 1

T1 AB3 — 0 ‘

AM2* AX2* — 0.76 3

AI2* AB3 — 0.72 1.23

BDF2 BX2 — 0 3

BDF2 BX2* — 0.67 5

BI2* BX3* — 0.72 2.43
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approximations to (12) for all (vLDt, vHDt) along (15)

provided b and c satisfy

c 5 3b 1 1, 0:105 , c , 3:85. (16)

We do not have an analytic proof that this is the optimal

relation between b and c, but it does seem likely that the

coefficients defining the relation are actually the pre-

ceding integers. If the intercept in (15) was perturbed by

just 60.01 it was not possible to find any values of b or c

for which the resulting IMEX Adams method was stable

for all points along the segment in (15). In a similar way,

the optimal combination of backward schemes in (6) and

(11) was empirically determined to be

c 5 2b 1 1, 20:158 , c , 2:00. (17)

Once again, this result is robust to perturbation of the

intercept by values of 60.01 and larger.

What criteria might we use to choose among the mem-

bers of these one-parameter families of stable Adams and

backward IMEX methods for fast-wave–slow-wave prob-

lems? In cases where the fast wave is low amplitude and of

essentially no physical significance (e.g., sound waves), the

best accuracy can often be obtained using the value of

b associated with the third-order explicit scheme. This

yields the methods AI2*–AB3 and BI2*–BX3* shown in

Figs. 6e,f. In comparison with the other methods shown in

Fig. 6, both of these methods have relatively large stability

regions. In particular, the AI2*–AB3 scheme is un-

conditionally stable throughout the relatively wide wedge

defined by j 5 1.23. Furthermore, like the centered (u 5

0.5) variant of the T2u–LF scheme, whenever jvLj . jvHj
the stability of AI2*–AB3 combination is limited exclu-

sively by the explicitly differenced term (i.e., m 5 0.72).

Alternatively, if an accurate treatment of the implic-

itly approximated terms is important, which may be the

case when most of the terms fundamental to gravity

wave propagation are treated implicitly, it can be ad-

vantageous to choose the most accurate implicit scheme

available, and then select a compatible explicit method

using (16) or (17). For Adams methods, following

Nevanlinna and Liniger (1978), we propose AM2* as the

implicit scheme, and for the implicit backward method

we use classic L-stable BDF2. Among the schemes

plotted in Fig. 2, BDF2 and AM2* produce the smallest

phase errors, while the largest errors are produced by

BI2* and AI2*. In addition, the amplitude errors gen-

erated by AM2* are smaller than those from AI2*, and

those created by BDF2 are smaller than the ones from

BI2*. The stability regions for the resulting combina-

tions, AM2*–AI2* and BDF2–BX2* are shown in Figs.

6c,d, respectively. Values of m and j for all these

schemes are also given in Table 2.

FIG. 6. As in Fig. 5, but for the Adams and the backward-differenced IMEX schemes

listed in Table 1.
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b. The Euler equations

The oscillation equation provides a simple prototype

problem that is helpful for assessing the basic behavior

of IMEX methods. In practical applications, many

waves may be present, they may move at a variety of

different speeds, and several processes may be re-

sponsible for propagating each individual wave. To

examine the behavior of the IMEX mulitstep methods

in a more realistic fluid dynamical context, consider the

linearized two-dimensional ‘‘compressible Boussinesq

system’’ (Durran 2010, p. 409):

›

›t
1 U

›

›x

� �
u 1

›P

›x|{z}
s

5 0, (18)

›

›t
1 U

›

›x

� �
w 1

›P

›z|{z}
s

5 b|{z}
b

, (19)

›

›t
1 U

›

›x

� �
b 1 N2w|ffl{zffl}

b

5 0, (20)

›

›t
1 U

›

›x

� �
P 1 c2

s

›u

›x
1

›w

›z

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

s

5 0. (21)

Here U is the constant mean horizontal wind speed; u

and w are the perturbation horizontal and vertical wind

speeds, respectively; and cs is the speed of sound. The

reference-state pressure p(z) is assumed to be in hy-

drostatic balance with the reference-state density

r(z), and the buoyancy b, Boussinesq pressure po-

tential P, and Brunt–Väisälä frequency N are defined

such that

b 5 2g
r 2 r(z)

r0

, P 5
p 2 p(z)

r0

, N2 5 2
g

r0

dr

dz
,

(22)

where r0 is constant representative value for the density.

