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ABSTRACT

The behavior of nonstationary trapped lee waves in a nonsteady background flow is studied using idealized

three-dimensional (3D) numerical simulations. Trapped waves are forced by the passage of an isolated, synoptic-

scale barotropic jet over a mountain ridge of finite length. Trapped waves generated within this environment

differ significantly in their behavior compared with waves in the more commonly studied two-dimensional (2D)

steady flow. After the peak zonal flow has crossed the terrain, two disparate regions form within the mature wave

train: 1) upwind of the jet maximum, trapped waves increase their wavelength and tend to untrap and decay,

whereas 2) downwind of the jet maximum, wavelengths shorten and waves remain trapped. Waves start to untrap

approximately 100 km downwind of the ridge top, and the region of untrapping expands downwind with time as

the jet progresses, while waves downstream of the jet maximum persist. Wentzel–Kramers–Brillouin (WKB) ray

tracing shows that spatial gradients in the mean flow are the key factor responsible for these behaviors. An

example of real-world waves evolving similarly to the modeled waves is presented.

As expected, trapped waves forced by steady 2D and horizontally uniform unsteady 3D flows decay down-

stream because of leakage of wave energy into the stratosphere. Surprisingly, the downstream decay of lee

waves is inhibited by the presence of a stratosphere in the isolated-jet simulations. Also unexpected is that the

initial trapped wavelength increases quasi-linearly throughout the event, despite the large-scale forcing at the

ridge crest being symmetric in time about the midpoint of the isolated-jet simulation.

1. Introduction

Trapped lee waves develop when air flows over a

mountain under appropriate atmospheric conditions.

These waves are significant because they are associated

with momentum fluxes that can produce a drag on the

large-scale flow (Bretherton 1969; Durran 1995; Broad

2002). Strong trapped waves can also contribute to the

formation of rotors and dangerous clear-air turbulence

(Doyle and Durran 2002).

Beginning with Scorer (1949), trapped lee waves have

been the subject of considerable theoretical study, most

of which assumed steady horizontally uniform environ-

mental forcing. Nevertheless, observational evidence

readily demonstrates that trapped waves display notable

nonstationary behavior (Vergeiner and Lilly 1970; Ralph

et al. 1992; Worthington and Thomas 1996), with sig-

nificant changes sometimes occurring on time scales of

less than 1 h (Ralph et al. 1997). Temporal changes in

amplitude (Starr and Browning 1972; Brown 1983),

downstream position and extent (Lindsay 1962), and

horizontal wavelength (Holmboe and Klieforth 1957;

Queney et al. 1960; Smith 1976; Mitchell et al. 1990;

Ralph et al. 1997) have all been observed. In particular,

in an analysis of 24 observed events, Ralph et al. (1997)

found that the resonant wavelength of trapped waves

gradually increased at an average rate of 9% h21.

Some studies focused on trapped wave transients as-

sume steady large-scale forcing (Wurtele 1955; Nance and

Durran 1998; Wurtele et al. 1999), although the lifetime

of trapped wave events, which ranges from a few hours

to a few days, is enough time for nonnegligible changes

to occur in the background large-scale flow. Ralph et al.

(1997) and Vosper and Worthington (2002) both com-

pared model results with observations and concluded

that the evolving trapped wave field can be well approx-

imated as the response to a sequence of independent

steady states. Nevertheless, Vosper and Worthington

(2002) did obtain somewhat different, although not

clearly better, results by switching the forcing from a

series of steady states to continuously updated upstream

conditions. Nance and Durran (1997) simulated several

trapped wave cases in which a horizontally uniform
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background wind speed gradually transitioned between

two steady values; they found that complicated wave

patterns could occur if waves generated after the tran-

sition overtook those generated before the transition.

Lott and Teitelbaum (1993a,b) studied the response of

vertically propagating mountain waves to an initial-

value problem in which a horizontally uniform back-

ground flow sinusoidally accelerated from rest and then

decelerated back to a resting state. The horizontal and

temporal variations in the large-scale flow were coupled

in a dynamically consistent manner by Chen et al. (2005,

2007), who investigated the behavior of vertically prop-

agating waves triggered by the passage of an isolated jet

over an isolated ridge. We are not aware of previous

studies that investigated trapped lee waves generated by

a simple idealized large-scale flow that varies in both time

and space.

In this paper we examine nonstationary trapped lee

waves produced by a large-scale flow similar to the iso-

lated barotropic jet employed by Chen et al. (2005, 2007).

In contrast to the single layer of uniform static stability

used by Chen et al. (2005, 2007), however, we will simu-

late cases with vertically layered static stability structures

capable of supporting trapped waves. As will be detailed

later, the horizontal variations in the wind speed associ-

ated with the isolated jet turn out to exert an even more

profound impact on trapped waves than they did in the

vertically propagating case considered in Chen et al.

(2005).

The remainder of this paper is organized as follows.

Section 2 contains a description of the model used in our

study and the setup of the experiment. The structure of

lee waves in the isolated-jet case is discussed in section 3,

followed by a quantitative analysis of the wave train

using Wentzel–Kramers–Brillouin (WKB) ray tracing

in section 4. Section 5 further illustrates the impact of

spatial variations in the background flow on trapped

waves. We consider the temporal changes in the initial

trapped wave wavelength in section 6. The influence of

the stratosphere on the trapped waves is discussed in

section 7. A brief comparison of our idealized results

with a real-world event is presented in section 8, and

section 9 contains the conclusions.

2. Model description and experiment setup

The fully nonlinear, nonhydrostatic, three-dimensional

numerical model used throughout this study is an upda-

ted version of the model of Durran and Klemp (1983),

more recently used by Epifanio and Durran (2001) and

Chen et al. (2005, 2007). To simplify the model’s gov-

erning equations, we use the compressible Boussinesq

and f-plane approximations. Terrain-following vertical

coordinates are used. A split time-step scheme is em-

ployed, with the terms supporting rapid sound wave

propagation integrated separately from the remaining

dynamics using a smaller time step Dt. The model solves

the following governing equations:

Dv

Dt
1 f k 3 v 1 $P 5 g

u 2 ur

u0

� �
k 2 $ � T, (1)

Du

Dt
5 $ �H, (2)

›P

›t
1 u0

›P

›x
1 c2

s
0
$ � v 5 0, (3)

where

D

Dt
5

›

›t
1 (u0 1 u)

›

›x
1 y

›

›y
1 w

›

›z
.

In these equations, v 5 (u, y, w) are the perturbation

flow components [about a reference state of (u0, 0, 0)] in

the directions (x, y, z) respectively, and k is the vertical

unit vector. A constant uniform background westerly

flow u0 is forced by a geostrophically balanced uniform

north–south pressure field 2fu0y (note that there is no

vertical shear in the background reference state), P is

the Boussinesq pressure perturbation about that mean

pressure field, u is potential temperature (u0 is the con-

stant reference value of the potential temperature 5

280 K), f is the Coriolis parameter (set to a constant

1024 s21), and cs0
is the speed of sound (specified as

300 m s21). Also, T and H are the turbulent subgrid-

scale fluxes of momentum and heat, parameterized ac-

cording to Lilly (1962).

The Boussinesq pressure is defined in terms of the

Exner function, p 5 (p/p0)R/cp , where p is pressure, p0 is

the reference surface pressure, cp is the specific heat of

air at constant pressure, and R is the gas constant. The

total p is split into three component pieces: a vertically

varying background reference state pr, a north–south

varying background state pg, and the remaining per-

turbation p9, such that p 5 pr(z) 1 pg(y) 1 p9(x, y, z, t).

Since there is no vertical shear in the background west-

erly flow, the corresponding decomposition of u simplifies

to u 5 ur(z) 1 u9(x, y, z, t), where the reference state is in

hydrostatic balance

cpur

›pr

›z
5 2g. (4)

With the terms defined in this way, we can write the

perturbation Boussinesq pressure field as P 5 cpu0p9

(Durran 2010, p. 24).
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As in Chen et al. (2005, 2007), the dynamically con-

sistent, synoptic-scale background flow is an isolated jet

formed by combining u0 with a barotropic square wave.

The initial velocities vs 5 (us, ys, 0) define the square

wave, where

us(x, y, z) 5 u0 cos

�
2p(x 2 x0)

L

�
cos

2py

L

� �
, (5)

ys(x, y, z) 5 u0 sin

�
2p(x 2 x0)

L

�
sin

2py

L

� �
, (6)

which are nonlinearly balanced by a perturbation pres-

sure Ps satisfying

$ � [(vs � $)vs 1 f k 3 vs] 1 =2Ps 5 0, (7)

where L 5 1200 km, x0 5 150 km, and u0 5 10 m s21,

giving the background flow a period t of 33.3 h. This

barotropic wave is an exact numerical solution of the

governing equations and, in the absence of any topog-

raphy, it would translate around the domain at a speed

u0. Thus the large-scale flow is defined by

u 5 u0 1 us(x 2 u0t, y, t), y 5 ys(x 2 u0t, y, t),

w 5 0, P 5 Ps(x 2 u0t, y, t).

With this large-scale flow, winds at the center of the

mountain vary as

U(t) 5 u0

�
1 2 cos

2pt

t

� ��
. (8)

Figure 1 shows the large-scale flow at the initial time

and the location of the terrain. The mountain is centered

at (x, y) 5 (x0, L/2), in a region of initially stagnant flow,

to minimize any initial transients. The terrain used is a

uniform ridge of finite length, with the same parametric

dependence considered by Epifanio and Durran (2001)

and Chen et al. (2005, 2007):

hs(x, y) 5

h

16

h
1 1 cos

pr

4a

� �i4
, if r # 4a;

0, otherwise,

8<
: (9)

where

r2 5
(x 2 x0)2

1 [jy 2 L/2j 2 (b 2 1)a]2, if jy 2 L/2j. (b 2 1)a;

(x 2 x0)2, otherwise,

(
(10)

where the approximate half-width at half height is a 5

18 km, and the mountain has an aspect ratio of 5. A

mountain height of h 5 250 m is used.

We use a large time step of Dt 5 12 s, with a small time

step of Dt 5 1 s. The horizontal domain is 1200 3

1200 km2, with Dx 5 Dy 5 1 km, and we use doubly

periodic boundary conditions with a free-slip lower

boundary. The depth of the physical domain is 36 km,

with a vertical resolution of Dz 5 200 m for z , 10 km,

which is gradually stretched to Dz 5 500 m across 10 , z ,

15 km, where it remains until the rigid-lid upper boundary

at z 5 36 km. To prevent spurious wave reflections

off of this upper boundary, a damping layer lies across

20 , z , 36 km. We use the scale-selective Rayleigh

damping layer described by Chen et al. (2005), in which

the terms

2n(z)(v 2 vl) and 2n(z)(u 2 ul)

are added to the right-hand sides of (1) and (2), re-

spectively. The large-scale horizontal velocities toward

which the solution is damped are computed by Fourier

FIG. 1. Contours of zonal wind speed (dashed lines; contours are

5, 10, and 15 m s21), and isobars of pressure (P 2 fu
0
y; solid lines,

low pressure at top), for the initial synoptic-scale background flow.

Terrain is shown by thin elongated contours at elevations of 100

and 200 m.
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transforming u and y at every level within the sponge

layer at each large time step, discarding all components

with wavelengths shorter than L/4 5 300 km, and in-

verse transforming. The large-scale values for the ver-

tical velocity wl and the potential temperature ul are set

to zero for consistency with the rigid-lid condition. The

value of the Rayleigh damping coefficient n is zero be-

low the sponge layer and increases with height within

the layer, following (29) of Durran and Klemp (1983) to

a maximum of a 5 5 3 1023 s21.

Additional three-dimensional simulations have been

computed using a spatially uniform, time-varying back-

ground flow, in which the y extent of the domain is re-

duced to 400 km for computational efficiency, and open

boundary conditions are imposed at the north and south

boundaries. The mean flow varies everywhere with the

same profile as at the ridge center in the isolated-jet

simulation, described by (8); this is achieved by artificially

forcing the large-scale flow. The vertical structure re-

mains the same as in the full 3D simulations, except the

Rayleigh damping layer is removed and replaced with

the KDB radiation condition at the upper boundary

(Bougeault 1983; Klemp and Durran 1983). The terrain

and all other numerical parameters in these simulations

are identical to those in the isolated-jet case.

The mountain lee waves are trapped, or partially trap-

ped, by changes in static stability with height, such that

N 5

Nl 5 0:0118 s21, for z , 3 km,

Nu 5 0:003 s21, for 3 , z , 12 km,

Ns, for z . 12 km.

8><
>:

The values of N in the lowest two layers are chosen to

generate trapped lee waves with physically realistic

wavelengths that can be reasonably resolved by our

1-km horizontal grid spacing.1 Four different values of

Ns are considered, but in most of the paper we will

focus on just the no-stratosphere case, Ns 5 0.003 s21

(giving a two-layer structure), and the strong-

stratosphere case, Ns 5 0.02 s21.

3. Description of the nonstationary behavior

Our analysis will focus primarily on the waves along

y 5 L/2, the centerline across the mountain where the

mean flow is purely in the x–z plane. The vertical velocity

(color fill) and potential temperature in a central portion

of this x–z cross section are shown in Fig. 2 at several

times between hours 16 and 28 for the strong-stratosphere

case. Since the background flow translates without per-

turbations, all structure in Fig. 2 is produced by the trap-

ped waves. Also appearing in Fig. 2 are isotachs of the

large-scale horizontal velocity u (vertical lines), which

attains a maximum value of 20 m s21 (thick black line).

The cross-mountain flow becomes strong enough to

force trapped waves in the model at approximately hour

12. Between hours 12 and 19, the wave train gradually

extends downstream in a manner similar to that occurring

in a flow that is instantaneously accelerated from rest and

then held steady, except that in our case the wavelength is

not uniform along the wave train. This similarity to an

impulsively started flow ceases shortly after the large-

scale jet maximum passes over the mountain. By hour 22

(Fig. 2c), the wavelength of the waves between the ridge

crest and the jet max (the location of the thick black

20 m s21 contour) has increased considerably, and some

waves have begun to develop upstream phase speeds. The

third and fourth trapped waves (in the region 250 # x #

320 km) have also become much weaker. As the large-

scale jet maximum continues to translate downstream,

the first two waves in the lee of the mountain are largely

maintained, but all other lee waves overtaken by the jet

maximum begin to experience an increase in their

wavelength and decay (Figs. 2c–e). In contrast, waves

downstream of the jet maximum experience a decrease

in wavelength and almost no loss of amplitude. By hour

28, the only trapped waves that remain are those which

are either still downstream of the jet maximum or were

only recently overtaken by that jet.