Let (u0, w0, b0, P0) be complex valued amplitudes for

the prognostic variables (u, w, b, P). Then wavelike so-

lutions to (18)–(21) of the following form:

<[(u0, w0, b0, P0)ei(kx1lz2vt)] (23)

exist provided k and l, the wavenumbers in the x and z

directions, and v, the frequency, satisfy the dispersion

relation:

(v 2 Uk)2
5

c2
s

2

8<
:k2 1 ‘2 1

N2

c2
s

6

"
k2 1 ‘2 1

N2

c2
s

� �2

2
4N2k2

c2
s

#1/2
9=
;. (24)

The positive root in (24) is associated with sound waves,

which remain nontrivial solutions in the limit N / 0.

The pressure-gradient and divergence terms fundamental

to sound wave propagation are indicated by underbraces

labeled ‘‘s’’ in (18), (19), and (21). The negative root in (24)

is associated with gravity (or buoyancy) waves. The forces

fundamental to gravity wave propagation again include

pressure gradient forces, as well as the processes involving

buoyancy indicated by the terms with underbraces labeled

‘‘b’’ in (19) and (20). Both sound and gravity waves are

also transported by the mean wind through advection,

which is represented by the terms involving the factor U in

(18)–(21).

In atmospheric applications,7 N2/c2
s � l2 and, as dis-

cussed in Durran (2010, p. 412) the frequencies corre-

sponding to gravity waves in (24) are well approximated

by the following relation:

v 5 Uk 6
Nk

(k2 1 l 2 1 N2/c2
s )1/2

. (25)

The frequency increases as the vertical wavelength in-

creases (l / 0) or the horizontal wavelength decreases

(k / ‘), and is bounded by jUkmaxj 1 N, where kmax is

the maximum horizontal wavenumber (corresponding

to the shortest horizontal wavelength) retained on the

spatial mesh. A sufficient condition for the stability of

the gravity wave modes in a completely explicit ap-

proximation typically takes the following form:

(jUkmaxj 1 N)Dt , C, (26)

where C is a constant of order unity whose precise value

depends on the numerical integrator. For the leapfrog

scheme without time filtering, C 5 1; for AB3, C 5 0.72

and for BX2* C 5 0.67.

Under the same approximation that N2/c2
s � l2, the

frequencies for the sound waves are well approximated as

v2 5 c2
s (k2 1 ‘2 1 N2/c2

s ). (27)

7 For example, if N 5 0.01 s21 and cs 5 300 m s21, N2/cs
2 can be

neglected in comparison with l2 unless the vertical wavelength

exceeds 100 km.
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Letting k2 5 k2 1 l2 and again neglecting the term N2/cs
2,

the stability condition for the sound wave modes in a

completely explicit approximation typically takes the fol-

lowing form:

cskmaxDt , C, (28)

where kmax is the maximum total wavenumber (associ-

ated with the shortest wavelength) retained on the spa-

tial mesh, and C is again a constant dependent on the

numerical integrator. For the pure leapfrog scheme, AB3,

and BX2*, C takes the same specific values previously

mentioned in connection with (26). The stability re-

striction for the sound waves (28) is typically much more

severe than that for the gravity waves in (26), because the

vertical resolution in atmospheric models is typically

much finer than the horizontal resolution and cs is large.

To allow a larger time step than that required to sta-

bilize the sound waves, first consider IMEX approxi-

mations to (18)–(21) in which the terms labeled ‘‘s’’ are

treated implicitly, and all the remaining terms are stepped

forward with an explicit scheme. The quantities defined in

(1) become

u 5

u

w

b

P

0
BBBB@

1
CCCCA, f(u) 5

2U
›u

›x

2U
›w

›x
1 b

2U
›b

›x
2 N2w

2U
›P

›x

0
BBBBBBBBBB@

1
CCCCCCCCCCA

,

Lu 5

2
6666666664

2
›P

›x

2
›P

›z

0

2c2
s

›u

›x
1

›w

›z

� �

3
7777777775

. (29)

Having linearized the governing equations, f(u) is no lon-

ger a nonlinear function of u, and we will alternatively

write this term as Mu.

If (29) is integrated using the AI2*–AB3 method, the

temporally discretized system becomes

P3un11 1 P2un 1 P1un21 1 P0un22 5 0, (30)

where each of the Pn are 4 3 4 matrices, with P3 5 I 2

(5/4)LDt, P2 5 2I 2 (23/12)MDt 1 LDt, P1 5 (4/3)MDt 2

(3/4)LDt, and P0 5 2(5/12)MDt. The method in (30)

supports four physical modes [two sound wave and

two gravity wave modes that are the discrete-in-time

equivalents of (23)] and eight computational modes,

all of which are eigenvectors associated with the poly-

nomial eigenvalue problem:

(l3P3 1 l2P2 1 lP1 1 P0)un22 5 0. (31)

Note that (31) is the matrix analog of (14) with the

amplification factor A replaced by the eigenvalue l.

Such polynomial eigenvalue problems can be solved in

MATLAB using the command polyeig or, when P
3

is

nonsingular, by reformulating (31) as the standard ei-

genvalue problem Bv 5 lv where

B 5

P21
3 P2 P21

3 P1 P21
3 P0

I 0 0

0 I 0

0
B@

1
CA and v 5

un

un21

un22

0
@

1
A.

(32)

The latter approach was taken for the computations in

this paper.

Let C be the maximum in absolute value of the ei-

genvalues arising from such a discrete-in-time IMEX

approximation. Figure 7 shows C for the T2u–LF,8

AI2*–AB3, and BDF2–BX2* methods. Key values of C

are contoured as a function of Dt and the horizontal

wavelength lx 5 2p/k for modes with fixed vertical

wavelengths lz 5 2p/l of either 20 or 2 km. As apparent

in Fig. 7, if Dt is increased, a mode with given (lx, lz)

eventually exhibits spurious amplification, although the

Dt at which this first occurs are not captured for all the

horizontal wavelengths plotted in Figs. 7d,e. Also plot-

ted as the solid line is the curve F1(lx, Dt) 5 C, where

F1 5 (j2pU/lxj 1 N)Dt and C is 1.0, 0.72, or 0.67 for the

T2u–LF, AI2*–AB3, and BDF2–BX2* methods, re-

spectively. Note that F1(lx, Dt) is similar to the expres-

sion appearing in the stability condition in (26) except

that it is expressed in terms of the actual wavelength lx

instead of the maximum resolved wavenumber kmax.

The curve F1(lx, Dt) 5 C divides the stable and unstable

regions in the T2u–LF case, but lies within the stable

region for the AI2*–AB3 and BDF2–BX2* cases.

The dashed curve in Fig. 7 shows the limit of the sta-

bility region for explicit LF, AB3, or BX2* approxima-

tions to the highest-frequency gravity wave mode with

horizontal and vertical wavelengths (lx, lz), that is, the

dashed curve plots F2(lx, Dt) 5 C, where F2(lx, Dt) 5

vgDDt, vgD is the frequency determined by (25) for the

downstream-propagating mode, and C is 1.0, 0.72 or 0.67

in the respective T2u–LF, AI2*–AB3, and BDF2–BX2*

8 Throughout the following analysis of the T2u–LF scheme, we

assume u 5 0.5 and no time filtering.
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cases. Since this curve matches the edge of the stable

region in the AI2*–AB3 and BDF2–BX2* cases, both of

these methods are stable whenever the associated ex-

plicit approximation (AB3 or BX2*) to the same gravity

wave mode would be stable. In contrast, the region of

stability for the T2u–LF method is more restrictive than

that for leapfrog approximations to the same gravity

wave mode.9 The maximum stable time step for a mode

of wavenumber k is reduced for the T2u–LF method

relative to that for gravity waves of wavenumber k in-

tegrated with a fully explicit leapfrog scheme because

the 2Dt-trapezoidal averaging in the implicit step re-

places cs in (24) with ĉ
s
5 c

s
cos(vDt). As vDt increases

toward p/2 (a coarsely resolved 4Dt oscillation), the

terms involving N2/ĉ2
s begin to dominate the semidiscrete

dispersion relation for the sound wave modes. In the limit

ĉs/0, that dispersion relation becomes�
sin(vDt)

Dt
2 Uk

�2
5

ĉ2
s

2

N2

ĉ2
s

1
N2

ĉ2
s

 !
5 N2,

from which it follows that the condition (Uk 1 N)Dt , 1

is not only sufficient, but is also necessary for stability.