Figure 3 shows contours of the wave-induced pertur-

bation zonal velocity field u9 (i.e., the zonal velocity that

remains after subtracting the instantaneous value of u).

Between hours 19 and 24, u9 amplitudes at low levels in

trapped waves 3 and 4 decay significantly, while the u9

values in the upper troposphere and lower stratosphere

are maintained or slightly increase.2 The increase in

wavelength and the shift in wave amplitude toward

higher levels suggests that these waves are becoming

untrapped.

The presence of a stratosphere has surprisingly little in-

fluence on the structure (wavelength and location) and

evolution (growth and decay) of these nonstationary trap-

ped waves (changes in amplitude do occur, however, with

weaker waves in the no-stratosphere case, as discussed in

section 7). Vertical cross sections of w, u, and u along the

1 Vertical wind shear also plays an important role in trapping

most atmospheric lee waves and the influence of such shear will be

pursued in future research.

2 The increase in wave activity aloft is more pronounced for the

perturbation zonal flow as u9 increases more strongly with an in-

crease in stability than w.
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FIG. 2. Vertical cross sections for the strong-stratosphere case along y 5 L/2 of vertical velocity (color fill with contour interval 5

0.4 m s21; white fill for 20.4 , w , 0.4 m s21), and potential temperature (thin horizontal isentropes; contour interval 5 6 K), at times

(a) 16, (b) 19, (c) 22, (d) 24, (e) 26, and (f) 28 h. Also shown is the large-scale zonal velocity (thick dashed vertical isotachs; contour interval 5

5 m s21). Horizontal thick (thin) black lines at z 5 11.5 km show the location and wavelengths of waves launched at hour 16 (18), whose

properties are given in Table 1.

3044 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 69



cross-mountain centerline for the no-stratosphere case are

shown in Fig. 4. A comparison of Figs. 2 and 4 shows that

the overall evolution of the wave train is essentially

unchanged by the addition of a stratosphere.

While our WKB analysis in the following section

treats waves along the centerline as if they were strictly

two-dimensional, in practice north–south variations occur

in the wave train because of the simulations being 3D. The

evolution of the wave train in the x–y plane is shown by

contours of w at z 5 3 km for the no-stratosphere case in

Fig. 5. Also shown in Fig. 5 are a few velocity vectors for

the large-scale flow (u, y). Along y 5 600 km, the wave

FIG. 3. As in Fig. 2, but with the perturbation zonal velocity (color fill with contour interval 5 1 m s21; white fill for 21 , u9 , 1 m s21), at

times (a) 19 and (b) 24 h.

FIG. 4. As in Fig. 2, but for the no-stratosphere case, at times (a) 19, (b) 24, and (c) 28 h.
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structure is indeed quasi-two-dimensional at each time.

However, three-dimensional behavior occurs away from

the centerline as a result of a combination of two main

processes. First, as shown by the velocity vectors in Fig.

5, the large-scale flow converges (diverges) upwind

(downwind) of the jet axis, and this pattern tends to

advect the wave structure. Second, the waves are forced

by a finite-length ridge, which affects their downstream

evolution as discussed by Sharman and Wurtele (2004).

At hour 19, the meridional structure of the wave train in

the region 200 # x # 370 km is controlled by advection

by the large-scale flow—with an upstream tilt at the

northern and southern ends of the w contours. Figure 5b

shows that at hour 24, this advection by the large-scale

flow is still dominant downwind of the jet axis (x 5

414 km). In the region 210 # x # 380 km, however, the

northern and southern ends of the w contours tilt down-

stream and the maximum amplitudes shift north and

south of the centerline. The wave pattern in this region

is similar to that for trapped waves in a horizontally

uniform flow forced by a long, but finite, ridge (Sharman

and Wurtele 2004). By hour 28, the loss of wave activity

in the region 200 # x # 420 km and 520 # y # 680 km

is illustrated, and the remaining waves in the region

420 # x # 600 km experience a downwind tilt at their

north–south edges typical of waves forced by a finite ridge.

4. WKB analysis

A basic understanding of the structure and evolution of

the waves in the preceding simulations may be obtained

through WKB ray tracing, analyzing waves in the x–z

cross section along the cross-mountain centerline as if they

were purely two-dimensional. Trapped waves propagate

horizontally, with a horizontal structure along this cen-

terline of the form ei(kx2vt), where k is the wavenumber

and v is the frequency. Because of the x–t dependence of

the large-scale flow along the centerline, v is a function of

k, x, and t. The general ray-tracing equations applicable to

such waves are (Whitham 1974; Bühler 2009)

Dgk

Dt
5 2

›v

›x

����
k,t

, (11)

Dgv

Dt
5

›v

›t

����
k,x

, (12)

where

Dg

Dt
5

›

›t
1 cg

›

›x

is the rate of change moving through the fluid at the

group velocity cg 5 ›v/›k.

Consider the no-stratosphere case, in which the Brunt–

Väisälä frequencies in the upper and lower layers are

Nu and Nl, respectively. Let the horizontal phase speed

be c 5 v/k and define the intrinsic frequency as

~v 5 (c 2 u)k. (13)

Assuming the vertically uniform large-scale u varies

slowly in x and t, a necessary condition for a given wave

to be trapped is that N
u

, j~vj , N
l
. As noted by Nance

and Durran (1997), nonstationary trapped waves in such

two-layer atmospheres satisfy the dispersion relation

FIG. 5. Horizontal cross sections of vertical velocity for the no-

stratosphere case at z 5 3 km, for times (a) 19, (b) 24, and (c) 28 h.

Solid (dashed) contours show ascent (descent); in (a) contour

interval 5 0.8 m s21, in (b) and (c) contour interval 5 0.4 m s21.

Vectors show the large-scale horizontal flow. Terrain is shown by

thin elongated contours at elevations of 100 and 200 m.
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cot(Sld) 5 2
Su

Sl

, (14)

where d is the depth of the lower layer,

Sl 5

"
N2

l

(c 2 u)2
2 k2

#1/2

and Su 5

"
k2 2

N2
u

(c 2 u)2

#1/2

.

(15)

For nonstationary trapped waves described by the

dispersion relation in (14) with u a slowly varying func-

tion of x and t, the WKB ray-tracing equations in (11) and

(12) become

Dgk

Dt
5 2k

›u

›x
, (16)

Dgv

Dt
5 k

›u

›t
. (17)

The group velocity required for the evaluation of

Dg/Dt is

cg 5 u 1
S4

l Sud(c 2 u)3

N2
l S2

l Sud 1 k2
l (N2

l 2 N2
u) sin2(Sld)

, (18)

which, recalling that v 5 ck, may be determined from

(14) and (15).