It is interesting that the implicitness introduced in the

AI2*–AB3 and the BDF2–BX2* schemes avoids the

negative impact on the stability of individual gravity

wave modes, relative to the corresponding fully explicit

approach, produced by the T2u–LF method. Neverthe-

less, the maximum Dt in any practical IMEX integration

of (29) is limited by the numerically resolvable mode with

the most severe stability constraint, and as apparent in

Fig. 7, these are the modes with the shortest horizontal

wavelengths. The maximum Dt is effectively limited by

the stability condition in (26), and the largest time step

allowed by the AI2*–AB3 (BDF2–BX2*) scheme is

therefore smaller than that for the T2u/LF method by a

factor of 0.72 (0.67).

If the horizontal resolution is sufficiently coarse,

jUkmaxj � N and (26) reduces to

NDt , C, (33)

in which case the time step is determined entirely by

the Brunt–Väisälä frequency. In atmospheric applica-

tions, the maximum N is O(1022) s21 and the maximum

stable time step dictated by (33) will be less than

roughly 100 s. This time-step restriction can be relaxed

FIG. 7. Stable regions as determined from the maximum eigenvalue C for wave solutions to the

compressible Boussinesq equations using the IMEX decomposition in (29). The quantity C is contoured

as function of horizontal wavelength and time step for modes with vertical wavelengths of (top) 20 and

(bottom) 2 km. Values in columns (left to right) for the T2u–LF, AI2*–AB3, and BDF2–BX2* methods.

Regions with 0 # C # 1 are white, those with 1 , C , 1.01 are light gray, and regions in which C exceeds 1.01

are dark gray. Also plotted are the curves for F1(lx, Dt) 5 C (solid line) and F2(lx, Dt) 5 C (dashed); see text.

9 Of course completely explicit AB3 and leapfrog approxima-

tions to (18)–(21) would face more severe stability restrictions on

Dt from the sound waves.
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by treating the terms labeled b in (19) and (20) implicitly,

in which case an IMEX splitting of the form (1) becomes

f(u) 5

2U
›u

›x

2U
›w

›x

2U
›b

›x

2U
›P

›x

0
BBBBBBBBB@

1
CCCCCCCCCA

, Lu 5

2
66666664

2
›P

›x

2
›P

›z
1 b

2N2w

2c2
s

›u

›x
1

›w

›z

� �

3
77777775

. (34)

The implicit part of (34) includes all the terms respon-

sible for gravity wave propagation in a resting fluid; if the

vertical wavelength is sufficiently long, this propagation

will be faster than that produced by typical atmospheric

mean flows. Let us, therefore, denote the frequencies

due to the gravity wave propagation as ~v
H

and that due

to advection as ~vL, where for a specific mode

~vL 5 jUkj, ~vH 5
Njkj

(k2 1 l2)1/2
.

Figure 8 shows C for T2u–LF, AI2*–AB3, BDF2–

BX2*, and BDF2–BX2 approximations to (34) contoured

as a function of lx and Dt for the downstream-moving

gravity wave with a vertical wavelength of 20 km. Not-

ing the difference in the scales on the vertical axis be-

tween Figs. 7 and 8, it is apparent that when lx is large,

stable solutions to (34) can be obtained using much

larger Dt than would be permitted when integrating the

same mode using (29). To better appreciate the factors

governing the stability of IMEX solutions to (34), two

additional lines are plotted in Fig. 8. First consider the

line ~vLDt 5 C (dashed), where as before C is 1.0, 0.72,

and 0.67 for the T2u–LF, AI2*–AB3, and BDF2–BX2*

approximations, respectively.10 This line approximates

the stability boundary for both schemes when the hori-

zontal wavelength is short and the intrinsic frequency

of the gravity waves are reduced by nonhydrostatic

effects. These values are consistent with the values of

vLDt at which the stability boundary intersects the

horizontal axis in Figs. 5a and 6d,e. Also consistent with

Fig. 6b is the lack of a significant stable region for small

horizontal wavelengths in the BDF2/BX2 case (Fig. 8d).

Now consider the vertical line in each panel of Fig. 8,

which is plotted at the value of lx for which ~vH/~vL 5 j.

The region to the right of this line is the region where

the intrinsic frequency of the gravity waves exceeds

that frequency produced by advection by a large enough

factor to guarantee stability, independent of the value

of Dt, and consistent with Table 2, this is indeed the

case.