Large-amplitude trapped lee waves are first generated

in the model after approximately hour 12. Once they are

launched, the behavior of individual wave packets were

calculated and traced along their ray paths until they either

became untrapped [the dispersion relation (14) is only

valid for trapped waves] or until the end of the simula-

tion, whichever occurred sooner. Packets were launched

from the upwind edge of the lee wave train, which we

took as the position of the first downdraft after the first

updraft in the lee of the mountain. The local value of k

evaluated at this point from the full model output3 was

used to compute an initial value for k from (14). Each

packet was then followed downstream using only the

large-scale u, Nl, Nu, and (16)–(18) to update the packet’s

wavenumber, frequency, and location.

The downstream evolution of the trapped wave wave-

lengths predicted by the ray-tracing analysis and mea-

sured from the numerical simulations are compared in

Table 1 (the locations of these wave packets are illustrated

in Fig. 2). The packet launched at hour 16 persists

throughout the simulation, while the packet launched at

hour 18 ultimately decays. There is very good agreement

between the wavelengths predicted via ray tracing and

those measured directly from the no-stratosphere case; the

errors are less than approximately 5%. Good quantitative

agreement is also obtained for the strong-stratosphere

case, with errors no larger than about 7%. This strong

agreement between the two-layer analytic model and

the three-layer, strong-stratosphere simulation may be

surprising, but it is consistent with the previously noted

similarity of the trapped wave behaviors in the no-

stratosphere and strong-stratosphere cases. Thus, de-

spite the various approximations associated with the

use of a linear 2D WKB analysis, we are confident in the

accuracy of our ray-tracing scheme. The following dis-

cussion will focus on the strong-stratosphere case because

this represents the more realistic situation. The same

analyses have, however, been performed for the no-

stratosphere case, and the same conclusions are reached

for both cases.

Figure 6 shows the WKB ray-tracing-predicted wave-

lengths of wave packets launched at hourly intervals from

the upwind edge of the lee wave train during the strong-

stratosphere simulation. The wavelengths of packets

launched early in the simulation (hours 13–16) de-

crease with time, whereas the wavelengths of the packets

launched at hours 19 and 20 continually increase. The

packets initialized at hours 17 and 18 exhibit an inter-

mediate behavior; they experience an initial decrease

in wavelength followed by a continual increase. These

changes in wavelength are consistent with those appar-

ent in Figs. 2–4. The disparate behaviors in different

sections of the wave train are associated with the position

of the wave packets with respect to the jet maximum.

TABLE 1. Comparison of wavelengths predicted by the ray-

tracing scheme and the measured values from the numerical sim-

ulations.

Time

(h)

Ray-

tracing

l (km)

No-stratosphere

model

l (km)

Strong-stratosphere

model

l (km)

Launched at hour 16

16 23.8 23.5 24.6

19 19.6 19.5 20.5

22 16.9 17.4 18.0

25 13.9 14.7 14.5

28 11.4 11.4 11.4

Launched at hour 18

18 30.7 29.4 30.1

20 30.4 29.6 29.2

22 31.4 31.3 32.6

24 34.0 33.2 32.8

26 38.8 37.4 36.9

3 The waves may be launched with nonzero phase speed because

of a drift in the starting location of the wave train that occurs as

variations in the background flow produce nonsteady waves.
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According to (16), the changes in wavenumber and

wavelength along a ray path are determined by the spatial

gradients of u. Wave packets downstream of the jet max

are in an environment where ›u/›x , 0 and consistent

with (16), their wavenumber (wavelength) increases (de-

creases). Opposite changes in wavelength occur upstream

of the jet max, where ›u/›x . 0.

The intrinsic frequencies computed along each ray

show the same disparate behavior in different sections of

the wave train. Along each ray

Dg ~v

Dt
5

Dg

Dt
(v 2 uk) 5

Dgv

Dt
2 u

Dgk

Dt
2 k

Dgu

Dt
. (19)

Defining the intrinsic group velocity ~cg 5 cg 2 u, and

using (16) and (17), the preceding may be rewritten as

Dg ~v

Dt
5 2~cgk

›u

›x
. (20)

In our waves, k . 0 and ~cg , 0 for all wave packets; thus,

as was the case for the horizontal wavelength, the sign of

the ~v tendency along different ray paths will be gov-

erned by the sign of ›u/›x. Figure 7 shows the values of

j~vj along the ray paths of the same wave packets con-

sidered in Fig. 6.

The waves associated with packets launched from

hour 19 onward are generated after the time of peak

flow and have group velocities slower than the 10 m s21

speed at which the background flow is translating. As

such, they remain in an area where ›u/›x . 0 throughout

their life and, as shown in Fig. 7, their j~vj continually

decreases. As they fall farther behind the jet maximum,

the local value of ›u/›x increases, increasing the rate of

change in k and j~vj (see Figs. 6 and 7). These packets

become untrapped first, and are responsible for the loss

of wave activity in the region 250 # x # 300 km between

hours 22 and 26 in Fig. 2.

Packets launched prior to hour 19 initially lie in a re-

gion where ›u/›x , 0, so, at least at the beginning of their

life, their absolute intrinsic frequency increases and their

wavelength decreases. The jet maximum passes through

packets launched between hours 16.5 and 18, and the

tendencies for l and j~vj reverse once the packets find

themselves in a region where ›u/›x . 0. It is primarily the

waves generated during the period 17 # t # 18 h that

produce the continued downstream growth of the region

of weak waves visible after hour 26 in Fig. 2. Never-

theless, not all of the packets that slip upwind of the jet

maximim actually become untrapped: those packets

generated between hours 16.5 and 17 are overtaken by

the jet but do not have sufficient time to untrap before

the end of the simulation.

On the other hand, all waves launched between hours

12.5 and 16 have group velocities faster than the trans-

lation speed of the jet maximum and remain in an envi-

ronment where ›u/›x , 0. Their wavelength continually

decreases while their j~vj continually increases. They do

FIG. 6. Wavelength along ray paths following wave packets

generated hourly between hours 13 and 20. Thin contours: packets

remain trapped. Thick contours: packets untrap. Thick dashed

contour: packet tends toward untrapping but remains trapped. The

thin dot-dashed horizontal line marks the critical wavelength at

which waves become untrapped.

FIG. 7. As in Fig. 6, but for absolute intrinsic frequency j~vj
(31023 s21). Limits on the y axis represent the bounds on j~vj for

waves to be trapped.
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not become untrapped and compose the bulk of the set of

waves present at the end of the simulation in Fig. 2. Some

of these waves do, however, develop such short wave-

lengths that they are damped out by the numerical

smoother.

Recall that wave packets cannot be trapped unless

Nu , j~vj , Nl. The vertical axis in Fig. 7 begins at the

value j~vj5 0:003 s21 5 Nu, implying that the curves that

intersect the bottom of the plot are associated with wave

packets that become untrapped. Packets launched be-

tween hours 18 and 20 become untrapped during the

simulation, and the packet launched at hour 17 would

also become untrapped if there were sufficient time

before the end of the simulation. In a two-layer atmo-

sphere with constant u, the resonance condition for the

existence of nonstationary trapped lee waves is

N2
l 2 N2

u $
p2(u 2 c)2

4d2
5

~vl

4d

� �2

, (21)

where l 5 2p/k is the resonant wavelength. This is a

straightforward generalization of the classical resonance

condition for stationary waves (Scorer 1949). Substituting

Nu for ~v in (21), we may obtain an expression for the

critical wavelength at which nonstationary waves untrap:

lc 5 4d
N2

l

N2
u

2 1

 !
1/2

, (22)

which for the two-layer structure in our ray-tracing

analysis implies lc 5 45.6 km. As shown by the thin dot-

dashed contour in Fig. 6, this value is consistent with the

wavelengths at which untrapping occurs.

The ground-relative phase speed of the wave packets

also differs between packets forced early and those

forced later, as may be computed via ray tracing (not

shown) and as illustrated in Fig. 8 by the Hovmöller

diagram of w at z 5 3 km from the strong-stratosphere

simulation.4 The superimposed thick black lines in Fig. 8

indicate the paths of rays launched between hours 13

and 20. Waves launched prior to hour 17 maintain a

downwind phase speed throughout the simulation, while

those launched later eventually develop an upwind phase

speed. Nevertheless, despite the reversal in the phase

speed of some wave packets, the group velocity remains

positive for all packets at all times. The increase in

wavelength predicted by ray tracing is readily apparent

along rays launched at hours 18–20 during the simulation,

as well as by the loss in amplitude of their associated wave

packets due to untrapping. The ends of rays 19 and 20,

which indicate the x–t location at which packets untrap,

coincide with times and locations at which the simulated

waves begin to rapidly lose amplitude. Ray path 18 also

terminates at a point associated with the rapid dissipation

of the simulated waves. The simulated wave front appears

to dissipate more rapidly along rays 13–15 than one might

expect from ray tracing as these rays clearly move ahead

of the leading edge of the wave train in the numerical

simulation. Wave packets in this region develop wave-

lengths shorter than 5Dx, and are eventually eliminated

by the fourth-order numerical smoother. We expect such

waves would be present in a sufficiently high-resolution

simulation.

5. Comparison with spatially uniform unsteady flow

The preceding analysis suggests that trapped lee waves

generated by the passage of an isolated jet over a ridge

will evolve in a substantially different manner than those

in a ‘‘uniform-unsteady’’ case in which the large-scale

velocity throughout the domain varies in the same

manner as the large-scale velocity at the center of the

mountain in the isolated-jet case. To test this, we

conducted a 3D uniform-unsteady simulation using

FIG. 8. Hovmöller plot of vertical velocity for the isolated-jet

strong-stratosphere case at z 5 3 km (color fill with contour

interval 5 0.4 m s21; white fill for 20.4 , w , 0.4 m s21). Solid

overlaid black lines show the ray paths of wave packets generated

hourly between hours 13 and 20. Lines terminate where wave un-

traps. The centerline of the ridge lies along the left axis.

4 The stippled pattern along the leading edge of the waves in Fig.

8 is generated by the plotting software interpolating coarsely re-

solved data; 1-km horizontal resolution data are archived only

every 10 min because of memory constraints.
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the strong-stratosphere stability profile (as described

in section 2).

Figure 9 compares w and u along the centerline at

three different times in the isolated-jet and uniform-

unsteady cases. The initial development of the wave

train is similar in both cases; at hour 19 (Fig. 9a) the main

difference is at the leading edge of the wave train. In the

region 350 # x # 400 km, the wavelength in the isolated-

jet case has been reduced to roughly half of the corre-

sponding value in the uniform-unsteady case because

FIG. 9. As in Fig. 2, but comparing (top) the isolated-jet and (bottom) the uniform-unsteady wave trains at times (a) 19, (b) 24, and (c) 28 h.
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›u/›x , 0 in this region of the isolated jet. As a conse-

quence of this reduction in wavelength, the waves at the

leading edge of the isolated-jet wave train are damped

by the fourth-order horizontal smoother. Conversely, in

the uniform-unsteady case there is no temporal change

in wavelength within individual wave packets because

›u/›x 5 0. Nevertheless, those packets launched earlier

have shorter wavelengths than those launched later

because they were forced with a shorter resonant wave-

length due to the weaker u when these packets were

generated.

By hour 24 (Fig. 9b) the two cases look very different.

There are no changes in wavelength or any tendency for

wave untrapping in the uniform-unsteady case, but the

amplitude of the downstream waves has been gradually

reduced by lateral dispersion and the fourth-order nu-

merical smoother. In contrast, in the isolated-jet case, the

waves in the region between x 5 200 km and the location

of the jet axis (coincident with the 20 m s21 isotach) have

begun to increase their wavelength and are tending to-

ward untrapping. Also of interest are the waves just

downstream of the jet maximum, which have become

much stronger than those in the same location in the

uniform-unsteady case. The amplification of these

waves, which will be the subject of a subsequent paper,

is due to the conservation of wave action and to lateral

transport of wave activity in the large-scale square-

wave pattern.

At hour 28, the deceleration of the mean flow has

reversed the phase speed in the entire wave train in the

uniform-unsteady case, and all waves are shifting back

toward the mountain (Fig. 9c). These waves remain

trapped but continue to lose amplitude due to lateral

dispersion and numerical dissipation. The isolated-

jet case looks completely different: a 250-km-wide

region downstream of the mountain crest is almost

wave-free, while a group of relatively large-amplitude

trapped waves are maintained downstream of the jet

maximum.

The behavior of the wave train in the uniform-unsteady

case may also be analyzed using WKB ray tracing. As

implied by (16) and (20), in this case the wavelength and

intrinsic frequency within individual wave packets remain

constant. Thus changes in the phase speeds and group

velocities of individual wave packets arise entirely due to

temporal variation in u. Since u varies sinusoidally in

time, both the phase lines and the ray paths must lie along

sinusoidal curves in the x–t plane. As shown by the

Hovmöller diagram of w at z 5 3 km in Fig. 10, this is

indeed the case. In marked contrast to the corresponding

result for the isolated-jet case (Fig. 8), Fig. 10 clearly

shows a symmetric reversal in wave packet motion in the

uniform-unsteady case.

6. Lengthening of the initial lee wave wavelength

Observations detailing changes in the lee-wave wave-

length have focused primarily on the region close to the

terrain, where the waves have the largest amplitude. In

the absence of other factors, the sinusoidal temporal

variation in the large-scale cross-mountain flow will tend

to force trapped waves whose initial resonant wavelength

varies symmetrically about the time of maximum wind

(hour 16.5). However, as shown in Fig. 6, that is not the

case in these simulations. Instead the initial wavelength of

trapped waves in both the isolated-jet and the uniform-

unsteady cases gradually increases during the entire pe-

riod that trapped waves are generated. The wavelength at

which the trapped lee waves are initially triggered in the

isolated-jet case increases almost linearly between hours

12.5 and 19.5 at approximately 3.2 km h21 (Fig. 11a). A

similar, though less strictly linear, increase occurs in the

uniform-unsteady case (Fig. 11b). These are equivalent to

increases of 11%–12% h21 with respect to the average

wavelength over the entire period, which is close to the

9% h21 estimated by Ralph et al. (1997) as the average

rate at which the wavelength increased in a set of 24

observed nonstationary lee-wave events. Ralph et al.

(1997) suggested that this increase is due to diurnal

heating modifying the static-stability profile in a way

that increases the resonant wavelength. While diurnal

heating may indeed be the mechanism underlying the

changes in those observed cases, there is no diurnal

heating in these simulations.