4. A nonlinear test case

The preceding theoretical analyses suggest new meth-

ods that may be attractive candidates for IMEX ap-

proximations to the compressible equations of motion. In

this section we evaluate the performance of several of

these methods in a pair of nonlinear test cases involving

two-dimensional (x–z) nonlinear gravity waves generated

by a localized region of nondivergent forcing in a strati-

fied shear flow. The background horizontal wind is

u0(z) 5 5 1 z 1 0:4(5 2 z)(5 1 z) m s21,

where z is the vertical coordinate in kilometers. The

waves are forced by the curl of a nondivergent stream-

function:

c(x, z, t)

5 c0

px

Lx

� �
sin(vt) exp

"
2

px

Lx

� �
2

2
pz

Lz

 !
2
#

m2 s21,

FIG. 8. (a)–(d) Contours of C indicating stable regions as in the first row of Fig. 7, but for the IMEX

decomposition (34), and (d) the addition of the BDF2–BX2 method. Shading convections are as in Fig. 7.

Note the horizontal scale in (c),(d) is almost double that in (a),(b). Also shown are the lines ~v
L
Dt 5 C

(dashed) and ~v
H

/~v
L

5 j (solid).

10 This line does not appear in Fig. 8d.
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where x denotes the horizontal coordinate in kilometers,

and the values of c0, v, Lx, and Lz for each case are listed

in Table 3.

The first case, NH for which v/N 5 1/4, is dominated

by nonhydrostatic motions and employs a grid spacing

representative of high-resolution convective cloud

models (see Table 3 for values of the numerical pa-

rameters). The dynamics in the second case, H for which

v/N 5 6.25 3 1023, are quasi-hydrostatic and the grid

spacing in this case is representative of a high-resolution

global model. Empirical stability limits for the various

methods are determined by integrating each scheme to

a time tf, chosen such that, at the coarsest time resolu-

tion, more than 8500 time steps are required to reach tf.

In case NH, the waves generated by the forcing break in

very localized regions and gradually accelerate the mean

flow. To keep the effective Courant–Friedrichs–Lewy

(CFL) number constant during the longtime NH inte-

grations, the horizontally averaged mean flow u is

gradually relaxed back toward its initial shear profile

over a time scale t 5 3000 s. No relaxation is used in

case H.

This problem is governed by the following system:

Du

Dt
1

›P

›x
5 2

›c

›z
1

u0(z) 2 u(z, t)

t
, (35)

Dw

Dt
1

›P

›z
5 b 1

›c

›x
, (36)

Db

Dt
1 N2w 5 0, (37)

DP

Dt
1 c2

s

›u

›x
1

›w

›z

� �
5 0, (38)

where

D

Dt
5

›

›t
1 u

›

›x
1 w

›

›z
,

N 5 0.02 s21 and cs 5 350 m s21.

We will investigate convergence in the time domain

while keeping the spatial discretization fixed. In all

simulations the numerical domain is horizontally peri-

odic and bounded by flat rigid upper and lower surfaces.

Let m and n be integer indices; the mesh is staggered so

that the equation for P applies at points (mDx, nDy), that

for u applies at points f[m 2 (1/2)]Dx, nDzg, and those

for b and w at points fmDx, [n 2 (1/2)]Dzg. Using the

following operator notation:

dnxf (x) 5
f (x 1 nDx/2) 2 f (x 2 nDx/2)

nDx
,

h f (x)inx
5

f (x 1 nDx/2) 1 f (x 2 nDx/2)

2
,

the spatial finite differencing has the following form:

›u

›t
1

1

2
d2x(u2) 1 hhwixdzuiz 1 dxP

5
u0(z) 2 u(z, t)

t
2 K[(Dxdx)2

1 (Dzdz)2]2u, (39)

›w

›t
1 hhuizdxwix 1

1

2
d2z(w2) 1 dzP 2 b

5 2K[(Dxdx)2
1 (Dzdz)2]2w, (40)

›b

›t
1 hhuizdxbix 1 hhwizdzbiz 1 N2w

5 2K[(Dxdx)2
1 (Dzdz)2]2b, (41)

›P

›t
1 hudxPix 1 hwdzPiz 1 c2

s (dxu 1 dzw) 5 0, (42)

where nonlinear instability is prevented and a simple

parameterization of turbulent mixing in a nearly inviscid

fluid is imposed through the fourth-derivative hyper-

diffusion terms with the values of K listed in Table 3.