FIG. 10. As in Fig. 8, but for the uniform-unsteady strong-

stratosphere simulation. Lines terminate where packet begins to

move over the terrain.
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Also plotted in Fig. 11a is the resonant wavelength for

a stationary initial lee wave forced by the large-scale flow

at the average location of the upwind edge of the trapped

wave train5 (about 60 km downstream of the ridge crest).

The extent to which the large-scale wind at this average

location provides a good estimate of the actual large-scale

wind at the drifting position of the leading edge of the

wave train is shown in Fig. 11d, which indicates that

the fixed-point estimate is good over most of the pe-

riod; the largest errors (2 m s21) occur at hour 12.5. In-

formation similar to that in Fig. 11a is displayed for the

uniform-unsteady case in Fig. 11b, although since the

large-scale wind speed is uniform throughout the domain,

in this case the longest stationary wavelength occurs at

the time of peak wind, hour 16.5.

Except for the time when the waves are first triggered

(hour 12.5), the wavelength predicted for a stationary

initial lee wave forced by the large-scale winds in the

isolated-jet case does not match the actual wavelength

at which the waves form (Fig. 11a). Furthermore, in

contrast to the behavior suggested by the stationary-

forcing-location large-scale resonance condition, the

wavelength of the waves that actually form never starts

decreasing; instead, new waves simply stop forming after

hour 20.5. Roughly similar behavior is present in the

case with the uniform-unsteady large-scale flow (Fig.

11b). The stationary resonance condition gives a poor

prediction of the actual trapped wavelength because the

waves are triggered by the downstream edge of a hy-

drostatic mountain wave that is propagating downwind

until about hour 19. It is therefore necessary to predict

the initial resonant wavelength using the correct value of

c in (14). The phase speeds at which waves are triggered

in the isolated-jet and uniform-unsteady cases are plot-

ted in Fig. 11c. In both cases the waves are first triggered

while moving downstream at about 2 m s21. This phase

speed eventually drops to zero around hour 19, and then

FIG. 11. Initial lee-wave wavelength as a function of time in (a) the isolated-jet (dot-dashed) and

(b) the uniform-unsteady (dashed) cases. In both panels the solid line shows the resonant wave-

length forced by the large-scale flow at the fixed average downstream location from which the waves

are launched. (c) Phase speed at which the waves are launched. (d) Comparison of large-scale wind

speed at the actual (dot-dashed) and average (solid) launch points in the isolated-jet case.

5 Recall that this point is taken to be the location of the first

downdraft after the first updraft in the lee of the mountain—a lo-

cation that moves with time (cf. initial wave location in Figs. 2a–c).

It takes nearly 2 h for the jet maximum to travel between the crest

and this location.
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the generation of new trapped waves ceases shortly after

the phase speed reverses sign.

The downstream phase speed at which the waves are

triggered in these simulations may be exaggerated be-

cause of the lack of surface friction in the numerical

model (Richard et al. 1989). Nevertheless, the key rea-

son that there is no period during the simulation when

the initial trapped wavelengths are decreasing is that

wave generation stops when the initial-wave phase

speed becomes negative. Examination of satellite

photos suggests a tendency for the waves to begin a sim-

ilar upstream shift near the end of some trapped wave

events, and we are continuing to study the prevalence and

importance of this behavior.

7. Influence of a stratosphere on trapped waves

The preceding simulations have revealed two inter-

esting aspects of the influence of the stratosphere on the

trapped wave train: 1) the wave amplitude, particularly

over the first three wavelengths, is significantly stronger

with a stratosphere than in the no-stratosphere (two-layer)

case, and 2) the trapped waves in the strong-stratosphere

case maintain at least as much amplitude as those in the

no-stratosphere case, suggesting that the upward leakage

of wave energy into the highly stable stratosphere is almost

negligible. Each of these behaviors will be investigated in

more detail below.

a. Increase in wave amplitude

It has long been established that the amplitude of

most trapped lee waves is poorly estimated by linear

theory because they are not forced directly by the

mountain, but through a nonlinear interaction with the

vertically propagating waves forced by the topography

(Smith 1976; Nance and Durran 1997). The amplifica-

tion of the lee waves by the presence of a stratosphere in

the preceding simulations may, therefore, be due to the

influence of the stratosphere on the vertically propa-

gating wave components. Previous studies have docu-

mented that mountain-wave amplitudes are strongly

sensitive to the strength and location of the tropopause.

Klemp and Lilly (1975) developed a linear three-layer

model to evaluate the sensitivity of hydrostatic vertically

propagating waves to changes in each layer’s depth,

stability, and wind shear. Durran (1992) evaluated two-

layer solutions to the hydrostatic Long’s equations and

confirmed that finite-amplitude waves also exhibit a

strong sensitivity to the strength and location of layer

interfaces, but noted that quantitative amplitude pre-

dictions from linear theory may lose their validity at rel-

atively small nondimensional mountain heights in layered

atmospheres.

The relative strengths of the vertical velocities in sim-

ulations with different stratospheric stabilities Ns are

compared in Fig. 12. Vertical velocities are taken from

each simulation at the location of the first downdraft after

the first updraft downstream of the ridge at the time when

the peak large-scale flow arrives at this downdraft’s lo-

cation. The vertical velocity is evaluated at the nominal

quarter-wavelength level z 5 pUm/(2Nl) where Um 5

20 m s21 is the maximum large-scale wind speed. The

vertical velocity in the linear model at the quarter-

wavelength level is evaluated using (2) of Klemp and

Lilly (1975), and the amplification of this w relative to

that in the uniform-N case is given by the factor A in their

(8). The theoretically and numerically computed w values

are normalized by the value obtained in the two-layer no-

stratosphere case, for which Ns 5 Nu 5 0.003 s21. Letting

A2 be the amplification in the no-stratosphere case, the

quantities plotted in Fig. 12 are values of A/A2.

The solid curve in Fig. 12 shows A/A2 as predicted by

the three-layer linear model. The crosses show results for

the isolated-jet case with Ns 5 0.005, 0.01, and 0.02 s21.

The agreement with linear theory is not particularly good,

but much better results are obtained using the empirical

correction for finite amplitude suggested in Durran (1992),

in which 3h/2 is subtracted from the lower-layer depth

used in the tuning calculations (dashed curve). The good

agreement with theory, as adjusted for finite amplitude,

FIG. 12. Three-layer amplification factors as a function of strato-

spheric static stability Ns, normalized by the amplification factor A2

from the two-layer no-stratosphere case. Solid line is the theoretical

value from Klemp and Lilly (1975); dashed line is the theoretical

value using the finite-amplitude adjustment of Durran (1992).

Crosses show model results for the isolated-jet case at t 5 19 h.

OCTOBER 2012 H I L L S A N D D U R R A N 3053



suggests that the increased initial strength of the trapped

waves in the strong-stratosphere simulation is due to

the constructive superposition of the vertically propa-

gating mountain wave and its partial reflection from the

tropopause.6

b. Leakage of wave energy

Resonant lee waves, which are completely trapped

by the low static stability in the upper layer in the no-

stratosphere case, can leak energy upward when the two

lower layers are topped by a stable stratosphere. Leakage

of energy upward through the stratosphere has often been

regarded as the primary mechanism through which at-

mospheric lee waves actually decay, and indeed observa-

tions show such waves typically occur in atmospheric

structures that permit upward leakage (Brown 1983;

Shutts 1992; Georgelin and Lott 2001). More recently,

Smith et al. (2002), Jiang et al. (2006), and Smith et al.