The pressure field for the T2u–LF scheme is updated

solving a Helmholtz equation for pressure in the manner

described in Durran (2010, his section 8.2.5). The pres-

sure equations arising for the other methods are solved

in a similar manner. To stabilize the explicit step in

the T2u–LF scheme, the terms on the right-hand side of

(39)–(41) are integrated using a forward time step over

the interval 2Dt. This low-accuracy forward step is neither

required nor used with the other IMEX schemes. The

starting stages (one or two in the case of two-step and

three-step methods, respectively) are computed using

the third-order IMEX additive Runge–Kutta method of

Kennedy and Carpenter (2003).

TABLE 3. Physical and numerical parameters for the nonlinear

simulations.

Parameter Case NH Case H

Physical parameters

v (s21) 0.005 1.25 3 1024

Lx (km) 20 160

Lz (km) 5 10

c0 (m2 s21) 4 10

Numerical parameters

Domain width (km) 300 12,000

Domain depth (km) 10 10

Dx (km) 0.25 10

Dz (m) 50 250

K (s21) 4.69 3 1024 1.17 3 1025

Diagnosis time td (s) 3000 1.2 3 105

End time tf (s) 105 4 3 106
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Figure 9 shows contours of the u field at time td in

a central portion of the full domain for the reference

solution for cases NH and H. Also shown by gray

shading are contours of the c field. The reference solu-

tion was computed with a fully explicit fourth-order

Runge–Kutta scheme using a very short time step. The

time td is well before the moment when the evolving

gravity waves begin to wrap around the domain through

the periodic lateral boundaries. It is perhaps counter-

intuitive that the forcing projects most strongly onto the

upstream-propagating mode in case H, but this was easy

to verify analytically in a separate constant-wind speed

simulation with u0 5 8 m s21 (not shown).

The accuracy of these semi-implicit methods for case

NH is compared in Fig. 10, which shows the relative

error in b plotted on a log–log scale as a function of the

Courant number associated with horizontal advection,

maxx,zu(td)Dt/Dx. The relative error is evaluated as the

RMS difference between the b field at t 5 td computed

by each semi-implicit method and the result obtained

from the reference solution br, normalized by the RMS

value of br.

Results for schemes that have seen previous use are

given in Fig. 10a. At all but the smallest CFL number

(which may be of little practical importance) the best

results are obtained using the T2u–LF method with the

RAW filter and no off-centering of the trapezoidal time

difference [i.e., (u, g, s) 5 (0.5, 0.2, 0.53)]. The worst

accuracy is obtained using RA filtering and the T2u–LF

method with u 5 0.6 while implicitly updating the

buoyancy-forcing terms, which are the terms in (40) and

(41) that are identical to the those labeled b in (19) and

(20). Setting u 5 0.5 reduces the error, but still yields

a first-order scheme because of the influence of the RA

filter. When u 5 0.5, treating the buoyancy explicitly

instead of implicitly with the T2u–LF–RA method has

no impact on accuracy (cf. the squares and the thick gray

line), but if u 5 0.6, switching from implicit to explicit

differencing for the buoyancy reduces the error to almost

the same values obtained when u 5 0.5 (cf. the diamonds

and the solid black line). Evidently, off-centering the

trapezoidal time differencing degrades accuracy much

more than the use of the RA filter. Finally, unlike the

first-order time-filtered T2u–LF methods, the BDF2–

BX2 scheme exhibits second-order convergence, but it

does not actually yield more accurate results than the

T2u–LF–RAW method unless the advective CFL

number is very small.

Figure 10b shows the performance of the new methods.

At a given time step, the smallest errors are produced

when buoyancy is treated explicitly using AI2*–AB3 or

BI2*–BX3*, both of which feature third-order accurate

explicit schemes. In fact, the overall convergence rate for

these two methods appears to be third order, which is

surprising since even when the buoyancy is explicit,

the pressure gradient and divergence terms are still

FIG. 9. Contours of the horizontal velocity at t 5 td in the central portion of the domain for

(a) case NH and (b) case H. Gray shades show contours of c with steps in the grayscale at 65

and 615 m2 s22 in case NH and 61 m2 s22 in case H.
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integrated using second-order implicit schemes. At the

same advective CFL number of 0.57, the T2u–LF–RAW

scheme, which is the best leapfrog-trapezoidal method,

generates roughly 4 times the error of the AI2*–AB3

method, and this difference increases rapidly as the time

step is further reduced. If the buoyancy is treated im-

plicitly, all the new schemes behave similarly, but the

best are BDF2–BX2* and AM2*–AX2*, which use su-

perior implicit schemes. Again, these new schemes de-

liver more accuracy at a given time step (advective CFL

number) than those shown in Fig. 10a, although when the

buoyancy is implicit, they are only slightly superior to the

T2u–LF–RAW method at the largest CFL numbers.