(2006) have presented observations and analysis show-

ing that lee waves may also be dissipated by interactions

with critical levels near the surface in stagnant boundary

layers. Nevertheless, the ultimate fate of trapped lee waves

has received relatively little study, and there is no generally

accepted understanding of the relative importance of the

various factors responsible for their dissipation.

The damping effects of upward energy leakage are

apparent in Fig. 13, which compares mature wave trains

generated in a 2D (x–z) domain by a steady 15 m s21

flow in the presence of the no-stratosphere and strong-

stratosphere thermodynamic profiles. Except for the 2D

domain and the steady flow, all physical and numerical

parameters in these simulations are identical to those used

in the cases forced by the translating isolated jet. As in the

previous cases, the trapped waves are stronger in the

presence of the stratosphere; however, their amplitude

decays downstream faster (with a 37% decrease in wave

amplitude over a distance of 500 km) than in the case with

no stratosphere (in which there is a 10% decrease over the

same distance decrease due to numerical smoothing).

Following wave packets, relative rates of decay are

compared for various strong-stratosphere and no-

stratosphere combinations in Fig. 14; the cases considered

are the steady 2D, the uniform-unsteady, and the isolated-

jet simulations. The quantity plotted in Fig. 14 is the mag-

nitude of the normalized vertical velocity jw/w0j at z 5

3 km following wave packets launched at hour 16.5 over

the 6-h period between hours 23 and 29, a period when they

are free of direct interaction with the terrain. Here w is

evaluated at z 5 3 km and w0 is the value of w at hour 23.

As is apparent in Fig. 14, the steady 2D cases exhibit

the least loss in wave amplitude—just 3.4% in the no-

stratosphere case (produced by numerical dissipation)

and 12.5% in the strong-stratosphere case (due to the

combined effects of leakage and numerical dissipation).

In contrast, the lateral dispersion of energy in the waves

generated by the finite-length ridge leads to a substantial

loss of amplitude in the waves along the centerline in the

uniform-unsteady case, with the no-stratosphere and

strong-stratosphere cases respectively losing 62% and

68% of their original amplitude. Nevertheless, the ratio

FIG. 13. As in Fig. 2, but for steady, 2D trapped waves at hour 45, with u 5 15 m s21. Thick black line illustrates rate of decay of wave

amplitude. (a) No-stratosphere case and (b) strong-stratosphere case.

6 Even with the empirical finite-amplitude correction, the ex-

cellent agreement with the numerical simulations may be some-

what serendipitous since the underlying theory is for 2D steady

waves.
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of the final amplitude in the no-stratosphere case to that

in the strong-stratosphere case remains similar in the

steady 2D and the uniform-unsteady 3D simulations,

suggesting that leakage into the stratosphere is pro-

ceeding at a similar rate in both situations.

The influence of the stratosphere on the dissipation

rates in the isolated-jet case is, however, reversed.

Waves along the centerline in the strong-stratosphere

case lose just 52% of their amplitude, while those in the

no-stratosphere case lose 69%. In contrast to the other

cases, the presence of the stratosphere helps maintain

the amplitude of the trapped waves, a surprising result

that is the subject of continued investigation. The ten-

dency of the waves in both isolated-jet simulations to

decay more slowly than those in the uniform-unsteady

case over the first 4 h appears to be produced by hori-

zontal confluence in the mean flow while the waves are

located upstream of the jet maximum. Decay of the

waves increases once they lie in the divergent region

downwind of the jet maximum.7

8. Similarity to observations

A widespread trapped wave event occurred downwind

of the Cascade Range in Washington and Oregon on

5 May 2011. Mature lee waves were well developed

downwind of several sections of the range by midmorning.

Rapid decay of the waves subsequently proceeded in a

similar manner to that outlined in this study. This event is

analyzed using 1-km Geostationary Operational Environ-

mental Satellite-West (GOES-W) visible imagery, stan-

dard radiosonde soundings at Quillayute and Spokane,

Washington, and at Salem, Oregon, analysis charts, and

operational forecasts generated by the University of

Washington Weather Research and Forecasting–Global

Forecast System (WRF-GFS) Model run at 4/3-km hori-

zontal resolution and initialized at 1200 UTC 5 May 2011.

Figure 15 shows a series of four satellite images taken

at 15-min intervals between 1900 and 1945 UTC, focused

on the wave train in the area of the Columbia River.

During this 45-min period, the third, fourth, fifth, and

sixth trapped wave crests progressively decay while waves

persist farther downstream, creating a gap in the wave

train similar to that modeled in our study. The first two

waves in the immediate lee of the terrain remain un-

damped. Decay of the waves initially occurs close to the

terrain and quickly spreads downwind with time. Waves

farther downstream persist longer, although they too

eventually decay in the following 2 h, and again decay

occurs from west (upwind) to east (downwind). Similar

decay occurs at other locations along the ridge, although

the exact structure is harder to discern elsewhere due to

less coherent waves and other cloud layers. Following this

decay, vertically propagating waves over the area are

clearly visible in satellite imagery (not shown).

Figure 16 shows a sounding taken upwind at Salem at

0000 UTC 6 May 2011, shortly after the time of apparent

untrapping. The structure of the atmosphere shown in

Fig. 16 is still favorable for trapped waves, with a deep

isothermal layer between 750 and 650 hPa and weaker

static stability aloft, 25 knots (kt; 1 kt 5 0.51 m s21) of

cross-mountain flow, and a significant increase in the

cross-mountain winds with height. The low levels are moist

so lee waves should be made visible by clouds. Similar

thermodynamic structures are seen elsewhere in the

Pacific Northwest at this time (Quillayute and Spokane),

suggesting that the disappearance of the wave clouds in

Fig. 15 is not due to major changes in atmospheric

structure or humidity.

The WRF-GFS Model also forecast trapped lee waves

in this location—approximately six wave crests were

evident, with a similar distribution and wavelength to

those observed in the satellite imagery. However, the

downstream extent of waves in the model was shorter

FIG. 14. Normalized vertical velocity along the ray path of the

wave packet launched at hour 16.5 for the 2D steady, isolated-jet

and the 3D uniform-unsteady simulations during the period be-

tween hours 23 and 29. Black lines: no-stratosphere case; gray lines:

strong-stratosphere case.

7 The average wavelength for these wave packets is 15.8 km

in the no-stratosphere steady 2D case, 29.7 km in the uniform-

unsteady case, and, according to the WKB analysis, changes from

19.8 km at hour 23 to 17.2 km at hour 29 in the isolated-jet case.

Since the 2D wavelengths are shortest, dissipation of waves by

numerical smoothing does not explain the enhanced rate of decay

in the 3D simulations.
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than observed, likely due to numerical damping in the

model. Waves decayed and became vertically propagat-

ing in the model at a similar time to those in the satellite

imagery. In addition, model sounding profiles agree well

with observations. Given this good agreement, we use

WRF Model soundings to estimate the spatial gradients

and temporal evolution of the wind field along a cross

section through the wave train following the Columbia

River. Unfortunately, the archived WRF Model data

were only available at 3-h resolution at predetermined

locations, and the archived wind speed is only available

rounded to the nearest multiple of 5 kt.