Each of the curves shown in Fig. 10 terminates at the

largest value of maxx,z[u(td)]Dt/Dx for which the solu-

tions could integrated to tf without any sign of incipient

instability. These empirically determined stability limits

are listed in Table 4 to within an accuracy of 60.01. In

case NH, the largest stable time step is permitted by the

RAW-filtered T2u–LF method with buoyancy treated

implicitly. The maximum stable advective CFL numbers

permitted by the new Adams and backward IMEX

methods are smaller than that for the RAW-filtered

T2u–LF method by a factor of about 0.8. The BDF2–

BX2 scheme requires much smaller time steps than any

of the other methods.

Figure 11 gives the same information as Fig. 10 for

case H. In case H, the basic behaviors of all the methods

remain similar to those discussed in case NH, although

the gravity waves travel much faster. As a consequence,

the maximum advective CFL number for which stable

integrations can be performed when the buoyancy is

explicit is roughly 1/5 of that which can be used in case

NH (recall the logarithmic scaling of the axes in these

plots, and see also Table 4). It is therefore, not likely

practical to treat the buoyancy explicitly in problems

similar to case H. When buoyancy is implicit, the mag-

nitude of the high-frequency (gravity wave) forcing over

the low-frequency (advective) forcing is greater in case

FIG. 10. Log–log plot of the error in the buoyancy field as a function of advective Courant

number for the several of the methods listed in Table 1 for case NH. The curves show the result

when buoyancy is treated implicitly; the symbols show the results when the buoyancy terms are

approximated using the explicit part of the scheme. The lines–symbols terminate at the largest

advective CFL number for which each method is stable. Thin dashed lines show the slopes

corresponding to first-, second-, and third-order convergence. The triplet of numbers after the

T2u–LF methods denote the values of (u, g, s).

TABLE 4. Maximum advective CFL numbers at which each

method remains stable. Explicit and implicit refer to the treatment

of the buoyancy forcing in (40) and (41), which are identical to the

terms labeled b in (19) and (20). The triplet of numbers after the

T2u–LF methods denote the values of (u, g, s). Values are em-

pirically determined to within 60.01.

Case NH Case H

Method Explicit Implicit Explicit Implicit

BDF2–BX2 0.26 0.30 0.03 0.22

T2u–LF (0.5, 0.2, 1) 0.66 0.69 0.08 0.75

T2u–LF (0.6, 0.2, 1) 0.66 0.62 0.13 0.75

T2u–LF (0.5, 0.2, 0.53) 0.73 0.73 0.08 0.78

MCN–AX21 0.57 0.57 0.05 0.47

AM2*–AX2* 0.60 0.61 0.13 0.75

AI2*–AB3 0.57 0.59 0.11 0.70

BDF2–BX2* 0.57 0.59 0.11 0.66

BI2*–BX3* 0.58 0.59 0.11 0.72
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H than in case NH, and therefore the maximum stable

CFL numbers in case H are larger than those in case NH

(consistent with the stability regions in Figs. 5 and 6).

The largest advective CFL number is again permitted by

the RAW-filtered T2u–LF method, but that for the

AM2*–AX2* method is only smaller by a factor of 0.96.

Note also, that when buoyancy is treated implicitly, the

superiority of the new Adams and backward schemes

with good implicit parts (AM2*–AX2* and BDF2–

BX2*) over their cousins with explicit third-order parts

is more pronounced than in case NH.

5. Discussion and conclusions

We have proposed two new families of IMEX multi-

step methods for the efficient solution of fast-wave–

slow-wave problems in which the fast waves need not be

accurately simulated. One family is based on Adams

methods, the other on backward differencing schemes.

In both cases the implicit parts of the schemes are two-

step second-order A-stable methods. The explicit parts

are second-order three-step methods, except for two

that are third order. We focused on four members of

these two families, the two with nominally the best im-

plicit schemes: AM2*–AX2* and BDF2–BX2*, and the

two with third-order explicit parts: AI2*–AB3 and

BI2*–BX3*.