Figure 17 shows the WRF Model wind speeds at

850 hPa along a transect perpendicular to the waves

at 1500, 1800, and 2100 UTC (similar results are seen at

other levels in the lower troposphere). Values are taken

at, from west to east, Aurora, Oregon, Cascade Locks,

Oregon, Maryhill, Washington, Arlington, Oregon, and

Port Kelly, Washington—the five points marked in Fig.

15. As the wave train was developing and maturing at

1500 UTC, background wind speeds were uniform at

20 kt along the wave train (to the 65-kt accuracy of the

archived winds). After this time, the winds closest to the

mountain weaken, while those downwind at Maryhill

and Arlington increase. During this period, satellite

images show that the wavelength of these waves in-

creases at roughly 9% h21.8 Figure 18 shows lengthening

of the wavelength was also present prior to wave decay

in the WRF Model, with an increase of approximately

8% h21 between 1700 and 1900 UTC. At both 1800 and

2100 UTC, a region where ›u/›x . 0 has developed, ex-

tending from just upwind of the terrain to about 150 km

downwind of the crest. In contrast, beyond 150 km, ›u/›x

has become negative. A comparison of these variations in

›u/›x with the wave structure shown in Fig. 15 shows that

the waves that decay are indeed in the region where

›u/›x . 0, and waves farther downwind that persist are in

the area where ›u/›x , 0. Consequentially, it appears

that the trapped waves in this event behaved and evolved

similarly to those in our model, and likely became un-

trapped and decayed through the same underlying

mechanism. It is possible that additional terrain down-

stream of the Cascades may be impacting the wave train

in a manner that we cannot study using the available

data. However until Port Kelly the lee-side topography

FIG. 15. GOES-W visible images showing trapped waves along the Columbia River in the lee side of the Cascade Mountains at (a) 1900,

(b) 1915, (c) 1930, and (d) 1945 UTC. Black dots indicate locations of, from west to east, Aurora, OR, Cascade Locks, OR, Maryhill, WA,

Arlington, OR, and Port Kelly, WA.

FIG. 16. Salem, OR, sounding at 0000 UTC 6 May 2011.

8 The satellite images documenting the shorter waves at earlier

times are difficult to reproduce because of low sun angle and the

presence of some high clouds.
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is relatively flat and, since the flow has a dominant

westerly component, we expect lee-side terrain impacts

to be minimal.

9. Conclusions

Atmospheric flows are never completely steady, and

changes in the speed of the large-scale flow are almost

always associated with horizontal gradients in the ve-

locity field. In this study we have examined the behavior

of trapped waves triggered by an isolated barotropic jet

passing over a ridge of finite length. The flow accelerates

from rest to a maximum of 20 m s21 and then returns to

rest over a period of 33.3 h; the wavelength of the per-

turbation associated with the jet is 1200 km. Despite the

relatively long time- and spatial-scale variations in the

large-scale flow, the behavior of the lee waves triggered

by this jet is dramatically different from that generated

by either a steady flow or by a horizontally uniform

unsteady flow whose velocity everywhere matches the

instantaneous velocity at the ridge crest in the case with

the isolated jet.

As the flow above the mountain accelerates, the initial

development of the lee waves is similar to that in an

impulsively started steady flow, with the wave train

slowly expanding downstream. However, the simulated

waves differ substantially from those generated by im-

pulsively started steady flows after the jet maximum

passes over the mountain. Those trapped waves that

remain in the region downwind of the jet maximum (where

›u/›x , 0) tend to remain trapped as their wavelength

decreases, and they continue to propagate downstream

just ahead of the jet maximum. In contrast, those waves

overtaken by the jet maximum or generated upwind of the

jet max (which exist in an environment where ›u/›x . 0)

tend to become untrapped and decay as their wavelength

gradually increases. The region of decaying waves expands

downstream with time and eventually leaves a gap be-

tween a pair of waves near the mountain crest and those

downstream of the jet maximum.

The simulated response of wave packets to variations

in the large-scale flow is in quantitative agreement with

the results obtained using WKB ray tracing, thereby

providing theoretical support for our identification of

large-scale spatial gradients as the agents responsible

for the modeled changes in wavelength and intrinsic

frequency. The key role played by such gradients was

confirmed by comparing the isolated-jet cases with sim-

ulations of horizontally uniform unsteady flows. Once

launched, the waves in the uniform-unsteady simulations

conserve their wavelength and simply slide back and

FIG. 17. Wind speeds at 850 hPa predicted by the WRF Model

and archived to the nearest 5 kt for the synthetic sounding loca-

tions shown by the black dots in Fig. 15 at 1500, 1800, and

2100 UTC. Data are plotted in order from west to east.

FIG. 18. WRF Model simulation at (a) 1700 and (b) 1900 UTC. Shading shows the cloud water field. Contours are

for surface pressure; thick line is the Columbia River. Line segment terminated with tick marks is the same length in

each panel.
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forth with respect to the mountain as the large-scale flow

first accelerates and then returns to zero.

In both the isolated-jet and uniform-unsteady cases,

the wavelength at which the trapped waves are launched

steadily increases with time. Trapped wave generation

ceases before the arrival of large-scale conditions that

might lead to a steady decrease in the initial wavelength.

The rate of increase in wavelength is comparable to the

average value obtained by Ralph et al. (1997) in a survey

of 24 real-world events. Ralph et al. (1997) attributed

the tendency of the wavelength to grow with time to

diurnal heating of the planetary boundary layer, but it is

possible that the behavior identified here is also a con-

tributing factor.

Satellite imagery and high-resolution WRF Model

data relating to a trapped wave event over Washington

and Oregon provide a potential example of real-world

trapped waves behaving similarly to those in our ideal-

ized simulations. Four wavelengths of the mature wave

train decay progressively from west to east, while waves

further downstream persist. Wind fields from the WRF

Model simulation show that the observed and simulated

waves decay in a region where ›u/›x has become posi-

tive, and in agreement with our results, the wavelength

of the lee waves increases in this region at an average

rate of 8% h21. On the other hand, ›u/›x , 0 in the

region where the waves persist.

The influence of the stratosphere on the trapped waves

in the isolated-jet cases is complex. The waves are stronger

in the presence of a stratosphere than in a strictly two-

layer atmosphere, even though the two-layer configura-

tion prevents any upward leakage of wave energy. First,

the waves are triggered at larger initial amplitudes

through nonlinear interactions with vertically propagating

waves that have been amplified by partial reflections at the

tropopause in the strong-stratosphere case. Second, as

waves propagate downstream in the presence of a strong

stratosphere, they lose significantly less amplitude than

those in the corresponding no-stratosphere (two-layer)

case. This unexpected resistance to upward energy leak-

age stands in contrast to our other simulations in which

leakage into the stratosphere was an important dissipation

mechanism in both steady two-dimensional and three-

dimensional uniform-unsteady flows. We are continuing

to investigate the reasons why trapped waves decay more

slowly in the isolated-jet case when a stable stratosphere

is present.
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