These new schemes were compared against previously

proposed versions of the IMEX leapfrog-trapezoidal

method and the BDF2–BX2 scheme in three contexts:

the oscillation equation with separate high- and low-

frequency forcing, and both the linearized and the

nonlinear ‘‘compressible Boussinesq’’ system. When it is

practical to approximate the buoyancy forcing terms

with the explicit part of the IMEX scheme, AI2*–AB3

and BI2*–BX3*appear to give considerably more ac-

curate results than the other methods, while still per-

mitting time steps with advective CFL numbers only

slightly smaller than the best leapfrog-trapezoidal scheme.

When buoyancy is implicit, the improvement obtained

using the best new schemes (which in the case with im-

plicit buoyancy are AM2*–AX2* and BDF2–BX2*) is

less pronounced; in particular, the RAW-filtered leapfrog-

trapezoidal method performed almost as well and allowed

a slightly larger time step.

One additional advantage of the new methods is that

the explicit parts of these schemes are capable of natu-

rally approximating terms arising from dissipation or

model physics, whereas such terms must be incorporated

in the explicit part of leapfrog-trapezoidal methods us-

ing a first-order Euler step over a time interval of 2Dt.

Finally, we note that off-centering the trapezoidal up-

date in the T2u–LF method with u 5 0.6 gave very in-

accurate results in both cases H and NH. The damping

produced by such off-centering is not very scale selec-

tive, and the numerical results for this scheme were

notably worse than all the others.

The stability constraints for the previously used BDF2–

BX2 method require a much smaller advective CFL

number than that for the other schemes. In the context

considered here, in which periodic horizontal boundary

conditions allow the implicit problem to be solved effi-

ciently using direct methods, this constraint on the time

step is a serious disadvantage. On the other hand, in those

circumstances where iterative solvers are employed, the

overall efficiency of the method depends on the condition

FIG. 11. As in Fig. 10, but for case H.
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number of the coefficient matrix arising from the implicit

part of the scheme. When buoyancy is treated explicitly,

the condition number for the implicit subproblem in our

nonlinear test case is very closely proportional to

n1

a1

� �
2 (csDt)2

(Dx)2
1 (Dz)2

, (43)

where a1 and n1 are the coefficients of the state variables

at the new time level listed for each scheme in Table 1.

The condition number is influenced by both the implicit

part of the IMEX scheme and by the time step. Giraldo

(2005) noted that, provided the condition number is

small enough to dramatically reduce the number of it-

erations required during each implicit step, the most

efficient scheme can sometimes be one for which n1/a1

and the maximum time step are both small.

The values of (n1/a1)2 for the preceding implicit

methods are listed in Table 5. The smallest value is as-

sociated with the modified Crank–Nicolson scheme

MCN of Ascher et al. (1995). The member of the family

of stable IMEX Adams schemes for fast-wave–slow-

wave problems that uses the MCN scheme is listed in

Tables 1 and 4. Among the two-step second-order im-

plicit Adams methods, MCN has the best damping

properties at negative infinity [jAj/ 1/3 as <(h) / 2‘

in (3)], but its fast-wave–slow-wave stability properties

are worse than the schemes created using BDF2 and

AM2*, so we have not focused on this method. In

problems where the condition number is of primary

concern, however, this method might be attractive.

Among the other methods, BDF2 has the next

smallest condition number, followed by AM2*. AI2* has

the largest condition number, and is the only one of the

newly proposed schemes with a condition number larger

than the T2u schemes. When the condition number is

a significant consideration, BI2*–BX3* would be a much

better choice than AI2*–AB3 for an IMEX scheme with

a third-order explicit step.

In this paper we have endeavored to investigate

a large class of IMEX linear multistep methods. Linear

multistep methods are one of the most important fami-

lies of methods for the solution of ordinary differential

equations, but they are not the only approach. Another

very important approach involves multistage methods,

the most prominent of which are Runge–Kutta schemes,

and IMEX Runge–Kutta schemes have been used in

many advection-diffusion problems. An investigation of

IMEX Runge–Kutta schemes for the fast-wave–slow-

wave problem is beyond the scope of this paper, but has

recently been discussed by Ullrich and Jablonowski

(2012).
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